Abstract

We demonstrate that two kinds of 2D eight-fold photonic quasi-crystals (PQCs) can be fabricated by a specially designed prism via single-exposure holographic lithography. The prism with five continuous side surfaces out of common eight symmetrical side surfaces, plus a top surface, is well designed for PQC fabrication. Compared with the traditional method of setting up eight free-space beams in the half-space for an eight-fold PQC fabrication, our specially designed prism reduces the number of beams, avoids the differences of beam-to-beam phases, and simplifies the fabrication process. The theory and computer simulation confirm the patterns of two kinds of PQCs by a single prism illumination recording. Further, these quasi-crystal patterns are successfully verified by experimental results under a scanning electron microscope. In addition, these samples show some good properties, such as uniformity over large area, the implementation of a single defect by underexposure, and symmetry break of the eight dots. Our special prism-assisted holographic lithography technique provides a base for further investigating the optical properties of these novel structures.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [CrossRef]
  3. Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasi-crystals,” Phys. Rev. Lett. 80, 956–959 (1998).
    [CrossRef]
  4. M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasi-crystals,” Nature 404, 740–743 (2000).
    [CrossRef]
  5. J. Yin, X. Huang, S. Liu, and S. Hu, “Photonic bandgap properties of 8-fold symmetric photonic quasi-crystals,” Opt. Commun. 269, 385–388 (2007).
    [CrossRef]
  6. P. T. Lee, T. Q. Lu, F. M. Tsai, T. C. Lu, and H. C. Kuo, “Whispering gallery mode of modified octagonal quasi-periodic photonic crystal single-defect microcavity and its side-mode reduction,” Appl. Phys. Lett. 88, 201104 (2006).
    [CrossRef]
  7. Y. Wang, X. Hu, X. Xu, B. Cheng, and D. Zhang, “Localized modes in defect-free dodecagonal quasi-periodic photonic crystals,” Phys. Rev. B 68, 165106 (2003).
    [CrossRef]
  8. M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing action due to the two-dimensional quasi-periodicity of photonic quasi-crystals with a Penrose lattice,” Phys. Rev. Lett. 92, 123906 (2004).
    [CrossRef]
  9. M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete and absolute photonic bandgaps in highly symmetric photonic quasi-crystals embedded in low refractive index materials,” Mater. Sci. Eng. B 74168–174 (2000).
    [CrossRef]
  10. J. Romero-Vivas, D. Chigrin, A. Lavrinenko, and C. Sotomayor Torres, “Resonant add-drop filter based on a photonic quasi-crystal,” Opt. Express 13, 826–835 (2005).
    [CrossRef]
  11. L. Levi, M. Rechtsman, B. Freedman, T. Schwartz, and M. Segev, “Disorder-enhanced transport in photonics quasi-crystals,” Science 332, 1541–1544 (2011).
    [CrossRef]
  12. T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446, 517–521 (2007).
    [CrossRef]
  13. D. Luo, Q. G. Du, H. T. Dai, H. V. Demir, H. Z. Yang, W. Jiand, and X. W. Sun, “Strongly linearly polarized low threshold lasing of all organic photonic quasi-crystals,” Sci. Rep. 2, 627 (2012).
  14. T. Endo, M. Sato, H. Kajita, N. Okuda, S. Tanaka, and H. Hisamoto, “Printed two-dimensional photonic crystals for single-step label-free biosensing of insulin under wet conditions,” Lab Chip 12, 1995–1999 (2012).
    [CrossRef]
  15. N. Li, X. R. Cheng, A. Brahmendra, A. Prashar, T. Endo, C. Guyard, M. Terrebiznik, and K. Kerman, “Photonic crystal on copolymer film for bacteria detection,” Biosens. Bioelectron. 41, 354–358 (2013).
    [CrossRef]
  16. L. L. Chan, M. Pineda, J. T. Heeres, P. J. Hergenrother, and B. T. Cunningham, “A general method for discovering inhibitors of protein–DNA interactions using photonic crystal biosensors,” ACS Chem. Biol. 3, 437–448 (2008).
