Abstract

The characterization of delamination in composite plates with ultrasonic waves generated and detected by lasers is presented. Composite materials have become one of the most important structural materials in the aviation industry because of their excellent mechanical properties, such as high specific stiffness and antifatigue. This paper reports a new application of the laser ultrasonic technique to perform nondestructive detection of carbon-fiber-reinforced plastic (CFRP) and continuous-fiber-reinforced ceramic matrix composites (CFCCs) containing artificial internal defects, based on propagation characteristic of ultrasonic waves generated by pulse laser with a wavelength of 1064 nm and pulse duration of 10 ns. A laser interferometer based on two-wave mixing is used to measure ultrasonic wave signals. The main advantage of this technique over conventional ultrasonic testing techniques is the ability to carry out detection without using coupling agents. The research results prove that the laser ultrasonic technique is effective for the detection of internal defects in both CFRP and CFCC composite components, which should promote and expand the application of the technique in the aviation industry.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Akhter, H. C. Jung, H. S. Chang, and K. S. Kim, “Location of delamination in laminated composite plates by pulsed laser holography,” Opt. Lasers Eng. 47, 584–588 (2009).
    [CrossRef]
  2. R. Chona, C. S. Suh, and G. A. Rabroker, “Characterizing defects in multi-layer materials using guided ultrasonic waves,” Opt. Lasers Eng. 40, 371–378 (2003).
    [CrossRef]
  3. M. Dubois and T. E. Drake, “Evolution of industrial laser-ultrasonic systems for the inspection of composites,” Nondestr. Test. Eval. 26, 213–228 (2011).
    [CrossRef]
  4. M. Dubois, T. E. Drake, and M. Osterkamp, “Low-cost ultrasonic inspection of composites for aerospace applications with LaserUT technology,” J. Jpn. Soc. Nondestr. Inspect. 57, 11–20 (2008).
  5. J. H. Lee and C. P. Burger, “Finite element modeling of laser-generated lamb waves,” Comput. Struct. 54, 499–514 (1995).
    [CrossRef]
  6. J. J. Wang, Z. H. Shen, B. Q. Xu, X. W. Ni, J. F. Guan, and J. Lu, “Numerical simulation of laser-generated ultrasound in non-metallic material by the finite element method,” Opt. Laser Technol. 39, 806–813 (2007).
    [CrossRef]
  7. C. T. Ng, M. Veidt, L. R. F. Rose, and C. H. Wang, “Analytical and finite element prediction of Lamb wave scattering at delaminations in quasi-isotropic composite laminates,” J. Sound Vibrat. 331, 4870–4883 (2012).
    [CrossRef]
  8. C. P. Chang, P. C. Tung, L. H. Shyu, Y. C. Wang, and E. Manske, “Multi-interferometric displacement measurement system with variable measurement mirrors,” Appl. Opt. 52, 3902–3909 (2013).
    [CrossRef]
  9. A. Malki, R. Gafsi, L. Michel, M. Labarrvre, and P. Lecoy, “Impact and vibration detection in composite materials by using intermodal interference in multimode optical fibers,” Appl. Opt. 35, 5198–5201 (1996).
    [CrossRef]
  10. S. G. Pierce, W. R. Philp, A. Gachagan, A. McNab, G. Hayward, and B. Culshaw, “Surface-bonded and embedded optical fibers as ultrasonic sensors,” Appl. Opt. 35, 5191–5197 (1996).
    [CrossRef]
  11. W. M. D. Wright, D. A. Hutchins, A. Gachagan, and G. Hayward, “Polymer composite material characterization using a laser/air-transducer system,” Ultrasonics 34, 825–833 (1996).
    [CrossRef]
  12. A. Pavel, K. Alexey, and K. Sridhar, “Imaging of damage in sandwich composite structures,” Composites 35, 557–562 (2004).
    [CrossRef]

2013

2012

C. T. Ng, M. Veidt, L. R. F. Rose, and C. H. Wang, “Analytical and finite element prediction of Lamb wave scattering at delaminations in quasi-isotropic composite laminates,” J. Sound Vibrat. 331, 4870–4883 (2012).
[CrossRef]

2011

M. Dubois and T. E. Drake, “Evolution of industrial laser-ultrasonic systems for the inspection of composites,” Nondestr. Test. Eval. 26, 213–228 (2011).
[CrossRef]

2009

N. Akhter, H. C. Jung, H. S. Chang, and K. S. Kim, “Location of delamination in laminated composite plates by pulsed laser holography,” Opt. Lasers Eng. 47, 584–588 (2009).
[CrossRef]

2008

M. Dubois, T. E. Drake, and M. Osterkamp, “Low-cost ultrasonic inspection of composites for aerospace applications with LaserUT technology,” J. Jpn. Soc. Nondestr. Inspect. 57, 11–20 (2008).

