Abstract

In this paper, a tunable low power slow light photonic crystal device with a silicon-on-insulator platform is proposed based on the combination of an asymmetric defects coupled-cavity waveguide and the electromagnetically induced transparency (EIT) phenomenon. Modulating the refractive index of special regions in the suggested structure by the EIT phenomenon leads to a relatively wideband slow light device with adjustable group index in the same structure. Using this feature, a small and compact delay line is introduced that has many applications in optical telecommunications, especially in buffers. The numerical calculations show that the group index of 80–98 over the slow light bandwidth from 3.2 to 2.6 nm is achievable for the central wavelength of 1546–1555 nm, respectively. The device malfunction, due to fabrication errors, is modeled, and the tunable characteristics of the proposed structure are verified.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultacold atomic gas,” Nature 397, 594–598 (1999).
    [CrossRef]
  2. I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photon. Rev. 6, 333–353 (2012).
    [CrossRef]
  3. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
    [CrossRef]
  4. P.-Ch. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, Sh.-W. Chang, and Sh.-L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29, 2291–2293 (2004).
    [CrossRef]
  5. H. Su and Sh. L. Chuang, “Room-temperature slow light with semiconductor quantum-dot devices,” Opt. Lett. 31, 271–273 (2006).
    [CrossRef]
  6. J. Q. Liang, M. Katsuragawa, F. L. Kien, and K. Hakuta, “Slow light produced by stimulated Raman scattering in solid hydrogen,” Phys. Rev. A 65, 031801 (2002).
    [CrossRef]
  7. D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13, 6234–6249 (2005).
    [CrossRef]
  8. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Zh. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
    [CrossRef]
  9. K. Y. Song, M. G. Herráez, and L. Thévenaz, “Long optically controlled delays in optical fibers,” Opt. Lett. 30, 1782–1784 (2005).
  10. Zh. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “Broadband SBS slow light in an optical fiber,” J. Lightwave Technol. 25, 201–206 (2007).
    [CrossRef]
  11. S. C. Huang, M. Kato, E. Kuramochi, C. P. Lee, and M. Notomi, “Time-domain and spectral-domain investigation of inflection-point slow-light modes in photonic crystal coupled waveguides,” Opt. Express 15, 3543–3549 (2007).
    [CrossRef]
  12. T. Baba and D. Mori, “Slow light engineering in photonic crystals,” J. Phys. D 40, 2659–2665 (2007).
    [CrossRef]
  13. Y. Xu, L. Xiang, E. Cassan, D. Gaoand, and X. Zhang, “Slow light in an alternative row of ellipse-holephotonic crystal waveguide,” Appl. Opt. 52, 1155–1160 (2013).
    [CrossRef]
  14. D. O’Brien, M. D. Settle, T. Karle, A. Michaeli, M. Salib, and T. F. Krauss, “Coupled photonic crystal heterostructure nanocavities,” Opt. Express 15, 1228–1233 (2007).
    [CrossRef]
  15. T. Kawasaki, D. Mori, and T. Baba, “Experimental observation of slow light in photonic crystal coupled waveguides,” Opt. Express 15, 10274–10281 (2007).
    [CrossRef]
  16. T. Baba, T. Kawasaki, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16, 9245–9253 (2008).
    [CrossRef]
  17. M. S. Moreolo, V. Morra, and G. Cincotti, “Design of photonic crystal delay lines based on enhanced coupled-cavity waveguides,” J. Opt. A 10, 064002 (2008).
    [CrossRef]
  18. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
    [CrossRef]
  19. Sh. Lü, J. Zhao, and D. Zhang, “Flat band slow light in asymmetric photonic crystal waveguide based on microfluidic infiltration,” Appl. Opt. 49, 3930–3934 (2010).
    [CrossRef]
  20. S. Rawal, R. K. Sinha, and R. De La Rue, “Slow light propagation in liquid-crystal infiltrated silicon-on-insulator photonic crystal channel waveguides,” J. Lightwave Technol. 28, 2560–2571 (2010).
    [CrossRef]
  21. H. Chen, J. He, Y. Jin, and Z. Hong, “Slow light in a dielectric slab waveguide with a negative refractive index photonic crystal substrate,” Opt. Commun. 282, 653–656 (2009).
    [CrossRef]
  22. M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635 (2009).
    [CrossRef]
  23. C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17, 2944–2953 (2009).
    [CrossRef]