  17. Y. Y. Li, F. Cunin, J. R. Link, T. Gao, R. E. Betts, S. H. Reiver, V. Chin, S. N. Bhatia, and M. J. Sailor, “Polymer replicas of photonic porous silicon for sensing and drug delivery applications,” Science 299, 2045–2047 (2003).
    [CrossRef]
  18. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
    [CrossRef]
  19. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
    [CrossRef]
  20. C. Park, J. Yoon, and E. L. Thomas, “Enabling nanotechnology with self assembled block copolymer patterns,” Polymer 44, 6725–6760 (2003).
    [CrossRef]
  21. Y. N. Xia, B. Gates, Y. D. Yin, and Y. Lu, “Monodispersed colloidal spheres: old materials with new applications,” Adv. Mater. 12, 693–713 (2000).
    [CrossRef]
  22. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum of holographic lithography,” Nature 404, 53–56 (2000).
    [CrossRef]
  23. X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
    [CrossRef]
  24. W. D. Mao, G. Q. Liang, Y. Y. Pu, H. Z. Wang, and Z. H. Zeng, “Complicated three-dimensional photonic crystals fabricated by holographic lithography,” Appl. Phys. Lett. 91, 261911 (2007).
    [CrossRef]
  25. D. Xu, K. P. Chen, A. Harb, D. Rodriguez, K. Lozano, and Y. Lin, “Phase tunable holographic fabrication for three-dimensional photonic crystal templates by using a single optical element,” Appl. Phys. Lett. 94, 231116 (2009).
    [CrossRef]
  26. X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystals,” Adv. Mater. 15, 1526–1528 (2003).
    [CrossRef]
  27. W. D. Mao, G. Q. Liang, H. Zou, H. Z. Wang, R. Zhang, and Z. H. Zeng, “Design and fabrication of two-dimensional holographic photonic quasi-crystals with high-order symmetries,” J. Opt. Soc. Am. B 23, 2046–2050 (2006).
    [CrossRef]
  28. Y. Yang, S. Zhang, and G. P. Wang, “Fabrication of two-dimensional metallodielectric quasi-crystals by single-beam holography,” Appl. Phys. Lett. 88, 251104 (2006).
    [CrossRef]
  29. Y. Yang and G. P. Wang, “Realization of periodic and quasi-periodic microstructures with sub-diffraction-limit feature sizes by far-field holographic lithography,” Appl. Phys. Lett. 89, 111104 (2006).
    [CrossRef]
  30. X. Wang, J. Xu, J. C. W. Lee, Y. K. Pang, W. Y. Tam, C. T. Chan, and P. Sheng, “Realization of optical periodic quasi-crystals using holographic lithography,” Appl. Phys. Lett. 88, 051901 (2006).
    [CrossRef]
  31. J. Xu, R. Ma, X. Wang, and W. Y. Tam, “Icosahedral quasi-crystals for visible wavelengths by optical interference holography,” Opt. Express 15, 4287–4295 (2007).
    [CrossRef]
  32. Y. Liu, S. Liu, and X. S. Zhang, “Fabrication of three-dimensional photonic crystals with two-beam holographic lithography,” Appl. Opt. 45, 480–483 (2006).
    [CrossRef]
  33. N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu, and C. H. Lin, “Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique,” Opt. Express 13, 9605–9611 (2005).
    [CrossRef]
  34. K. Du, I. Wathuthanthri, W. Mao, W. Xu, and C. H. Choi, “Large-area pattern transfer of metallic nanostructures on glass substrates via interference lithography,” Nanotechnology 22, 285306 (2011).
    [CrossRef]
  35. J. de Boor, N. Geyer, U. Gösele, and V. Schmidt, “Three-beam interference lithography: upgrading a Lloyd’s interferometer for single-exposure hexagonal patterning,” Opt. Lett. 34, 1783–1785 (2009).
    [CrossRef]
  36. D. A. Rabson, N. D. Mermin, D. S. Rokhsar, and D. C. Wright, “The space groups of axial crystals and quasi-crystals,” Rev. Mod. Phys. 63, 699–733 (1991).
    [CrossRef]
  37. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a photonic band gap in two dimensions,” Appl. Phys. Lett. 61, 495–497 (1992).
    [CrossRef]