2007

J. J. Wang, Z. H. Shen, B. Q. Xu, X. W. Ni, J. F. Guan, and J. Lu, “Numerical simulation of laser-generated ultrasound in non-metallic material by the finite element method,” Opt. Laser Technol. 39, 806–813 (2007).
[CrossRef]

2004

A. Pavel, K. Alexey, and K. Sridhar, “Imaging of damage in sandwich composite structures,” Composites 35, 557–562 (2004).
[CrossRef]

2003

R. Chona, C. S. Suh, and G. A. Rabroker, “Characterizing defects in multi-layer materials using guided ultrasonic waves,” Opt. Lasers Eng. 40, 371–378 (2003).
[CrossRef]

1996

1995

J. H. Lee and C. P. Burger, “Finite element modeling of laser-generated lamb waves,” Comput. Struct. 54, 499–514 (1995).
[CrossRef]

Akhter, N.

N. Akhter, H. C. Jung, H. S. Chang, and K. S. Kim, “Location of delamination in laminated composite plates by pulsed laser holography,” Opt. Lasers Eng. 47, 584–588 (2009).
[CrossRef]

Alexey, K.

A. Pavel, K. Alexey, and K. Sridhar, “Imaging of damage in sandwich composite structures,” Composites 35, 557–562 (2004).
[CrossRef]

Burger, C. P.

J. H. Lee and C. P. Burger, “Finite element modeling of laser-generated lamb waves,” Comput. Struct. 54, 499–514 (1995).
[CrossRef]

Chang, C. P.

Chang, H. S.

N. Akhter, H. C. Jung, H. S. Chang, and K. S. Kim, “Location of delamination in laminated composite plates by pulsed laser holography,” Opt. Lasers Eng. 47, 584–588 (2009).
[CrossRef]

Chona, R.

R. Chona, C. S. Suh, and G. A. Rabroker, “Characterizing defects in multi-layer materials using guided ultrasonic waves,” Opt. Lasers Eng. 40, 371–378 (2003).
[CrossRef]

Culshaw, B.

Drake, T. E.

M. Dubois and T. E. Drake, “Evolution of industrial laser-ultrasonic systems for the inspection of composites,” Nondestr. Test. Eval. 26, 213–228 (2011).
[CrossRef]

M. Dubois, T. E. Drake, and M. Osterkamp, “Low-cost ultrasonic inspection of composites for aerospace applications with LaserUT technology,” J. Jpn. Soc. Nondestr. Inspect. 57, 11–20 (2008).

Dubois, M.

M. Dubois and T. E. Drake, “Evolution of industrial laser-ultrasonic systems for the inspection of composites,” Nondestr. Test. Eval. 26, 213–228 (2011).
[CrossRef]

M. Dubois, T. E. Drake, and M. Osterkamp, “Low-cost ultrasonic inspection of composites for aerospace applications with LaserUT technology,” J. Jpn. Soc. Nondestr. Inspect. 57, 11–20 (2008).

Gachagan, A.

W. M. D. Wright, D. A. Hutchins, A. Gachagan, and G. Hayward, “Polymer composite material characterization using a laser/air-transducer system,” Ultrasonics 34, 825–833 (1996).
[CrossRef]

S. G. Pierce, W. R. Philp, A. Gachagan, A. McNab, G. Hayward, and B. Culshaw, “Surface-bonded and embedded optical fibers as ultrasonic sensors,” Appl. Opt. 35, 5191–5197 (1996).
[CrossRef]

Gafsi, R.

Guan, J. F.

J. J. Wang, Z. H. Shen, B. Q. Xu, X. W. Ni, J. F. Guan, and J. Lu, “Numerical simulation of laser-generated ultrasound in non-metallic material by the finite element method,” Opt. Laser Technol. 39, 806–813 (2007).
[CrossRef]

Hayward, G.

S. G. Pierce, W. R. Philp, A. Gachagan, A. McNab, G. Hayward, and B. Culshaw, “Surface-bonded and embedded optical fibers as ultrasonic sensors,” Appl. Opt. 35, 5191–5197 (1996).
[CrossRef]

W. M. D. Wright, D. A. Hutchins, A. Gachagan, and G. Hayward, “Polymer composite material characterization using a laser/air-transducer system,” Ultrasonics 34, 825–833 (1996).
[CrossRef]

Hutchins, D. A.

W. M. D. Wright, D. A. Hutchins, A. Gachagan, and G. Hayward, “Polymer composite material characterization using a laser/air-transducer system,” Ultrasonics 34, 825–833 (1996).
[CrossRef]

Jung, H. C.

