Abstract

A two-dimensional photonic crystal waveguide structure is designed for both TE- and TM-mode slow light propagation. The minimum group index of the waveguide for TE and TM modes can reach to 137.8 and 126.4, and the two polarizations have the same slow light frequency region. The designed structure can provide a large bandwidth range with very low group velocity dispersion for both TE and TM modes. The transmission property investigation for a suspended two-dimensional slab photonic crystal waveguide (PCW) indicates that such slow light character may be retained when perfect reflectors can be fixed on the horizontal surfaces of the slab. Such high group index for both TE and TM modes in two-dimensional PCWs is, to the best of our knowledge, first reported here, and may provide some useful guides for slow light research in theory.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Tucker, P.-C. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23, 4046–4066 (2005).
    [CrossRef]
  2. T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 909–918 (2002).
    [CrossRef]
  3. M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
    [CrossRef]
  4. S. Kubo, D. Mori, and T. Baba, “Large group index under zero-GVD condition in photonic crystal coupled waveguide,” Opt. Lett. 32, 2981–2983 (2007).
    [CrossRef]
  5. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
    [CrossRef]
  6. J. T. Li, T. P. White, L. O’Faolain, L. C. Andreani, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
    [CrossRef]
  7. R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express 14, 1658–1672 (2006).
    [CrossRef]
  8. D. Mori, S. Kubo, H. Sasaki, and T. Baba, “Experimental demonstration of wideband dispersion-compensated slow light by a chirped photonic crystal directional coupler,” Opt. Express 15, 5264–5270 (2007).
    [CrossRef]
  9. L. Dai and C. Jiang, “Photonic crystal slow light waveguides with large delay bandwidth product,” Appl. Phys. B 95, 105–111 (2009).
    [CrossRef]
  10. C. Li, H. Tian, C. Zheng, and Y. Ji, “Improved line defect structures for slow light transmission in photonic crystal waveguide,” Opt. Commun. 279, 214–218 (2007).
    [CrossRef]
  11. J. Ma and C. Jiang, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 20, 1237–1239 (2008).
    [CrossRef]
  12. F. Wang, J. Ma, and C. Jiang, “Dispersionless slow wave in novel 2-D photonic crystal line defect waveguides,” J. Lightwave Technol. 26, 1381–1386 (2008).
    [CrossRef]
  13. M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15, 219–226 (2007).
    [CrossRef]
  14. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007).
    [CrossRef]
  15. R. Hao, E. Cassan, X. L. Roux, D. Gao, V. D. Khanh, L. Vivien, D. Marris-Morini, and X. Zhang, “Improvement of delay-bandwidth product in photonic crystal slow-light waveguides,” Opt. Express 18, 16309 (2010).
    [CrossRef]
  16. F. Wang, J. S. Jensen, and O. Sigmund, “Robust topology optimization of photonic crystal waveguides with tailored dispersion properties,” J. Opt. Soc. Am. B 28, 387–397 (2011).
    [CrossRef]
  17. H. Mao, J. Wang, K. Yu, and Z. Zhu, “TM and TE propagating modes of photonic crystal waveguide based on honeycomb lattices,” Appl. Opt. 49, 6597–6601 (2010).
    [CrossRef]
  18. J. Norato, R. Haber, D. Tortorelli, and M. P. Bendsoe, “A geometry projection method for shape optimization,” Int. J. Numer. Methods Eng. 60, 2289–2312 (2004).
    [CrossRef]
  19. W. R. Frei, H. T. Johnson, and K. D. Choquette, “Optimization of a single defect photonic crystal laser cavity,” J. Appl. Phys. 103, 033102 (2008).
    [CrossRef]
  20. D. L. Wang, Z. Y. Yu, Y. M. Liu, P. F. Lu, L. H. Han, H. Feng, X. T. Guo, and H. Ye, “The optimal structure of two dimensional photonic crystals with the large absolute band gap,” Opt. Express 19, 19346–19353 (2011).
    [CrossRef]
  21. D. L. Wang, Z. Y. Yu, Y. M. Liu, P. F. Lu, L. H. Han, H. Feng, X. T. Guo, and S. Zhou, “Optimization of a two-dimensional photonic crystal waveguide for ultraslow light propagation,” J. Opt. 14, 125101 (2012).
    [CrossRef]
  22. H. D. Tian, Z. Y. Yu, L. H. Han, and Y. M. Liu, “Birefringence and confinement loss properties in photonic crystal fibers under lateral stress,” IEEE Photon. Technol. Lett. 20, 1830–1832 (2008).
    [CrossRef]
  23. J. S. Jensen and O. Sigmund, “Systematic design of photonic crystal structures using topology optimization: low-loss waveguide bends,” Appl. Phys. Lett. 84, 2202–2204 (2004).
    [CrossRef]
  24. S. Y. Shi, C. H. Chen, and D. W. Prather, “Plane-wave expansion method for calculating band structure of photonic crystal slabs with perfectly matched layers,” J. Opt. Soc. Am. A 21, 1769–1775 (2004).
    [CrossRef]
  25. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a plane wave basis,” Opt. Express 8, 173–190 (2001).
    [CrossRef]
  26. R. Hao, E. Cassan, H. Kurt, X. Le Roux, D. Marris-Morini, L. Vivien, H. Wu, Z. Zhou, and X. Zhang, “Novel slow light waveguide with controllable delay-bandwidth product and ultra-low dispersion,” Opt. Express 18, 5942–5950 (2010).
    [CrossRef]
  27. M. Patterson, S. Hughes, S. Schulz, D. Beggs, T. White, L. O’Faolain, and T. Krauss, “Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law,” Phys. Rev. B 80, 195305 (2009).
    [CrossRef]
  28. N. Le Thomas, H. Zhang, J. Jágerská, V. Zabelin, R. Houdré, I. Sagnes, and A. Talneau, “Light transport regimes in slow light photonic crystal waveguides,” Phys. Rev. B 80, 125332 (2009).
    [CrossRef]