2013 (1)

N. Li, X. R. Cheng, A. Brahmendra, A. Prashar, T. Endo, C. Guyard, M. Terrebiznik, and K. Kerman, “Photonic crystal on copolymer film for bacteria detection,” Biosens. Bioelectron. 41, 354–358 (2013).
[CrossRef]

2012 (2)

D. Luo, Q. G. Du, H. T. Dai, H. V. Demir, H. Z. Yang, W. Jiand, and X. W. Sun, “Strongly linearly polarized low threshold lasing of all organic photonic quasi-crystals,” Sci. Rep. 2, 627 (2012).

T. Endo, M. Sato, H. Kajita, N. Okuda, S. Tanaka, and H. Hisamoto, “Printed two-dimensional photonic crystals for single-step label-free biosensing of insulin under wet conditions,” Lab Chip 12, 1995–1999 (2012).
[CrossRef]

2011 (2)

L. Levi, M. Rechtsman, B. Freedman, T. Schwartz, and M. Segev, “Disorder-enhanced transport in photonics quasi-crystals,” Science 332, 1541–1544 (2011).
[CrossRef]

K. Du, I. Wathuthanthri, W. Mao, W. Xu, and C. H. Choi, “Large-area pattern transfer of metallic nanostructures on glass substrates via interference lithography,” Nanotechnology 22, 285306 (2011).
[CrossRef]

2009 (2)

D. Xu, K. P. Chen, A. Harb, D. Rodriguez, K. Lozano, and Y. Lin, “Phase tunable holographic fabrication for three-dimensional photonic crystal templates by using a single optical element,” Appl. Phys. Lett. 94, 231116 (2009).
[CrossRef]

J. de Boor, N. Geyer, U. Gösele, and V. Schmidt, “Three-beam interference lithography: upgrading a Lloyd’s interferometer for single-exposure hexagonal patterning,” Opt. Lett. 34, 1783–1785 (2009).
[CrossRef]

2008 (1)

L. L. Chan, M. Pineda, J. T. Heeres, P. J. Hergenrother, and B. T. Cunningham, “A general method for discovering inhibitors of protein–DNA interactions using photonic crystal biosensors,” ACS Chem. Biol. 3, 437–448 (2008).

2007 (4)

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446, 517–521 (2007).
[CrossRef]

W. D. Mao, G. Q. Liang, Y. Y. Pu, H. Z. Wang, and Z. H. Zeng, “Complicated three-dimensional photonic crystals fabricated by holographic lithography,” Appl. Phys. Lett. 91, 261911 (2007).
[CrossRef]

J. Yin, X. Huang, S. Liu, and S. Hu, “Photonic bandgap properties of 8-fold symmetric photonic quasi-crystals,” Opt. Commun. 269, 385–388 (2007).
[CrossRef]

J. Xu, R. Ma, X. Wang, and W. Y. Tam, “Icosahedral quasi-crystals for visible wavelengths by optical interference holography,” Opt. Express 15, 4287–4295 (2007).
[CrossRef]

2006 (6)

P. T. Lee, T. Q. Lu, F. M. Tsai, T. C. Lu, and H. C. Kuo, “Whispering gallery mode of modified octagonal quasi-periodic photonic crystal single-defect microcavity and its side-mode reduction,” Appl. Phys. Lett. 88, 201104 (2006).
[CrossRef]

Y. Yang, S. Zhang, and G. P. Wang, “Fabrication of two-dimensional metallodielectric quasi-crystals by single-beam holography,” Appl. Phys. Lett. 88, 251104 (2006).
[CrossRef]

Y. Yang and G. P. Wang, “Realization of periodic and quasi-periodic microstructures with sub-diffraction-limit feature sizes by far-field holographic lithography,” Appl. Phys. Lett. 89, 111104 (2006).
[CrossRef]

X. Wang, J. Xu, J. C. W. Lee, Y. K. Pang, W. Y. Tam, C. T. Chan, and P. Sheng, “Realization of optical periodic quasi-crystals using holographic lithography,” Appl. Phys. Lett. 88, 051901 (2006).
[CrossRef]

Y. Liu, S. Liu, and X. S. Zhang, “Fabrication of three-dimensional photonic crystals with two-beam holographic lithography,” Appl. Opt. 45, 480–483 (2006).
[CrossRef]

W. D. Mao, G. Q. Liang, H. Zou, H. Z. Wang, R. Zhang, and Z. H. Zeng, “Design and fabrication of two-dimensional holographic photonic quasi-crystals with high-order symmetries,” J. Opt. Soc. Am. B 23, 2046–2050 (2006).
[CrossRef]

2005 (2)

2004 (1)

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing action due to the two-dimensional quasi-periodicity of photonic quasi-crystals with a Penrose lattice,” Phys. Rev. Lett. 92, 123906 (2004).
[CrossRef]

2003 (5)