N. Akhter, H. C. Jung, H. S. Chang, and K. S. Kim, “Location of delamination in laminated composite plates by pulsed laser holography,” Opt. Lasers Eng. 47, 584–588 (2009).
[CrossRef]

Kim, K. S.

N. Akhter, H. C. Jung, H. S. Chang, and K. S. Kim, “Location of delamination in laminated composite plates by pulsed laser holography,” Opt. Lasers Eng. 47, 584–588 (2009).
[CrossRef]

Labarrvre, M.

Lecoy, P.

Lee, J. H.

J. H. Lee and C. P. Burger, “Finite element modeling of laser-generated lamb waves,” Comput. Struct. 54, 499–514 (1995).
[CrossRef]

Lu, J.

J. J. Wang, Z. H. Shen, B. Q. Xu, X. W. Ni, J. F. Guan, and J. Lu, “Numerical simulation of laser-generated ultrasound in non-metallic material by the finite element method,” Opt. Laser Technol. 39, 806–813 (2007).
[CrossRef]

Malki, A.

Manske, E.

McNab, A.

Michel, L.

Ng, C. T.

C. T. Ng, M. Veidt, L. R. F. Rose, and C. H. Wang, “Analytical and finite element prediction of Lamb wave scattering at delaminations in quasi-isotropic composite laminates,” J. Sound Vibrat. 331, 4870–4883 (2012).
[CrossRef]

Ni, X. W.

J. J. Wang, Z. H. Shen, B. Q. Xu, X. W. Ni, J. F. Guan, and J. Lu, “Numerical simulation of laser-generated ultrasound in non-metallic material by the finite element method,” Opt. Laser Technol. 39, 806–813 (2007).
[CrossRef]

Osterkamp, M.

M. Dubois, T. E. Drake, and M. Osterkamp, “Low-cost ultrasonic inspection of composites for aerospace applications with LaserUT technology,” J. Jpn. Soc. Nondestr. Inspect. 57, 11–20 (2008).

Pavel, A.

A. Pavel, K. Alexey, and K. Sridhar, “Imaging of damage in sandwich composite structures,” Composites 35, 557–562 (2004).
[CrossRef]

Philp, W. R.

Pierce, S. G.

Rabroker, G. A.

R. Chona, C. S. Suh, and G. A. Rabroker, “Characterizing defects in multi-layer materials using guided ultrasonic waves,” Opt. Lasers Eng. 40, 371–378 (2003).
[CrossRef]

Rose, L. R. F.

C. T. Ng, M. Veidt, L. R. F. Rose, and C. H. Wang, “Analytical and finite element prediction of Lamb wave scattering at delaminations in quasi-isotropic composite laminates,” J. Sound Vibrat. 331, 4870–4883 (2012).
[CrossRef]

Shen, Z. H.

J. J. Wang, Z. H. Shen, B. Q. Xu, X. W. Ni, J. F. Guan, and J. Lu, “Numerical simulation of laser-generated ultrasound in non-metallic material by the finite element method,” Opt. Laser Technol. 39, 806–813 (2007).
[CrossRef]

Shyu, L. H.

Sridhar, K.

A. Pavel, K. Alexey, and K. Sridhar, “Imaging of damage in sandwich composite structures,” Composites 35, 557–562 (2004).
[CrossRef]

Suh, C. S.

R. Chona, C. S. Suh, and G. A. Rabroker, “Characterizing defects in multi-layer materials using guided ultrasonic waves,” Opt. Lasers Eng. 40, 371–378 (2003).
[CrossRef]

Tung, P. C.

Veidt, M.

C. T. Ng, M. Veidt, L. R. F. Rose, and C. H. Wang, “Analytical and finite element prediction of Lamb wave scattering at delaminations in quasi-isotropic composite laminates,” J. Sound Vibrat. 331, 4870–4883 (2012).
[CrossRef]

Wang, C. H.

C. T. Ng, M. Veidt, L. R. F. Rose, and C. H. Wang, “Analytical and finite element prediction of Lamb wave scattering at delaminations in quasi-isotropic composite laminates,” J. Sound Vibrat. 331, 4870–4883 (2012).
[CrossRef]

Wang, J. J.

J. J. Wang, Z. H. Shen, B. Q. Xu, X. W. Ni, J. F. Guan, and J. Lu, “Numerical simulation of laser-generated ultrasound in non-metallic material by the finite element method,” Opt. Laser Technol. 39, 806–813 (2007).
[CrossRef]

Wang, Y. C.

Wright, W. M. D.

W. M. D. Wright, D. A. Hutchins, A. Gachagan, and G. Hayward, “Polymer composite material characterization using a laser/air-transducer system,” Ultrasonics 34, 825–833 (1996).
[CrossRef]

Xu, B. Q.