2012 (1)

D. L. Wang, Z. Y. Yu, Y. M. Liu, P. F. Lu, L. H. Han, H. Feng, X. T. Guo, and S. Zhou, “Optimization of a two-dimensional photonic crystal waveguide for ultraslow light propagation,” J. Opt. 14, 125101 (2012).
[CrossRef]

2011 (2)

2010 (3)

2009 (3)

M. Patterson, S. Hughes, S. Schulz, D. Beggs, T. White, L. O’Faolain, and T. Krauss, “Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law,” Phys. Rev. B 80, 195305 (2009).
[CrossRef]

N. Le Thomas, H. Zhang, J. Jágerská, V. Zabelin, R. Houdré, I. Sagnes, and A. Talneau, “Light transport regimes in slow light photonic crystal waveguides,” Phys. Rev. B 80, 125332 (2009).
[CrossRef]

L. Dai and C. Jiang, “Photonic crystal slow light waveguides with large delay bandwidth product,” Appl. Phys. B 95, 105–111 (2009).
[CrossRef]

2008 (6)

J. Ma and C. Jiang, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 20, 1237–1239 (2008).
[CrossRef]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
[CrossRef]

W. R. Frei, H. T. Johnson, and K. D. Choquette, “Optimization of a single defect photonic crystal laser cavity,” J. Appl. Phys. 103, 033102 (2008).
[CrossRef]

H. D. Tian, Z. Y. Yu, L. H. Han, and Y. M. Liu, “Birefringence and confinement loss properties in photonic crystal fibers under lateral stress,” IEEE Photon. Technol. Lett. 20, 1830–1832 (2008).
[CrossRef]

J. T. Li, T. P. White, L. O’Faolain, L. C. Andreani, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef]

F. Wang, J. Ma, and C. Jiang, “Dispersionless slow wave in novel 2-D photonic crystal line defect waveguides,” J. Lightwave Technol. 26, 1381–1386 (2008).
[CrossRef]

2007 (5)

2006 (1)

2005 (1)

2004 (4)

S. Y. Shi, C. H. Chen, and D. W. Prather, “Plane-wave expansion method for calculating band structure of photonic crystal slabs with perfectly matched layers,” J. Opt. Soc. Am. A 21, 1769–1775 (2004).
[CrossRef]

J. S. Jensen and O. Sigmund, “Systematic design of photonic crystal structures using topology optimization: low-loss waveguide bends,” Appl. Phys. Lett. 84, 2202–2204 (2004).
[CrossRef]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef]

J. Norato, R. Haber, D. Tortorelli, and M. P. Bendsoe, “A geometry projection method for shape optimization,” Int. J. Numer. Methods Eng. 60, 2289–2312 (2004).
[CrossRef]

2002 (1)

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 909–918 (2002).
[CrossRef]

2001 (1)

Andreani, L. C.