Y. Wang, X. Hu, X. Xu, B. Cheng, and D. Zhang, “Localized modes in defect-free dodecagonal quasi-periodic photonic crystals,” Phys. Rev. B 68, 165106 (2003).
[CrossRef]

Y. Y. Li, F. Cunin, J. R. Link, T. Gao, R. E. Betts, S. H. Reiver, V. Chin, S. N. Bhatia, and M. J. Sailor, “Polymer replicas of photonic porous silicon for sensing and drug delivery applications,” Science 299, 2045–2047 (2003).
[CrossRef]

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystals,” Adv. Mater. 15, 1526–1528 (2003).
[CrossRef]

C. Park, J. Yoon, and E. L. Thomas, “Enabling nanotechnology with self assembled block copolymer patterns,” Polymer 44, 6725–6760 (2003).
[CrossRef]

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[CrossRef]

2000 (5)

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
[CrossRef]

Y. N. Xia, B. Gates, Y. D. Yin, and Y. Lu, “Monodispersed colloidal spheres: old materials with new applications,” Adv. Mater. 12, 693–713 (2000).
[CrossRef]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum of holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef]

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete and absolute photonic bandgaps in highly symmetric photonic quasi-crystals embedded in low refractive index materials,” Mater. Sci. Eng. B 74168–174 (2000).
[CrossRef]

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasi-crystals,” Nature 404, 740–743 (2000).
[CrossRef]

1998 (2)

Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasi-crystals,” Phys. Rev. Lett. 80, 956–959 (1998).
[CrossRef]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

1992 (1)

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a photonic band gap in two dimensions,” Appl. Phys. Lett. 61, 495–497 (1992).
[CrossRef]

1991 (1)

D. A. Rabson, N. D. Mermin, D. S. Rokhsar, and D. C. Wright, “The space groups of axial crystals and quasi-crystals,” Rev. Mod. Phys. 63, 699–733 (1991).
[CrossRef]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef]

Agrawal, A.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446, 517–521 (2007).
[CrossRef]

Baumberg, J. J.

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete and absolute photonic bandgaps in highly symmetric photonic quasi-crystals embedded in low refractive index materials,” Mater. Sci. Eng. B 74168–174 (2000).
[CrossRef]

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasi-crystals,” Nature 404, 740–743 (2000).
[CrossRef]

Betts, R. E.

Y. Y. Li, F. Cunin, J. R. Link, T. Gao, R. E. Betts, S. H. Reiver, V. Chin, S. N. Bhatia, and M. J. Sailor, “Polymer replicas of photonic porous silicon for sensing and drug delivery applications,” Science 299, 2045–2047 (2003).
[CrossRef]

Bhatia, S. N.

Y. Y. Li, F. Cunin, J. R. Link, T. Gao, R. E. Betts, S. H. Reiver, V. Chin, S. N. Bhatia, and M. J. Sailor, “Polymer replicas of photonic porous silicon for sensing and drug delivery applications,” Science 299, 2045–2047 (2003).
[CrossRef]

Biswas, R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Brahmendra, A.

N. Li, X. R. Cheng, A. Brahmendra, A. Prashar, T. Endo, C. Guyard, M. Terrebiznik, and K. Kerman, “Photonic crystal on copolymer film for bacteria detection,” Biosens. Bioelectron. 41, 354–358 (2013).
[CrossRef]

Brommer, K. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a photonic band gap in two dimensions,” Appl. Phys. Lett. 61, 495–497 (1992).
[CrossRef]

Bur, J.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Campbell, M.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum of holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef]

Chan, C. T.

X. Wang, J. Xu, J. C. W. Lee, Y. K. Pang, W. Y. Tam, C. T. Chan, and P. Sheng, “Realization of optical periodic quasi-crystals using holographic lithography,” Appl. Phys. Lett. 88, 051901 (2006).
[CrossRef]

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystals,” Adv. Mater. 15, 1526–1528 (2003).
[CrossRef]

Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasi-crystals,” Phys. Rev. Lett. 80, 956–959 (1998).
[CrossRef]

Chan, L. L.

L. L. Chan, M. Pineda, J. T. Heeres, P. J. Hergenrother, and B. T. Cunningham, “A general method for discovering inhibitors of protein–DNA interactions using photonic crystal biosensors,” ACS Chem. Biol. 3, 437–448 (2008).

Chan, Y. S.

Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasi-crystals,” Phys. Rev. Lett. 80, 956–959 (1998).
[CrossRef]

Charlton, M. D. B.

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete and absolute photonic bandgaps in highly symmetric photonic quasi-crystals embedded in low refractive index materials,” Mater. Sci. Eng. B 74168–174 (2000).
[CrossRef]

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasi-crystals,” Nature 404, 740–743 (2000).
[CrossRef]

Chen, K. P.

D. Xu, K. P. Chen, A. Harb, D. Rodriguez, K. Lozano, and Y. Lin, “Phase tunable holographic fabrication for three-dimensional photonic crystal templates by using a single optical element,” Appl. Phys. Lett. 94, 231116 (2009).
[CrossRef]

Chen, Y. L.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[CrossRef]

Cheng, B.

Y. Wang, X. Hu, X. Xu, B. Cheng, and D. Zhang, “Localized modes in defect-free dodecagonal quasi-periodic photonic crystals,” Phys. Rev. B 68, 165106 (2003).
[CrossRef]

Cheng, X. R.

N. Li, X. R. Cheng, A. Brahmendra, A. Prashar, T. Endo, C. Guyard, M. Terrebiznik, and K. Kerman, “Photonic crystal on copolymer film for bacteria detection,” Biosens. Bioelectron. 41, 354–358 (2013).
[CrossRef]

Chigrin, D.

Chin, V.

Y. Y. Li, F. Cunin, J. R. Link, T. Gao, R. E. Betts, S. H. Reiver, V. Chin, S. N. Bhatia, and M. J. Sailor, “Polymer replicas of photonic porous silicon for sensing and drug delivery applications,” Science 299, 2045–2047 (2003).
[CrossRef]

Choi, C. H.

K. Du, I. Wathuthanthri, W. Mao, W. Xu, and C. H. Choi, “Large-area pattern transfer of metallic nanostructures on glass substrates via interference lithography,” Nanotechnology 22, 285306 (2011).
[CrossRef]

Chutinan, A.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
[CrossRef]

Cunin, F.

Y. Y. Li, F. Cunin, J. R. Link, T. Gao, R. E. Betts, S. H. Reiver, V. Chin, S. N. Bhatia, and M. J. Sailor, “Polymer replicas of photonic porous silicon for sensing and drug delivery applications,” Science 299, 2045–2047 (2003).
[CrossRef]

Cunningham, B. T.

L. L. Chan, M. Pineda, J. T. Heeres, P. J. Hergenrother, and B. T. Cunningham, “A general method for discovering inhibitors of protein–DNA interactions using photonic crystal biosensors,” ACS Chem. Biol. 3, 437–448 (2008).

Dai, H. T.

D. Luo, Q. G. Du, H. T. Dai, H. V. Demir, H. Z. Yang, W. Jiand, and X. W. Sun, “Strongly linearly polarized low threshold lasing of all organic photonic quasi-crystals,” Sci. Rep. 2, 627 (2012).

de Boor, J.

Demir, H. V.

D. Luo, Q. G. Du, H. T. Dai, H. V. Demir, H. Z. Yang, W. Jiand, and X. W. Sun, “Strongly linearly polarized low threshold lasing of all organic photonic quasi-crystals,” Sci. Rep. 2, 627 (2012).

Denning, R. G.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum of holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef]

Du, K.

K. Du, I. Wathuthanthri, W. Mao, W. Xu, and C. H. Choi, “Large-area pattern transfer of metallic nanostructures on glass substrates via interference lithography,” Nanotechnology 22, 285306 (2011).
[CrossRef]

Du, Q. G.

D. Luo, Q. G. Du, H. T. Dai, H. V. Demir, H. Z. Yang, W. Jiand, and X. W. Sun, “Strongly linearly polarized low threshold lasing of all organic photonic quasi-crystals,” Sci. Rep. 2, 627 (2012).

Edagawa, K.

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing action due to the two-dimensional quasi-periodicity of photonic quasi-crystals with a Penrose lattice,” Phys. Rev. Lett. 92, 123906 (2004).
[CrossRef]

Endo, T.