  24. J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21, 1571–1573 (2009).
    [CrossRef]
  25. J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Quantum Electron. 16, 192–199 (2010).
    [CrossRef]
  26. K. Üstün and H. Kurt, “Ultra slow light achievement in photonic crystals by merging coupled cavities with waveguides,” Opt. Express 18, 21155–21161 (2010).
    [CrossRef]
  27. S. Raza, J. Grgíc, S. Xiao, and N. Mortensen, “Coupled-resonator optical waveguides: Q-factor influence on slow-light propagation and the maximal group delay,” J. Eur. Opt. Soc. 5, 10009 (2010).
    [CrossRef]
  28. D. Wang, J. Zhang, L. Yuan, J. Lei, S. Chen, J. Han, and S. Hou, “Slow light engineering in polyatomic photonic crystal waveguides based on square lattice,” Opt. Commun. 284, 5829–5832 (2011).
    [CrossRef]
  29. A. E. Akosman, M. Mutlu, H. Kurt, and E. Ozbay, “Compact wavelength de-multiplexer design using slow light regime of photonic crystal waveguides,” Opt. Express 19, 24129–24138 (2011).
    [CrossRef]
  30. J. Liang, L. Ren, M. Yun, and X. Wang, “Wideband slow light with ultralow dispersionin a W1 photonic crystal waveguide,” Appl. Opt. 50, G98–G103 (2011).
    [CrossRef]
  31. D. Wang, Z. Yu, Y. Liu, X. Guo, and S. Zhou, “Optimization of a two-dimensional photonic crystal waveguide for ultraslow light propagation,” J. Opt. 14, 125101 (2012).
    [CrossRef]
  32. Y. Zhai, H. Tian, and Y. Ji, “Slow light property improvement and optical buffer capability in ring-shape-hole photonic crystal waveguide,” J. Lightwave Technol. 29, 3083–3090 (2011).
    [CrossRef]
  33. H. Tian, F. Long, W. Liu, and Y. Ji, “Tunable slow light and buffer capability in photonic crystal coupled-cavity waveguides based on electro-optic effect,” Opt. Commun. 285, 2760–2764 (2012).
    [CrossRef]
  34. P. Blown, C. Fisher, F. J. Lawrence, N. Gutman, and C. M. de Sterke, “Semi-analytic method for slow light photonic crystal waveguide design,” Photon. Nanostr. Fundam. Appl. 10, 478–484 (2012).
    [CrossRef]
  35. Y. Zhao, Y. N. Zhang, D. Wu, and Q. Wang, “Wideband slow light with large group index and low dispersion in slotted photonic crystal waveguide,” J. Lightwave Technol. 30, 2812–2817 (2012).
    [CrossRef]
  36. R. S. Tucker, P. Ku, and C. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23, 4046–4066 (2005).
    [CrossRef]
  37. T. P. White, L. O’Faolain, J. Li, L. C. Andreani, and T. F. Krauss, “Silica-embedded silicon photonic crystal waveguides,” Opt. Express 16, 17076–17081 (2008).
    [CrossRef]
  38. M. Soljačić, J. D. Joannopoulos, and L. V. Hau, “Using electromagnetically induced transparency in photonic crystal cavities to obtain large non-linear effects,” U.S. Patent SpecificationUS20040175087 A1 (September9, 2004).
  39. M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
    [CrossRef]
  40. P. Bermel, A. Rodrigues, S. G. Johnson, J. D. Joannopolous, and M. Soljačić, “Single-photon all-optical switching using waveguide-cavity quantum electrodynamics,” Phys. Rev. A 74, 043818 (2006).
    [CrossRef]
  41. H. Habibiyan, H. Ghafoori-Fard, and A. Rostami, “Tunable all-optical photonic crystal channel drop filter for DWDM systems,” J. Opt. A 11, 065102 (2009).
    [CrossRef]
  42. T. C. Liau, J. Q. Shen, J. J. Wu, and T. J. Yang, “EIT based photonic logic gate,” U.S. Patent SpecificationUS20130016411 A1 (January17, 2013).
  43. M. O. Scully and M. S. Zubairy, Quantum Optics, 1st ed. (Cambridge, 1997).
  44. K. X. Guo and Y. B. Yu, “Nonlinear optical susceptibilities in Si/SiO2 parabolic quantum dots,” Chin. J. Nucl. Phys. 43, 932–941 (2005).
  45. R. Paschotta, Encyclopedia of Laser Physics and Technology, 1st ed. (Wiley-VCH, 2008).
  46. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965).
    [CrossRef]
  47. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  48. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
    [CrossRef]
  49. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
    [CrossRef]
  50. T. K. Liang and H. K. Tsong, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
    [CrossRef]
  51. S. A. schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
    [CrossRef]
  52. M. Y. Tekeste and J. M. Yarrison-Rice, “High efficiency photonic crystal based wavelength demultiplexer,” Opt. Express 14, 7931–7942 (2006).
    [CrossRef]