Asakawa, K.

Baba, T.

Beggs, D.

M. Patterson, S. Hughes, S. Schulz, D. Beggs, T. White, L. O’Faolain, and T. Krauss, “Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law,” Phys. Rev. B 80, 195305 (2009).
[CrossRef]

Bendsoe, M. P.

J. Norato, R. Haber, D. Tortorelli, and M. P. Bendsoe, “A geometry projection method for shape optimization,” Int. J. Numer. Methods Eng. 60, 2289–2312 (2004).
[CrossRef]

Brown, D. H.

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 909–918 (2002).
[CrossRef]

Cassan, E.

Chang-Hasnain, C. J.

Chen, C. H.

Choquette, K. D.

W. R. Frei, H. T. Johnson, and K. D. Choquette, “Optimization of a single defect photonic crystal laser cavity,” J. Appl. Phys. 103, 033102 (2008).
[CrossRef]

Dai, L.

L. Dai and C. Jiang, “Photonic crystal slow light waveguides with large delay bandwidth product,” Appl. Phys. B 95, 105–111 (2009).
[CrossRef]

Engelen, R. J. P.

Fan, S.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef]

Feng, H.

D. L. Wang, Z. Y. Yu, Y. M. Liu, P. F. Lu, L. H. Han, H. Feng, X. T. Guo, and S. Zhou, “Optimization of a two-dimensional photonic crystal waveguide for ultraslow light propagation,” J. Opt. 14, 125101 (2012).
[CrossRef]

D. L. Wang, Z. Y. Yu, Y. M. Liu, P. F. Lu, L. H. Han, H. Feng, X. T. Guo, and H. Ye, “The optimal structure of two dimensional photonic crystals with the large absolute band gap,” Opt. Express 19, 19346–19353 (2011).
[CrossRef]

Frei, W. R.

W. R. Frei, H. T. Johnson, and K. D. Choquette, “Optimization of a single defect photonic crystal laser cavity,” J. Appl. Phys. 103, 033102 (2008).
[CrossRef]

Gao, D.

Guo, X. T.

D. L. Wang, Z. Y. Yu, Y. M. Liu, P. F. Lu, L. H. Han, H. Feng, X. T. Guo, and S. Zhou, “Optimization of a two-dimensional photonic crystal waveguide for ultraslow light propagation,” J. Opt. 14, 125101 (2012).
[CrossRef]

D. L. Wang, Z. Y. Yu, Y. M. Liu, P. F. Lu, L. H. Han, H. Feng, X. T. Guo, and H. Ye, “The optimal structure of two dimensional photonic crystals with the large absolute band gap,” Opt. Express 19, 19346–19353 (2011).
[CrossRef]

Haber, R.

J. Norato, R. Haber, D. Tortorelli, and M. P. Bendsoe, “A geometry projection method for shape optimization,” Int. J. Numer. Methods Eng. 60, 2289–2312 (2004).
[CrossRef]

Han, L. H.

D. L. Wang, Z. Y. Yu, Y. M. Liu, P. F. Lu, L. H. Han, H. Feng, X. T. Guo, and S. Zhou, “Optimization of a two-dimensional photonic crystal waveguide for ultraslow light propagation,” J. Opt. 14, 125101 (2012).
[CrossRef]

D. L. Wang, Z. Y. Yu, Y. M. Liu, P. F. Lu, L. H. Han, H. Feng, X. T. Guo, and H. Ye, “The optimal structure of two dimensional photonic crystals with the large absolute band gap,” Opt. Express 19, 19346–19353 (2011).
[CrossRef]

H. D. Tian, Z. Y. Yu, L. H. Han, and Y. M. Liu, “Birefringence and confinement loss properties in photonic crystal fibers under lateral stress,” IEEE Photon. Technol. Lett. 20, 1830–1832 (2008).
[CrossRef]

Hao, R.

Houdré, R.

N. Le Thomas, H. Zhang, J. Jágerská, V. Zabelin, R. Houdré, I. Sagnes, and A. Talneau, “Light transport regimes in slow light photonic crystal waveguides,” Phys. Rev. B 80, 125332 (2009).
[CrossRef]

Hughes, S.