J. J. Wang, Z. H. Shen, B. Q. Xu, X. W. Ni, J. F. Guan, and J. Lu, “Numerical simulation of laser-generated ultrasound in non-metallic material by the finite element method,” Opt. Laser Technol. 39, 806–813 (2007).
[CrossRef]

Appl. Opt.

Composites

A. Pavel, K. Alexey, and K. Sridhar, “Imaging of damage in sandwich composite structures,” Composites 35, 557–562 (2004).
[CrossRef]

Comput. Struct.

J. H. Lee and C. P. Burger, “Finite element modeling of laser-generated lamb waves,” Comput. Struct. 54, 499–514 (1995).
[CrossRef]

J. Jpn. Soc. Nondestr. Inspect.

M. Dubois, T. E. Drake, and M. Osterkamp, “Low-cost ultrasonic inspection of composites for aerospace applications with LaserUT technology,” J. Jpn. Soc. Nondestr. Inspect. 57, 11–20 (2008).

J. Sound Vibrat.

C. T. Ng, M. Veidt, L. R. F. Rose, and C. H. Wang, “Analytical and finite element prediction of Lamb wave scattering at delaminations in quasi-isotropic composite laminates,” J. Sound Vibrat. 331, 4870–4883 (2012).
[CrossRef]

Nondestr. Test. Eval.

M. Dubois and T. E. Drake, “Evolution of industrial laser-ultrasonic systems for the inspection of composites,” Nondestr. Test. Eval. 26, 213–228 (2011).
[CrossRef]

Opt. Laser Technol.

J. J. Wang, Z. H. Shen, B. Q. Xu, X. W. Ni, J. F. Guan, and J. Lu, “Numerical simulation of laser-generated ultrasound in non-metallic material by the finite element method,” Opt. Laser Technol. 39, 806–813 (2007).
[CrossRef]

Opt. Lasers Eng.

N. Akhter, H. C. Jung, H. S. Chang, and K. S. Kim, “Location of delamination in laminated composite plates by pulsed laser holography,” Opt. Lasers Eng. 47, 584–588 (2009).
[CrossRef]

R. Chona, C. S. Suh, and G. A. Rabroker, “Characterizing defects in multi-layer materials using guided ultrasonic waves,” Opt. Lasers Eng. 40, 371–378 (2003).
[CrossRef]

Ultrasonics

W. M. D. Wright, D. A. Hutchins, A. Gachagan, and G. Hayward, “Polymer composite material characterization using a laser/air-transducer system,” Ultrasonics 34, 825–833 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Typical aeronautical composite plates made as specimens for experimental research and laser ultrasonic C-scan testing (a) CFRP (HT3/NY9200G) and (b) CFCC (C/SiC).

Fig. 2.
Fig. 2.

Layout of experimental setup.

Fig. 3.
Fig. 3.

Laser-generated ultrasonic wave in CFRP composite plate: (a) time domain signal and (b) its frequency spectrum.

Fig. 4.
Fig. 4.

Laser-generated ultrasonic wave in CFCC composite plate: (a) time domain signal and (b) its frequency spectrum.

Fig. 5.
Fig. 5.

FE results of time snapshots of the propagation of laser-generated ultrasonic waves in CFRP composite plates: (a) no defect and (b) internal defect.

Fig. 6.
Fig. 6.

FE results of time snapshots of the propagation of laser-generated ultrasonic waves in CFCC composite plates: (a) no defect and (b) internal defect.

Fig. 7.
Fig. 7.

FE results of the signals of laser-generated ultrasonic waves measured in aeronautical composite plates: (a) CFRP (3–4 MHz) and (b) C/SiC (0.5–1.5 MHz).

Fig. 8.
Fig. 8.

Experiment results of the signals of laser-generated ultrasonic waves measured in aeronautical composite plates: (a) CFRP (3–4 MHz) and (b) C/SiC (0.5–1.5 MHz).

Fig. 9.
Fig. 9.

Ultrasonic C-scan imaging of aeronautical composite plates: (a) CFRP (HT3/NY9200G) and (b) CFCC (C/SiC) using noncontact laser generation and detection.

Tables (3)

Tables Icon

Table 1. Elastic Properties of CFRP Prepreg Unidirectional Carbon/Epoxy Lamina and CFCC Composite Laminate Used in FE Calculation

Tables Icon

Table 2. Thermal Properties of Unidirectional Carbon/Epoxy Prepreg and CFCC Composite Laminate Used in FE Calculation

Tables Icon

Table 3. Laser Parameters Used in FE Calculation

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

K2TρCT/t=q,
(λ+2μ)(·U)μ××Uρ2U/t2=α(3λ+2μ)T,
[K]{T}+[C]{T˙}={Rq}+{RQ},
[M]{U¨}+[K]{U}={Rext},
Ve[B]T[E]{ε0}dV,

Metrics