2013 (1)

2012 (5)

Y. Zhao, Y. N. Zhang, D. Wu, and Q. Wang, “Wideband slow light with large group index and low dispersion in slotted photonic crystal waveguide,” J. Lightwave Technol. 30, 2812–2817 (2012).
[CrossRef]

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photon. Rev. 6, 333–353 (2012).
[CrossRef]

D. Wang, Z. Yu, Y. Liu, X. Guo, and S. Zhou, “Optimization of a two-dimensional photonic crystal waveguide for ultraslow light propagation,” J. Opt. 14, 125101 (2012).
[CrossRef]

H. Tian, F. Long, W. Liu, and Y. Ji, “Tunable slow light and buffer capability in photonic crystal coupled-cavity waveguides based on electro-optic effect,” Opt. Commun. 285, 2760–2764 (2012).
[CrossRef]

P. Blown, C. Fisher, F. J. Lawrence, N. Gutman, and C. M. de Sterke, “Semi-analytic method for slow light photonic crystal waveguide design,” Photon. Nanostr. Fundam. Appl. 10, 478–484 (2012).
[CrossRef]

2011 (4)

2010 (6)

Sh. Lü, J. Zhao, and D. Zhang, “Flat band slow light in asymmetric photonic crystal waveguide based on microfluidic infiltration,” Appl. Opt. 49, 3930–3934 (2010).
[CrossRef]

K. Üstün and H. Kurt, “Ultra slow light achievement in photonic crystals by merging coupled cavities with waveguides,” Opt. Express 18, 21155–21161 (2010).
[CrossRef]

S. Rawal, R. K. Sinha, and R. De La Rue, “Slow light propagation in liquid-crystal infiltrated silicon-on-insulator photonic crystal channel waveguides,” J. Lightwave Technol. 28, 2560–2571 (2010).
[CrossRef]

J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Quantum Electron. 16, 192–199 (2010).
[CrossRef]

S. Raza, J. Grgíc, S. Xiao, and N. Mortensen, “Coupled-resonator optical waveguides: Q-factor influence on slow-light propagation and the maximal group delay,” J. Eur. Opt. Soc. 5, 10009 (2010).
[CrossRef]

S. A. schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

2009 (5)

H. Habibiyan, H. Ghafoori-Fard, and A. Rostami, “Tunable all-optical photonic crystal channel drop filter for DWDM systems,” J. Opt. A 11, 065102 (2009).
[CrossRef]

H. Chen, J. He, Y. Jin, and Z. Hong, “Slow light in a dielectric slab waveguide with a negative refractive index photonic crystal substrate,” Opt. Commun. 282, 653–656 (2009).
[CrossRef]

J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21, 1571–1573 (2009).
[CrossRef]

M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635 (2009).
[CrossRef]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17, 2944–2953 (2009).
[CrossRef]

2008 (4)

2007 (5)

2006 (3)

2005 (5)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Zh. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

R. S. Tucker, P. Ku, and C. Chang-Hasnain, “Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightwave Technol. 23, 4046–4066 (2005).
[CrossRef]

K. Y. Song, M. G. Herráez, and L. Thévenaz, “Long optically controlled delays in optical fibers,” Opt. Lett. 30, 1782–1784 (2005).

D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13, 6234–6249 (2005).
[CrossRef]

K. X. Guo and Y. B. Yu, “Nonlinear optical susceptibilities in Si/SiO2 parabolic quantum dots,” Chin. J. Nucl. Phys. 43, 932–941 (2005).

2004 (3)

T. K. Liang and H. K. Tsong, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
[CrossRef]

P.-Ch. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, Sh.-W. Chang, and Sh.-L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29, 2291–2293 (2004).
[CrossRef]

M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[CrossRef]

2003 (1)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef]

2002 (2)

J. Q. Liang, M. Katsuragawa, F. L. Kien, and K. Hakuta, “Slow light produced by stimulated Raman scattering in solid hydrogen,” Phys. Rev. A 65, 031801 (2002).
[CrossRef]

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

1999 (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultacold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

1987 (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[CrossRef]

1965 (1)

Adachi, J.

J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Quantum Electron. 16, 192–199 (2010).
[CrossRef]

T. Baba, T. Kawasaki, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16, 9245–9253 (2008).
[CrossRef]

Akosman, A. E.

Andreani, L. C.

Asghari, M.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

Baba, T.

J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Quantum Electron. 16, 192–199 (2010).
[CrossRef]

T. Baba, T. Kawasaki, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16, 9245–9253 (2008).
[CrossRef]

T. Kawasaki, D. Mori, and T. Baba, “Experimental observation of slow light in photonic crystal coupled waveguides,” Opt. Express 15, 10274–10281 (2007).
[CrossRef]

T. Baba and D. Mori, “Slow light engineering in photonic crystals,” J. Phys. D 40, 2659–2665 (2007).
[CrossRef]

Beggs, D. M.

S. A. schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultacold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[CrossRef]

Bermel, P.

P. Bermel, A. Rodrigues, S. G. Johnson, J. D. Joannopolous, and M. Soljačić, “Single-photon all-optical switching using waveguide-cavity quantum electrodynamics,” Phys. Rev. A 74, 043818 (2006).
[CrossRef]

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Zh. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef]

Blown, P.

P. Blown, C. Fisher, F. J. Lawrence, N. Gutman, and C. M. de Sterke, “Semi-analytic method for slow light photonic crystal waveguide design,” Photon. Nanostr. Fundam. Appl. 10, 478–484 (2012).
[CrossRef]

Boyd, R. W.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Zh. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef]

Cassan, E.

Chang, Sh.-W.

Chang-Hasnain, C.

Chang-Hasnain, C. J.

Chen, H.

H. Chen, J. He, Y. Jin, and Z. Hong, “Slow light in a dielectric slab waveguide with a negative refractive index photonic crystal substrate,” Opt. Commun. 282, 653–656 (2009).
[CrossRef]

Chen, S.

D. Wang, J. Zhang, L. Yuan, J. Lei, S. Chen, J. Han, and S. Hou, “Slow light engineering in polyatomic photonic crystal waveguides based on square lattice,” Opt. Commun. 284, 5829–5832 (2011).
[CrossRef]

Chuang, Sh. L.

Chuang, Sh.-L.

Cincotti, G.