M. Patterson, S. Hughes, S. Schulz, D. Beggs, T. White, L. O’Faolain, and T. Krauss, “Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law,” Phys. Rev. B 80, 195305 (2009).
[CrossRef]

Ikeda, N.

Jágerská, J.

N. Le Thomas, H. Zhang, J. Jágerská, V. Zabelin, R. Houdré, I. Sagnes, and A. Talneau, “Light transport regimes in slow light photonic crystal waveguides,” Phys. Rev. B 80, 125332 (2009).
[CrossRef]

Jensen, J. S.

F. Wang, J. S. Jensen, and O. Sigmund, “Robust topology optimization of photonic crystal waveguides with tailored dispersion properties,” J. Opt. Soc. Am. B 28, 387–397 (2011).
[CrossRef]

J. S. Jensen and O. Sigmund, “Systematic design of photonic crystal structures using topology optimization: low-loss waveguide bends,” Appl. Phys. Lett. 84, 2202–2204 (2004).
[CrossRef]

Ji, Y.

C. Li, H. Tian, C. Zheng, and Y. Ji, “Improved line defect structures for slow light transmission in photonic crystal waveguide,” Opt. Commun. 279, 214–218 (2007).
[CrossRef]

Jiang, C.

L. Dai and C. Jiang, “Photonic crystal slow light waveguides with large delay bandwidth product,” Appl. Phys. B 95, 105–111 (2009).
[CrossRef]

J. Ma and C. Jiang, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 20, 1237–1239 (2008).
[CrossRef]

F. Wang, J. Ma, and C. Jiang, “Dispersionless slow wave in novel 2-D photonic crystal line defect waveguides,” J. Lightwave Technol. 26, 1381–1386 (2008).
[CrossRef]

Joannopoulos, J. D.

Johnson, H. T.

W. R. Frei, H. T. Johnson, and K. D. Choquette, “Optimization of a single defect photonic crystal laser cavity,” J. Appl. Phys. 103, 033102 (2008).
[CrossRef]

Johnson, S. G.

Karle, T. J.

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 909–918 (2002).
[CrossRef]

Khanh, V. D.

Korterik, J. P.

Krauss, T.

M. Patterson, S. Hughes, S. Schulz, D. Beggs, T. White, L. O’Faolain, and T. Krauss, “Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law,” Phys. Rev. B 80, 195305 (2009).
[CrossRef]

Krauss, T. F.

Ku, P.-C.

Kubo, S.

Kuipers, L.

Kurt, H.

Le Roux, X.

Le Thomas, N.

N. Le Thomas, H. Zhang, J. Jágerská, V. Zabelin, R. Houdré, I. Sagnes, and A. Talneau, “Light transport regimes in slow light photonic crystal waveguides,” Phys. Rev. B 80, 125332 (2009).
[CrossRef]

Li, C.

C. Li, H. Tian, C. Zheng, and Y. Ji, “Improved line defect structures for slow light transmission in photonic crystal waveguide,” Opt. Commun. 279, 214–218 (2007).
[CrossRef]

Li, J. T.

Liu, Y. M.

D. L. Wang, Z. Y. Yu, Y. M. Liu, P. F. Lu, L. H. Han, H. Feng, X. T. Guo, and S. Zhou, “Optimization of a two-dimensional photonic crystal waveguide for ultraslow light propagation,” J. Opt. 14, 125101 (2012).
[CrossRef]

D. L. Wang, Z. Y. Yu, Y. M. Liu, P. F. Lu, L. H. Han, H. Feng, X. T. Guo, and H. Ye, “The optimal structure of two dimensional photonic crystals with the large absolute band gap,” Opt. Express 19, 19346–19353 (2011).
[CrossRef]

H. D. Tian, Z. Y. Yu, L. H. Han, and Y. M. Liu, “Birefringence and confinement loss properties in photonic crystal fibers under lateral stress,” IEEE Photon. Technol. Lett. 20, 1830–1832 (2008).
[CrossRef]

Lu, P. F.

D. L. Wang, Z. Y. Yu, Y. M. Liu, P. F. Lu, L. H. Han, H. Feng, X. T. Guo, and S. Zhou, “Optimization of a two-dimensional photonic crystal waveguide for ultraslow light propagation,” J. Opt. 14, 125101 (2012).
[CrossRef]

D. L. Wang, Z. Y. Yu, Y. M. Liu, P. F. Lu, L. H. Han, H. Feng, X. T. Guo, and H. Ye, “The optimal structure of two dimensional photonic crystals with the large absolute band gap,” Opt. Express 19, 19346–19353 (2011).
[CrossRef]

Ma, J.