N. Li, X. R. Cheng, A. Brahmendra, A. Prashar, T. Endo, C. Guyard, M. Terrebiznik, and K. Kerman, “Photonic crystal on copolymer film for bacteria detection,” Biosens. Bioelectron. 41, 354–358 (2013).
[CrossRef]

T. Endo, M. Sato, H. Kajita, N. Okuda, S. Tanaka, and H. Hisamoto, “Printed two-dimensional photonic crystals for single-step label-free biosensing of insulin under wet conditions,” Lab Chip 12, 1995–1999 (2012).
[CrossRef]

Fleming, J. G.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Freedman, B.

L. Levi, M. Rechtsman, B. Freedman, T. Schwartz, and M. Segev, “Disorder-enhanced transport in photonics quasi-crystals,” Science 332, 1541–1544 (2011).
[CrossRef]

Gao, T.

Y. Y. Li, F. Cunin, J. R. Link, T. Gao, R. E. Betts, S. H. Reiver, V. Chin, S. N. Bhatia, and M. J. Sailor, “Polymer replicas of photonic porous silicon for sensing and drug delivery applications,” Science 299, 2045–2047 (2003).
[CrossRef]

Gates, B.

Y. N. Xia, B. Gates, Y. D. Yin, and Y. Lu, “Monodispersed colloidal spheres: old materials with new applications,” Adv. Mater. 12, 693–713 (2000).
[CrossRef]

Geyer, N.

Gösele, U.

Guyard, C.

N. Li, X. R. Cheng, A. Brahmendra, A. Prashar, T. Endo, C. Guyard, M. Terrebiznik, and K. Kerman, “Photonic crystal on copolymer film for bacteria detection,” Biosens. Bioelectron. 41, 354–358 (2013).
[CrossRef]

Harb, A.

D. Xu, K. P. Chen, A. Harb, D. Rodriguez, K. Lozano, and Y. Lin, “Phase tunable holographic fabrication for three-dimensional photonic crystal templates by using a single optical element,” Appl. Phys. Lett. 94, 231116 (2009).
[CrossRef]

Harrison, M. T.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum of holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef]

Heeres, J. T.

L. L. Chan, M. Pineda, J. T. Heeres, P. J. Hergenrother, and B. T. Cunningham, “A general method for discovering inhibitors of protein–DNA interactions using photonic crystal biosensors,” ACS Chem. Biol. 3, 437–448 (2008).

Hergenrother, P. J.

L. L. Chan, M. Pineda, J. T. Heeres, P. J. Hergenrother, and B. T. Cunningham, “A general method for discovering inhibitors of protein–DNA interactions using photonic crystal biosensors,” ACS Chem. Biol. 3, 437–448 (2008).

Hetherington, D. L.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Hisamoto, H.

T. Endo, M. Sato, H. Kajita, N. Okuda, S. Tanaka, and H. Hisamoto, “Printed two-dimensional photonic crystals for single-step label-free biosensing of insulin under wet conditions,” Lab Chip 12, 1995–1999 (2012).
[CrossRef]

Ho, K. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Hsu, C. C.

Hu, S.

J. Yin, X. Huang, S. Liu, and S. Hu, “Photonic bandgap properties of 8-fold symmetric photonic quasi-crystals,” Opt. Commun. 269, 385–388 (2007).
[CrossRef]

Hu, X.

Y. Wang, X. Hu, X. Xu, B. Cheng, and D. Zhang, “Localized modes in defect-free dodecagonal quasi-periodic photonic crystals,” Phys. Rev. B 68, 165106 (2003).
[CrossRef]

Huang, X.

J. Yin, X. Huang, S. Liu, and S. Hu, “Photonic bandgap properties of 8-fold symmetric photonic quasi-crystals,” Opt. Commun. 269, 385–388 (2007).
[CrossRef]

Jiand, W.

D. Luo, Q. G. Du, H. T. Dai, H. V. Demir, H. Z. Yang, W. Jiand, and X. W. Sun, “Strongly linearly polarized low threshold lasing of all organic photonic quasi-crystals,” Sci. Rep. 2, 627 (2012).

Joannopoulos, J. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a photonic band gap in two dimensions,” Appl. Phys. Lett. 61, 495–497 (1992).
[CrossRef]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef]

Kajita, H.

T. Endo, M. Sato, H. Kajita, N. Okuda, S. Tanaka, and H. Hisamoto, “Printed two-dimensional photonic crystals for single-step label-free biosensing of insulin under wet conditions,” Lab Chip 12, 1995–1999 (2012).
[CrossRef]

Kerman, K.