M. S. Moreolo, V. Morra, and G. Cincotti, “Design of photonic crystal delay lines based on enhanced coupled-cavity waveguides,” J. Opt. A 10, 064002 (2008).
[CrossRef]

Corcoran, B.

Dahan, D.

Dawes, A. M. C.

Day, I. E.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

De La Rue, R.

de Sterke, C. M.

P. Blown, C. Fisher, F. J. Lawrence, N. Gutman, and C. M. de Sterke, “Semi-analytic method for slow light photonic crystal waveguide design,” Photon. Nanostr. Fundam. Appl. 10, 478–484 (2012).
[CrossRef]

Drake, J.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultacold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Ebnali-Heidari, M.

Eggleton, B. J.

Eisenstein, G.

Fisher, C.

P. Blown, C. Fisher, F. J. Lawrence, N. Gutman, and C. M. de Sterke, “Semi-analytic method for slow light photonic crystal waveguide design,” Photon. Nanostr. Fundam. Appl. 10, 478–484 (2012).
[CrossRef]

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Zh. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Gao, D.

J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21, 1571–1573 (2009).
[CrossRef]

Gaoand, D.

Gauthier, D. J.

Zh. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “Broadband SBS slow light in an optical fiber,” J. Lightwave Technol. 25, 201–206 (2007).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Zh. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Ghafoori-Fard, H.

H. Habibiyan, H. Ghafoori-Fard, and A. Rostami, “Tunable all-optical photonic crystal channel drop filter for DWDM systems,” J. Opt. A 11, 065102 (2009).
[CrossRef]

Gomez-Iglesias, A.

Grgíc, J.

S. Raza, J. Grgíc, S. Xiao, and N. Mortensen, “Coupled-resonator optical waveguides: Q-factor influence on slow-light propagation and the maximal group delay,” J. Eur. Opt. Soc. 5, 10009 (2010).
[CrossRef]

Grillet, C.

Guo, K. X.

K. X. Guo and Y. B. Yu, “Nonlinear optical susceptibilities in Si/SiO2 parabolic quantum dots,” Chin. J. Nucl. Phys. 43, 932–941 (2005).

Guo, X.

D. Wang, Z. Yu, Y. Liu, X. Guo, and S. Zhou, “Optimization of a two-dimensional photonic crystal waveguide for ultraslow light propagation,” J. Opt. 14, 125101 (2012).
[CrossRef]

Gutman, N.

P. Blown, C. Fisher, F. J. Lawrence, N. Gutman, and C. M. de Sterke, “Semi-analytic method for slow light photonic crystal waveguide design,” Photon. Nanostr. Fundam. Appl. 10, 478–484 (2012).
[CrossRef]

Habibiyan, H.

H. Habibiyan, H. Ghafoori-Fard, and A. Rostami, “Tunable all-optical photonic crystal channel drop filter for DWDM systems,” J. Opt. A 11, 065102 (2009).
[CrossRef]

Hakuta, K.

J. Q. Liang, M. Katsuragawa, F. L. Kien, and K. Hakuta, “Slow light produced by stimulated Raman scattering in solid hydrogen,” Phys. Rev. A 65, 031801 (2002).
[CrossRef]

Han, J.

D. Wang, J. Zhang, L. Yuan, J. Lei, S. Chen, J. Han, and S. Hou, “Slow light engineering in polyatomic photonic crystal waveguides based on square lattice,” Opt. Commun. 284, 5829–5832 (2011).
[CrossRef]

Hao, R.

J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21, 1571–1573 (2009).
[CrossRef]

Harpin, A.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultacold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultacold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

M. Soljačić, J. D. Joannopoulos, and L. V. Hau, “Using electromagnetically induced transparency in photonic crystal cavities to obtain large non-linear effects,” U.S. Patent SpecificationUS20040175087 A1 (September9, 2004).

He, J.

H. Chen, J. He, Y. Jin, and Z. Hong, “Slow light in a dielectric slab waveguide with a negative refractive index photonic crystal substrate,” Opt. Commun. 282, 653–656 (2009).
[CrossRef]

Herráez, M. G.

Hong, Z.

H. Chen, J. He, Y. Jin, and Z. Hong, “Slow light in a dielectric slab waveguide with a negative refractive index photonic crystal substrate,” Opt. Commun. 282, 653–656 (2009).
[CrossRef]

Hou, J.

J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21, 1571–1573 (2009).
[CrossRef]

Hou, S.

D. Wang, J. Zhang, L. Yuan, J. Lei, S. Chen, J. Han, and S. Hou, “Slow light engineering in polyatomic photonic crystal waveguides based on square lattice,” Opt. Commun. 284, 5829–5832 (2011).
[CrossRef]

Huang, S. C.

Ishikura, N.

J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Quantum Electron. 16, 192–199 (2010).
[CrossRef]

Ji, Y.

H. Tian, F. Long, W. Liu, and Y. Ji, “Tunable slow light and buffer capability in photonic crystal coupled-cavity waveguides based on electro-optic effect,” Opt. Commun. 285, 2760–2764 (2012).
[CrossRef]

Y. Zhai, H. Tian, and Y. Ji, “Slow light property improvement and optical buffer capability in ring-shape-hole photonic crystal waveguide,” J. Lightwave Technol. 29, 3083–3090 (2011).
[CrossRef]

Jin, Y.