F. Wang, J. Ma, and C. Jiang, “Dispersionless slow wave in novel 2-D photonic crystal line defect waveguides,” J. Lightwave Technol. 26, 1381–1386 (2008).
[CrossRef]

J. Ma and C. Jiang, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 20, 1237–1239 (2008).
[CrossRef]

Mao, H.

Marris-Morini, D.

Michaeli, A.

Mori, D.

Norato, J.

J. Norato, R. Haber, D. Tortorelli, and M. P. Bendsoe, “A geometry projection method for shape optimization,” Int. J. Numer. Methods Eng. 60, 2289–2312 (2004).
[CrossRef]

O’Faolain, L.

M. Patterson, S. Hughes, S. Schulz, D. Beggs, T. White, L. O’Faolain, and T. Krauss, “Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law,” Phys. Rev. B 80, 195305 (2009).
[CrossRef]

J. T. Li, T. P. White, L. O’Faolain, L. C. Andreani, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef]

Patterson, M.

M. Patterson, S. Hughes, S. Schulz, D. Beggs, T. White, L. O’Faolain, and T. Krauss, “Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law,” Phys. Rev. B 80, 195305 (2009).
[CrossRef]

Prather, D. W.

Roux, X. L.

Sagnes, I.

N. Le Thomas, H. Zhang, J. Jágerská, V. Zabelin, R. Houdré, I. Sagnes, and A. Talneau, “Light transport regimes in slow light photonic crystal waveguides,” Phys. Rev. B 80, 125332 (2009).
[CrossRef]

Salib, M.

Sasaki, H.

Schulz, S.

M. Patterson, S. Hughes, S. Schulz, D. Beggs, T. White, L. O’Faolain, and T. Krauss, “Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law,” Phys. Rev. B 80, 195305 (2009).
[CrossRef]

Settle, M. D.

Shi, S. Y.

Sigmund, O.

F. Wang, J. S. Jensen, and O. Sigmund, “Robust topology optimization of photonic crystal waveguides with tailored dispersion properties,” J. Opt. Soc. Am. B 28, 387–397 (2011).
[CrossRef]

J. S. Jensen and O. Sigmund, “Systematic design of photonic crystal structures using topology optimization: low-loss waveguide bends,” Appl. Phys. Lett. 84, 2202–2204 (2004).
[CrossRef]

Steer, M.

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 909–918 (2002).
[CrossRef]

Sugimoto, Y.

Suh, W.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef]

Talneau, A.

N. Le Thomas, H. Zhang, J. Jágerská, V. Zabelin, R. Houdré, I. Sagnes, and A. Talneau, “Light transport regimes in slow light photonic crystal waveguides,” Phys. Rev. B 80, 125332 (2009).
[CrossRef]

Tian, H.

C. Li, H. Tian, C. Zheng, and Y. Ji, “Improved line defect structures for slow light transmission in photonic crystal waveguide,” Opt. Commun. 279, 214–218 (2007).
[CrossRef]

Tian, H. D.

H. D. Tian, Z. Y. Yu, L. H. Han, and Y. M. Liu, “Birefringence and confinement loss properties in photonic crystal fibers under lateral stress,” IEEE Photon. Technol. Lett. 20, 1830–1832 (2008).
[CrossRef]

Tortorelli, D.

J. Norato, R. Haber, D. Tortorelli, and M. P. Bendsoe, “A geometry projection method for shape optimization,” Int. J. Numer. Methods Eng. 60, 2289–2312 (2004).
[CrossRef]

Tucker, R. S.

van Hulst, N. F.

Vivien, L.

Wang, D. L.

D. L. Wang, Z. Y. Yu, Y. M. Liu, P. F. Lu, L. H. Han, H. Feng, X. T. Guo, and S. Zhou, “Optimization of a two-dimensional photonic crystal waveguide for ultraslow light propagation,” J. Opt. 14, 125101 (2012).
[CrossRef]

D. L. Wang, Z. Y. Yu, Y. M. Liu, P. F. Lu, L. H. Han, H. Feng, X. T. Guo, and H. Ye, “The optimal structure of two dimensional photonic crystals with the large absolute band gap,” Opt. Express 19, 19346–19353 (2011).
[CrossRef]

Wang, F.