N. Li, X. R. Cheng, A. Brahmendra, A. Prashar, T. Endo, C. Guyard, M. Terrebiznik, and K. Kerman, “Photonic crystal on copolymer film for bacteria detection,” Biosens. Bioelectron. 41, 354–358 (2013).
[CrossRef]

Kuo, H. C.

P. T. Lee, T. Q. Lu, F. M. Tsai, T. C. Lu, and H. C. Kuo, “Whispering gallery mode of modified octagonal quasi-periodic photonic crystal single-defect microcavity and its side-mode reduction,” Appl. Phys. Lett. 88, 201104 (2006).
[CrossRef]

Kurtz, S. R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Lai, N. D.

Lavrinenko, A.

Lee, J. C. W.

X. Wang, J. Xu, J. C. W. Lee, Y. K. Pang, W. Y. Tam, C. T. Chan, and P. Sheng, “Realization of optical periodic quasi-crystals using holographic lithography,” Appl. Phys. Lett. 88, 051901 (2006).
[CrossRef]

Lee, P. T.

P. T. Lee, T. Q. Lu, F. M. Tsai, T. C. Lu, and H. C. Kuo, “Whispering gallery mode of modified octagonal quasi-periodic photonic crystal single-defect microcavity and its side-mode reduction,” Appl. Phys. Lett. 88, 201104 (2006).
[CrossRef]

Levi, L.

L. Levi, M. Rechtsman, B. Freedman, T. Schwartz, and M. Segev, “Disorder-enhanced transport in photonics quasi-crystals,” Science 332, 1541–1544 (2011).
[CrossRef]

Li, N.

N. Li, X. R. Cheng, A. Brahmendra, A. Prashar, T. Endo, C. Guyard, M. Terrebiznik, and K. Kerman, “Photonic crystal on copolymer film for bacteria detection,” Biosens. Bioelectron. 41, 354–358 (2013).
[CrossRef]

Li, Y. Y.

Y. Y. Li, F. Cunin, J. R. Link, T. Gao, R. E. Betts, S. H. Reiver, V. Chin, S. N. Bhatia, and M. J. Sailor, “Polymer replicas of photonic porous silicon for sensing and drug delivery applications,” Science 299, 2045–2047 (2003).
[CrossRef]

Liang, G. Q.

W. D. Mao, G. Q. Liang, Y. Y. Pu, H. Z. Wang, and Z. H. Zeng, “Complicated three-dimensional photonic crystals fabricated by holographic lithography,” Appl. Phys. Lett. 91, 261911 (2007).
[CrossRef]

W. D. Mao, G. Q. Liang, H. Zou, H. Z. Wang, R. Zhang, and Z. H. Zeng, “Design and fabrication of two-dimensional holographic photonic quasi-crystals with high-order symmetries,” J. Opt. Soc. Am. B 23, 2046–2050 (2006).
[CrossRef]

Liang, W. P.

Lin, C. H.

Lin, J. H.

Lin, S. Y.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Lin, Y.

D. Xu, K. P. Chen, A. Harb, D. Rodriguez, K. Lozano, and Y. Lin, “Phase tunable holographic fabrication for three-dimensional photonic crystal templates by using a single optical element,” Appl. Phys. Lett. 94, 231116 (2009).
[CrossRef]

Link, J. R.

Y. Y. Li, F. Cunin, J. R. Link, T. Gao, R. E. Betts, S. H. Reiver, V. Chin, S. N. Bhatia, and M. J. Sailor, “Polymer replicas of photonic porous silicon for sensing and drug delivery applications,” Science 299, 2045–2047 (2003).
[CrossRef]

Liu, S.

J. Yin, X. Huang, S. Liu, and S. Hu, “Photonic bandgap properties of 8-fold symmetric photonic quasi-crystals,” Opt. Commun. 269, 385–388 (2007).
[CrossRef]

Y. Liu, S. Liu, and X. S. Zhang, “Fabrication of three-dimensional photonic crystals with two-beam holographic lithography,” Appl. Opt. 45, 480–483 (2006).
[CrossRef]

Liu, Y.

Liu, Z. Y.

Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasi-crystals,” Phys. Rev. Lett. 80, 956–959 (1998).
[CrossRef]

Lozano, K.

D. Xu, K. P. Chen, A. Harb, D. Rodriguez, K. Lozano, and Y. Lin, “Phase tunable holographic fabrication for three-dimensional photonic crystal templates by using a single optical element,” Appl. Phys. Lett. 94, 231116 (2009).
[CrossRef]

Lu, T. C.