H. Chen, J. He, Y. Jin, and Z. Hong, “Slow light in a dielectric slab waveguide with a negative refractive index photonic crystal substrate,” Opt. Commun. 282, 653–656 (2009).
[CrossRef]

Joannopolous, J. D.

P. Bermel, A. Rodrigues, S. G. Johnson, J. D. Joannopolous, and M. Soljačić, “Single-photon all-optical switching using waveguide-cavity quantum electrodynamics,” Phys. Rev. A 74, 043818 (2006).
[CrossRef]

Joannopoulos, J. D.

M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[CrossRef]

M. Soljačić, J. D. Joannopoulos, and L. V. Hau, “Using electromagnetically induced transparency in photonic crystal cavities to obtain large non-linear effects,” U.S. Patent SpecificationUS20040175087 A1 (September9, 2004).

Johnson, S. G.

P. Bermel, A. Rodrigues, S. G. Johnson, J. D. Joannopolous, and M. Soljačić, “Single-photon all-optical switching using waveguide-cavity quantum electrodynamics,” Phys. Rev. A 74, 043818 (2006).
[CrossRef]

Karle, T.

Kato, M.

Katsuragawa, M.

J. Q. Liang, M. Katsuragawa, F. L. Kien, and K. Hakuta, “Slow light produced by stimulated Raman scattering in solid hydrogen,” Phys. Rev. A 65, 031801 (2002).
[CrossRef]

Kawasaki, T.

Kien, F. L.

J. Q. Liang, M. Katsuragawa, F. L. Kien, and K. Hakuta, “Slow light produced by stimulated Raman scattering in solid hydrogen,” Phys. Rev. A 65, 031801 (2002).
[CrossRef]

Krauss, T. F.

Ku, P.

Ku, P.-Ch.

Kuramochi, E.

Kurt, H.

Lawrence, F. J.

P. Blown, C. Fisher, F. J. Lawrence, N. Gutman, and C. M. de Sterke, “Semi-analytic method for slow light photonic crystal waveguide design,” Photon. Nanostr. Fundam. Appl. 10, 478–484 (2012).
[CrossRef]

Lee, C. P.

Lei, J.

D. Wang, J. Zhang, L. Yuan, J. Lei, S. Chen, J. Han, and S. Hou, “Slow light engineering in polyatomic photonic crystal waveguides based on square lattice,” Opt. Commun. 284, 5829–5832 (2011).
[CrossRef]

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef]

Li, J.

Li, T.

Liang, J.

Liang, J. Q.

J. Q. Liang, M. Katsuragawa, F. L. Kien, and K. Hakuta, “Slow light produced by stimulated Raman scattering in solid hydrogen,” Phys. Rev. A 65, 031801 (2002).
[CrossRef]

Liang, T. K.

T. K. Liang and H. K. Tsong, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
[CrossRef]

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

Liau, T. C.

T. C. Liau, J. Q. Shen, J. J. Wu, and T. J. Yang, “EIT based photonic logic gate,” U.S. Patent SpecificationUS20130016411 A1 (January17, 2013).

Liu, W.

H. Tian, F. Long, W. Liu, and Y. Ji, “Tunable slow light and buffer capability in photonic crystal coupled-cavity waveguides based on electro-optic effect,” Opt. Commun. 285, 2760–2764 (2012).
[CrossRef]

Liu, Y.

D. Wang, Z. Yu, Y. Liu, X. Guo, and S. Zhou, “Optimization of a two-dimensional photonic crystal waveguide for ultraslow light propagation,” J. Opt. 14, 125101 (2012).
[CrossRef]

Long, F.

H. Tian, F. Long, W. Liu, and Y. Ji, “Tunable slow light and buffer capability in photonic crystal coupled-cavity waveguides based on electro-optic effect,” Opt. Commun. 285, 2760–2764 (2012).
[CrossRef]

Lü, Sh.

Malitson, I. H.

Melloni, A.

S. A. schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

Michaeli, A.

Monat, C.

Moreolo, M. S.

M. S. Moreolo, V. Morra, and G. Cincotti, “Design of photonic crystal delay lines based on enhanced coupled-cavity waveguides,” J. Opt. A 10, 064002 (2008).
[CrossRef]

Mori, D.

Morra, V.

M. S. Moreolo, V. Morra, and G. Cincotti, “Design of photonic crystal delay lines based on enhanced coupled-cavity waveguides,” J. Opt. A 10, 064002 (2008).
[CrossRef]

Mortensen, N.

S. Raza, J. Grgíc, S. Xiao, and N. Mortensen, “Coupled-resonator optical waveguides: Q-factor influence on slow-light propagation and the maximal group delay,” J. Eur. Opt. Soc. 5, 10009 (2010).
[CrossRef]

Mutlu, M.

Notomi, M.

Novikova, I.

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photon. Rev. 6, 333–353 (2012).
[CrossRef]

O’Brien, D.

O’Faolain, L.

Okawachi, Y.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Zh. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Ozbay, E.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Palinginis, P.

Paschotta, R.

R. Paschotta, Encyclopedia of Laser Physics and Technology, 1st ed. (Wiley-VCH, 2008).

Rawal, S.

Raza, S.