Wang, J.

Wang, Z.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef]

Watanabe, Y.

White, T.

M. Patterson, S. Hughes, S. Schulz, D. Beggs, T. White, L. O’Faolain, and T. Krauss, “Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law,” Phys. Rev. B 80, 195305 (2009).
[CrossRef]

White, T. P.

Wilson, R.

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 909–918 (2002).
[CrossRef]

Wu, H.

Yanik, M. F.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef]

Ye, H.

Yu, K.

Yu, Z. Y.

D. L. Wang, Z. Y. Yu, Y. M. Liu, P. F. Lu, L. H. Han, H. Feng, X. T. Guo, and S. Zhou, “Optimization of a two-dimensional photonic crystal waveguide for ultraslow light propagation,” J. Opt. 14, 125101 (2012).
[CrossRef]

D. L. Wang, Z. Y. Yu, Y. M. Liu, P. F. Lu, L. H. Han, H. Feng, X. T. Guo, and H. Ye, “The optimal structure of two dimensional photonic crystals with the large absolute band gap,” Opt. Express 19, 19346–19353 (2011).
[CrossRef]

H. D. Tian, Z. Y. Yu, L. H. Han, and Y. M. Liu, “Birefringence and confinement loss properties in photonic crystal fibers under lateral stress,” IEEE Photon. Technol. Lett. 20, 1830–1832 (2008).
[CrossRef]

Zabelin, V.

N. Le Thomas, H. Zhang, J. Jágerská, V. Zabelin, R. Houdré, I. Sagnes, and A. Talneau, “Light transport regimes in slow light photonic crystal waveguides,” Phys. Rev. B 80, 125332 (2009).
[CrossRef]

Zhang, H.

N. Le Thomas, H. Zhang, J. Jágerská, V. Zabelin, R. Houdré, I. Sagnes, and A. Talneau, “Light transport regimes in slow light photonic crystal waveguides,” Phys. Rev. B 80, 125332 (2009).
[CrossRef]

Zhang, X.

Zheng, C.

C. Li, H. Tian, C. Zheng, and Y. Ji, “Improved line defect structures for slow light transmission in photonic crystal waveguide,” Opt. Commun. 279, 214–218 (2007).
[CrossRef]

Zhou, S.

D. L. Wang, Z. Y. Yu, Y. M. Liu, P. F. Lu, L. H. Han, H. Feng, X. T. Guo, and S. Zhou, “Optimization of a two-dimensional photonic crystal waveguide for ultraslow light propagation,” J. Opt. 14, 125101 (2012).
[CrossRef]

Zhou, Z.

Zhu, Z.

Appl. Opt. (1)

Appl. Phys. B (1)

L. Dai and C. Jiang, “Photonic crystal slow light waveguides with large delay bandwidth product,” Appl. Phys. B 95, 105–111 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

J. S. Jensen and O. Sigmund, “Systematic design of photonic crystal structures using topology optimization: low-loss waveguide bends,” Appl. Phys. Lett. 84, 2202–2204 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 909–918 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. Ma and C. Jiang, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 20, 1237–1239 (2008).
[CrossRef]

H. D. Tian, Z. Y. Yu, L. H. Han, and Y. M. Liu, “Birefringence and confinement loss properties in photonic crystal fibers under lateral stress,” IEEE Photon. Technol. Lett. 20, 1830–1832 (2008).
[CrossRef]

Int. J. Numer. Methods Eng. (1)

J. Norato, R. Haber, D. Tortorelli, and M. P. Bendsoe, “A geometry projection method for shape optimization,” Int. J. Numer. Methods Eng. 60, 2289–2312 (2004).
[CrossRef]

J. Appl. Phys. (1)

W. R. Frei, H. T. Johnson, and K. D. Choquette, “Optimization of a single defect photonic crystal laser cavity,” J. Appl. Phys. 103, 033102 (2008).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. (1)

D. L. Wang, Z. Y. Yu, Y. M. Liu, P. F. Lu, L. H. Han, H. Feng, X. T. Guo, and S. Zhou, “Optimization of a two-dimensional photonic crystal waveguide for ultraslow light propagation,” J. Opt. 14, 125101 (2012).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007).
[CrossRef]