S. Raza, J. Grgíc, S. Xiao, and N. Mortensen, “Coupled-resonator optical waveguides: Q-factor influence on slow-light propagation and the maximal group delay,” J. Eur. Opt. Soc. 5, 10009 (2010).
[CrossRef]

Ren, L.

Roberts, S. W.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

Rodrigues, A.

P. Bermel, A. Rodrigues, S. G. Johnson, J. D. Joannopolous, and M. Soljačić, “Single-photon all-optical switching using waveguide-cavity quantum electrodynamics,” Phys. Rev. A 74, 043818 (2006).
[CrossRef]

Rostami, A.

H. Habibiyan, H. Ghafoori-Fard, and A. Rostami, “Tunable all-optical photonic crystal channel drop filter for DWDM systems,” J. Opt. A 11, 065102 (2009).
[CrossRef]

Salib, M.

Sasaki, H.

J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Quantum Electron. 16, 192–199 (2010).
[CrossRef]

T. Baba, T. Kawasaki, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16, 9245–9253 (2008).
[CrossRef]

schulz, S. A.

S. A. schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Zh. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Scully, M. O.

M. O. Scully and M. S. Zubairy, Quantum Optics, 1st ed. (Cambridge, 1997).

Sedgwick, F.

Settle, M. D.

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Zh. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Shen, J. Q.

T. C. Liau, J. Q. Shen, J. J. Wu, and T. J. Yang, “EIT based photonic logic gate,” U.S. Patent SpecificationUS20130016411 A1 (January17, 2013).

Sinha, R. K.

Soljacic, M.

P. Bermel, A. Rodrigues, S. G. Johnson, J. D. Joannopolous, and M. Soljačić, “Single-photon all-optical switching using waveguide-cavity quantum electrodynamics,” Phys. Rev. A 74, 043818 (2006).
[CrossRef]

M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[CrossRef]

M. Soljačić, J. D. Joannopoulos, and L. V. Hau, “Using electromagnetically induced transparency in photonic crystal cavities to obtain large non-linear effects,” U.S. Patent SpecificationUS20040175087 A1 (September9, 2004).

Song, K. Y.

Soref, R. A.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[CrossRef]

Su, H.

Tekeste, M. Y.

Thévenaz, L.

Tian, H.

H. Tian, F. Long, W. Liu, and Y. Ji, “Tunable slow light and buffer capability in photonic crystal coupled-cavity waveguides based on electro-optic effect,” Opt. Commun. 285, 2760–2764 (2012).
[CrossRef]

Y. Zhai, H. Tian, and Y. Ji, “Slow light property improvement and optical buffer capability in ring-shape-hole photonic crystal waveguide,” J. Lightwave Technol. 29, 3083–3090 (2011).
[CrossRef]

Tsang, H. K.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

Tsong, H. K.

T. K. Liang and H. K. Tsong, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
[CrossRef]

Tucker, R. S.

Üstün, K.

Walsworth, R. L.

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photon. Rev. 6, 333–353 (2012).
[CrossRef]

Wang, D.

D. Wang, Z. Yu, Y. Liu, X. Guo, and S. Zhou, “Optimization of a two-dimensional photonic crystal waveguide for ultraslow light propagation,” J. Opt. 14, 125101 (2012).
[CrossRef]

D. Wang, J. Zhang, L. Yuan, J. Lei, S. Chen, J. Han, and S. Hou, “Slow light engineering in polyatomic photonic crystal waveguides based on square lattice,” Opt. Commun. 284, 5829–5832 (2011).
[CrossRef]

Wang, H.

Wang, Q.

Wang, X.

White, T. P.

Willner, A. E.

Wong, C. S.

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

Wu, D.

Wu, H.

J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21, 1571–1573 (2009).
[CrossRef]

Wu, J. J.

T. C. Liau, J. Q. Shen, J. J. Wu, and T. J. Yang, “EIT based photonic logic gate,” U.S. Patent SpecificationUS20130016411 A1 (January17, 2013).

Xiang, L.

Xiao, S.

S. Raza, J. Grgíc, S. Xiao, and N. Mortensen, “Coupled-resonator optical waveguides: Q-factor influence on slow-light propagation and the maximal group delay,” J. Eur. Opt. Soc. 5, 10009 (2010).
[CrossRef]

Xiao, Y.

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photon. Rev. 6, 333–353 (2012).
[CrossRef]

Xu, Y.

Yang, T. J.

T. C. Liau, J. Q. Shen, J. J. Wu, and T. J. Yang, “EIT based photonic logic gate,” U.S. Patent SpecificationUS20130016411 A1 (January17, 2013).

Yarrison-Rice, J. M.

Yu, Y. B.

K. X. Guo and Y. B. Yu, “Nonlinear optical susceptibilities in Si/SiO2 parabolic quantum dots,” Chin. J. Nucl. Phys. 43, 932–941 (2005).

Yu, Z.

D. Wang, Z. Yu, Y. Liu, X. Guo, and S. Zhou, “Optimization of a two-dimensional photonic crystal waveguide for ultraslow light propagation,” J. Opt. 14, 125101 (2012).
[CrossRef]

Yuan, L.