Nat. Photonics (1)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
[CrossRef]

Opt. Commun. (1)

C. Li, H. Tian, C. Zheng, and Y. Ji, “Improved line defect structures for slow light transmission in photonic crystal waveguide,” Opt. Commun. 279, 214–218 (2007).
[CrossRef]

Opt. Express (8)

R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express 14, 1658–1672 (2006).
[CrossRef]

M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15, 219–226 (2007).
[CrossRef]

D. Mori, S. Kubo, H. Sasaki, and T. Baba, “Experimental demonstration of wideband dispersion-compensated slow light by a chirped photonic crystal directional coupler,” Opt. Express 15, 5264–5270 (2007).
[CrossRef]

D. L. Wang, Z. Y. Yu, Y. M. Liu, P. F. Lu, L. H. Han, H. Feng, X. T. Guo, and H. Ye, “The optimal structure of two dimensional photonic crystals with the large absolute band gap,” Opt. Express 19, 19346–19353 (2011).
[CrossRef]

J. T. Li, T. P. White, L. O’Faolain, L. C. Andreani, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a plane wave basis,” Opt. Express 8, 173–190 (2001).
[CrossRef]

R. Hao, E. Cassan, H. Kurt, X. Le Roux, D. Marris-Morini, L. Vivien, H. Wu, Z. Zhou, and X. Zhang, “Novel slow light waveguide with controllable delay-bandwidth product and ultra-low dispersion,” Opt. Express 18, 5942–5950 (2010).
[CrossRef]

R. Hao, E. Cassan, X. L. Roux, D. Gao, V. D. Khanh, L. Vivien, D. Marris-Morini, and X. Zhang, “Improvement of delay-bandwidth product in photonic crystal slow-light waveguides,” Opt. Express 18, 16309 (2010).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (2)

M. Patterson, S. Hughes, S. Schulz, D. Beggs, T. White, L. O’Faolain, and T. Krauss, “Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law,” Phys. Rev. B 80, 195305 (2009).
[CrossRef]

N. Le Thomas, H. Zhang, J. Jágerská, V. Zabelin, R. Houdré, I. Sagnes, and A. Talneau, “Light transport regimes in slow light photonic crystal waveguides,” Phys. Rev. B 80, 125332 (2009).
[CrossRef]

Phys. Rev. Lett. (1)

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Top of the figure is the super cell of the initial PCW structure. The lower left of the figure is the primitive cell structure of the PC structure. Blue is the dielectric material distribution (εr=11.4 corresponding to GaAs), and white indicates air (εair=1). The lower right of the figure is the band diagram of the PCW. The second band of the TE mode and the third band of the TM mode are selected as the design objects. Solid lines represent bands of the TE guide modes, and dashed lines are bands of the TM guide modes.

Fig. 2.
Fig. 2.

Top of the figure is the super cell of the new flat-band 2D PCW structure, which is obtained by the GPM optimization technique. The lower left of the figure shows the enlarged view of the new flat-band PCW center. The lower right of the figure shows the illustration of how the GPM optimization technique to project the new 2D PCW structure.

Fig. 3.
Fig. 3.

Guide mode band structure of the new designed PCW structure. (a) Four bands of TE guide modes appear in the band gap, and the second band demonstrates flat-band property. (b) Six bands of TM modes appear in the band gap, and the fifth band is the flat band.

Fig. 4.
Fig. 4.

Parameterized structures of the dielectric distribution at the center of the new PCW. Eight parameters are used to define the simplified PCW structure.

Fig. 5.
Fig. 5.

Band structure of the guide mode and group index properties of the designed PCW. (a) Enlarged views of the flat bands and the target function. (b) Group index of the designed PCW.

Fig. 6.
Fig. 6.

GVD parameter of the designed PCW.

Fig. 7.
Fig. 7.

Intensity profiles of the light field at two selected detection points (distance L=10a). (a) TM mode. (The inset shows the static electric field distribution of the slow light mode.) (b) TE mode. (The inset shows the static magnetic field distribution of the slow light mode.)

Fig. 8.
Fig. 8.

Transmission properties of a 2D PCW and a suspended 2D PCW slab (the horizontal surfaces are assumed as perfect reflectors).

Tables (1)

Tables Icon

Table 1. NDBP and Flat ng Bandwidth for TE and TM Modes

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ω(k)=cN1k+N2,

Metrics