D. Wang, J. Zhang, L. Yuan, J. Lei, S. Chen, J. Han, and S. Hou, “Slow light engineering in polyatomic photonic crystal waveguides based on square lattice,” Opt. Commun. 284, 5829–5832 (2011).
[CrossRef]

Yun, M.

Zhai, Y.

Zhang, D.

Zhang, J.

D. Wang, J. Zhang, L. Yuan, J. Lei, S. Chen, J. Han, and S. Hou, “Slow light engineering in polyatomic photonic crystal waveguides based on square lattice,” Opt. Commun. 284, 5829–5832 (2011).
[CrossRef]

Zhang, L.

Zhang, X.

Zhang, Y. N.

Zhao, J.

Zhao, Y.

Zhou, S.

D. Wang, Z. Yu, Y. Liu, X. Guo, and S. Zhou, “Optimization of a two-dimensional photonic crystal waveguide for ultraslow light propagation,” J. Opt. 14, 125101 (2012).
[CrossRef]

Zhou, Z.

J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21, 1571–1573 (2009).
[CrossRef]

Zhu, Zh.

Zh. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “Broadband SBS slow light in an optical fiber,” J. Lightwave Technol. 25, 201–206 (2007).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Zh. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Zubairy, M. S.

M. O. Scully and M. S. Zubairy, Quantum Optics, 1st ed. (Cambridge, 1997).

Appl. Opt. (3)

Appl. Phys. Lett. (2)

H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002).
[CrossRef]

T. K. Liang and H. K. Tsong, “Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 2745–2747 (2004).
[CrossRef]

Chin. J. Nucl. Phys. (1)

K. X. Guo and Y. B. Yu, “Nonlinear optical susceptibilities in Si/SiO2 parabolic quantum dots,” Chin. J. Nucl. Phys. 43, 932–941 (2005).

IEEE J. Quantum Electron. (2)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[CrossRef]

J. Adachi, N. Ishikura, H. Sasaki, and T. Baba, “Wide range tuning of slow light pulse in SOI photonic crystal coupled waveguide via folded chirping,” IEEE J. Quantum Electron. 16, 192–199 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21, 1571–1573 (2009).
[CrossRef]

J. Eur. Opt. Soc. (1)

S. Raza, J. Grgíc, S. Xiao, and N. Mortensen, “Coupled-resonator optical waveguides: Q-factor influence on slow-light propagation and the maximal group delay,” J. Eur. Opt. Soc. 5, 10009 (2010).
[CrossRef]

J. Lightwave Technol. (5)

J. Opt. (2)

S. A. schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

D. Wang, Z. Yu, Y. Liu, X. Guo, and S. Zhou, “Optimization of a two-dimensional photonic crystal waveguide for ultraslow light propagation,” J. Opt. 14, 125101 (2012).
[CrossRef]

J. Opt. A (2)

M. S. Moreolo, V. Morra, and G. Cincotti, “Design of photonic crystal delay lines based on enhanced coupled-cavity waveguides,” J. Opt. A 10, 064002 (2008).
[CrossRef]

H. Habibiyan, H. Ghafoori-Fard, and A. Rostami, “Tunable all-optical photonic crystal channel drop filter for DWDM systems,” J. Opt. A 11, 065102 (2009).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. D (1)

T. Baba and D. Mori, “Slow light engineering in photonic crystals,” J. Phys. D 40, 2659–2665 (2007).
[CrossRef]

Laser Photon. Rev. (1)

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photon. Rev. 6, 333–353 (2012).
[CrossRef]

Nat. Mater. (1)

M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[CrossRef]

Nature (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultacold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Opt. Commun. (3)

H. Chen, J. He, Y. Jin, and Z. Hong, “Slow light in a dielectric slab waveguide with a negative refractive index photonic crystal substrate,” Opt. Commun. 282, 653–656 (2009).
[CrossRef]

D. Wang, J. Zhang, L. Yuan, J. Lei, S. Chen, J. Han, and S. Hou, “Slow light engineering in polyatomic photonic crystal waveguides based on square lattice,” Opt. Commun. 284, 5829–5832 (2011).
[CrossRef]

H. Tian, F. Long, W. Liu, and Y. Ji, “Tunable slow light and buffer capability in photonic crystal coupled-cavity waveguides based on electro-optic effect,” Opt. Commun. 285, 2760–2764 (2012).
[CrossRef]

Opt. Express (12)

M. Y. Tekeste and J. M. Yarrison-Rice, “High efficiency photonic crystal based wavelength demultiplexer,” Opt. Express 14, 7931–7942 (2006).
[CrossRef]

A. E. Akosman, M. Mutlu, H. Kurt, and E. Ozbay, “Compact wavelength de-multiplexer design using slow light regime of photonic crystal waveguides,” Opt. Express 19, 24129–24138 (2011).
[CrossRef]

T. P. White, L. O’Faolain, J. Li, L. C. Andreani, and T. F. Krauss, “Silica-embedded silicon photonic crystal waveguides,” Opt. Express 16, 17076–17081 (2008).
[CrossRef]

M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635 (2009).
[CrossRef]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17, 2944–2953 (2009).
[CrossRef]

K. Üstün and H. Kurt, “Ultra slow light achievement in photonic crystals by merging coupled cavities with waveguides,” Opt. Express 18, 21155–21161 (2010).
[CrossRef]

D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13, 6234–6249 (2005).
[CrossRef]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef]

S. C. Huang, M. Kato, E. Kuramochi, C. P. Lee, and M. Notomi, “Time-domain and spectral-domain investigation of inflection-point slow-light modes in photonic crystal coupled waveguides,” Opt. Express 15, 3543–3549 (2007).
[CrossRef]

D. O’Brien, M. D. Settle, T. Karle, A. Michaeli, M. Salib, and T. F. Krauss, “Coupled photonic crystal heterostructure nanocavities,” Opt. Express 15, 1228–1233 (2007).
[CrossRef]

T. Kawasaki, D. Mori, and T. Baba, “Experimental observation of slow light in photonic crystal coupled waveguides,” Opt. Express 15, 10274–10281 (2007).
[CrossRef]

T. Baba, T. Kawasaki, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16, 9245–9253 (2008).
[CrossRef]

Opt. Lett. (3)

Photon. Nanostr. Fundam. Appl. (1)

P. Blown, C. Fisher, F. J. Lawrence, N. Gutman, and C. M. de Sterke, “Semi-analytic method for slow light photonic crystal waveguide design,” Photon. Nanostr. Fundam. Appl. 10, 478–484 (2012).
[CrossRef]

Phys. Rev. A (2)

P. Bermel, A. Rodrigues, S. G. Johnson, J. D. Joannopolous, and M. Soljačić, “Single-photon all-optical switching using waveguide-cavity quantum electrodynamics,” Phys. Rev. A 74, 043818 (2006).
[CrossRef]

J. Q. Liang, M. Katsuragawa, F. L. Kien, and K. Hakuta, “Slow light produced by stimulated Raman scattering in solid hydrogen,” Phys. Rev. A 65, 031801 (2002).
[CrossRef]

Phys. Rev. Lett. (2)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Zh. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Other (5)

M. Soljačić, J. D. Joannopoulos, and L. V. Hau, “Using electromagnetically induced transparency in photonic crystal cavities to obtain large non-linear effects,” U.S. Patent SpecificationUS20040175087 A1 (September9, 2004).

T. C. Liau, J. Q. Shen, J. J. Wu, and T. J. Yang, “EIT based photonic logic gate,” U.S. Patent SpecificationUS20130016411 A1 (January17, 2013).

M. O. Scully and M. S. Zubairy, Quantum Optics, 1st ed. (Cambridge, 1997).

R. Paschotta, Encyclopedia of Laser Physics and Technology, 1st ed. (Wiley-VCH, 2008).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Structure of the initial proposed slow light device. The dashed lines show the supercell used in numerical computation of the designed SOI-based structure and the white circles correspond to air holes.

Fig. 2.
Fig. 2.

Band diagram for TE-like modes of proposed structure by using 3D PWE calculation. The blue zone indicates light cone.

Fig. 3.
Fig. 3.

Group index ng, bandwidth Δλ, and NDBP curves as a function of Δr.

Fig. 4.
Fig. 4.

(a) Three-level atomic system for EIT. (b) Typical real and imaginary parts of susceptibility for an EIT medium. Dashed lines represent susceptibility without control field while solid lines are susceptibility in presence of the control field correspond to Ωμ=0.01ωab.

Fig. 5.
Fig. 5.

Schematic view of the tunable proposed structure. The white circles correspond to air holes while the black circles filled by SiO2 as the EIT regions.

Fig. 6.
Fig. 6.

(a) Susceptibility and (b) refractive index of the EIT regions for λP=1550nm, Ωμ=3.75×1012rad/s, Na=2×1021atoms/m3, γab=0.228×1012/s, γac=0.456×1012/s, and γcb=0.228×108/s.

Fig. 7.
Fig. 7.

(a) PBG guided mode and (b) group index and GVD parameter β2 of the proposed tunable structure as a function of normalized frequency in the presence of optimized control field.

Fig. 8.
Fig. 8.

Loss per length, loss per unit time, and loss per relative time of the proposed tunable slow light device versus group index for different values of Ωμ given in Table 3. In each case, the losses were presented for central wavelength of slow light regime.

Tables (4)

Tables Icon

Table 1. Slow Light Properties of the Basic Structure for Various Δr

Tables Icon

Table 2. Slow Light Properties for Various ravg and Δr=46nm

Tables Icon

Table 3. Variation of Slow Light Parameters in Suggested Buffer by Changing the Value of Ωμ

Tables Icon

Table 4. Effects of Fabrication Errors on Slow Light Parameters of Suggested Structure and Compensating These Errors by Changing the Ωμ

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

vg=dωdk=cng,ng=n+ωdndω,
β2=d2kdω2=1vg3d2ωdk2.
DBP=Ts·B,
NDBP=ng×Δωω0,
Re{χ}=Naab2ΔεoZ(γcb(γab+γcb)+(Δ2γabγcbΩμ24))
Im{χ}=Naab2εoZ(Δ2(γab+γcb)γcb(Δ2γabγcbΩμ24)),
δn=n2Re{χ},α=k2Im{χ}.
Ωμ=acεμ,
P=12cnε0εμ2Aeff,
Ts=L/vg.
C=L2a×ngΔω.
Lbit=L/C.
αt=αLcng.
αRt=αLcng1Δν,

Metrics