P. T. Lee, T. Q. Lu, F. M. Tsai, T. C. Lu, and H. C. Kuo, “Whispering gallery mode of modified octagonal quasi-periodic photonic crystal single-defect microcavity and its side-mode reduction,” Appl. Phys. Lett. 88, 201104 (2006).
[CrossRef]

Lu, T. Q.

P. T. Lee, T. Q. Lu, F. M. Tsai, T. C. Lu, and H. C. Kuo, “Whispering gallery mode of modified octagonal quasi-periodic photonic crystal single-defect microcavity and its side-mode reduction,” Appl. Phys. Lett. 88, 201104 (2006).
[CrossRef]

Lu, Y.

Y. N. Xia, B. Gates, Y. D. Yin, and Y. Lu, “Monodispersed colloidal spheres: old materials with new applications,” Adv. Mater. 12, 693–713 (2000).
[CrossRef]

Luo, D.

D. Luo, Q. G. Du, H. T. Dai, H. V. Demir, H. Z. Yang, W. Jiand, and X. W. Sun, “Strongly linearly polarized low threshold lasing of all organic photonic quasi-crystals,” Sci. Rep. 2, 627 (2012).

Ma, R.

Mao, W.

K. Du, I. Wathuthanthri, W. Mao, W. Xu, and C. H. Choi, “Large-area pattern transfer of metallic nanostructures on glass substrates via interference lithography,” Nanotechnology 22, 285306 (2011).
[CrossRef]

Mao, W. D.

W. D. Mao, G. Q. Liang, Y. Y. Pu, H. Z. Wang, and Z. H. Zeng, “Complicated three-dimensional photonic crystals fabricated by holographic lithography,” Appl. Phys. Lett. 91, 261911 (2007).
[CrossRef]

W. D. Mao, G. Q. Liang, H. Zou, H. Z. Wang, R. Zhang, and Z. H. Zeng, “Design and fabrication of two-dimensional holographic photonic quasi-crystals with high-order symmetries,” J. Opt. Soc. Am. B 23, 2046–2050 (2006).
[CrossRef]

Matsui, T.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446, 517–521 (2007).
[CrossRef]

Meade, R. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a photonic band gap in two dimensions,” Appl. Phys. Lett. 61, 495–497 (1992).
[CrossRef]

Mermin, N. D.

D. A. Rabson, N. D. Mermin, D. S. Rokhsar, and D. C. Wright, “The space groups of axial crystals and quasi-crystals,” Rev. Mod. Phys. 63, 699–733 (1991).
[CrossRef]

Nahata, A.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446, 517–521 (2007).
[CrossRef]

Netti, M. C.

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete and absolute photonic bandgaps in highly symmetric photonic quasi-crystals embedded in low refractive index materials,” Mater. Sci. Eng. B 74168–174 (2000).
[CrossRef]

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasi-crystals,” Nature 404, 740–743 (2000).
[CrossRef]

Ng, C. Y.

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystals,” Adv. Mater. 15, 1526–1528 (2003).
[CrossRef]

Noda, S.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
[CrossRef]

Notomi, M.

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing action due to the two-dimensional quasi-periodicity of photonic quasi-crystals with a Penrose lattice,” Phys. Rev. Lett. 92, 123906 (2004).
[CrossRef]

Okuda, N.

T. Endo, M. Sato, H. Kajita, N. Okuda, S. Tanaka, and H. Hisamoto, “Printed two-dimensional photonic crystals for single-step label-free biosensing of insulin under wet conditions,” Lab Chip 12, 1995–1999 (2012).
[CrossRef]

Pang, Y. K.

X. Wang, J. Xu, J. C. W. Lee, Y. K. Pang, W. Y. Tam, C. T. Chan, and P. Sheng, “Realization of optical periodic quasi-crystals using holographic lithography,” Appl. Phys. Lett. 88, 051901 (2006).
[CrossRef]

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[CrossRef]

Park, C.

C. Park, J. Yoon, and E. L. Thomas, “Enabling nanotechnology with self assembled block copolymer patterns,” Polymer 44, 6725–6760 (2003).
[CrossRef]

Parker, G. J.

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete and absolute photonic bandgaps in highly symmetric photonic quasi-crystals embedded in low refractive index materials,” Mater. Sci. Eng. B 74168–174 (2000).
[CrossRef]

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasi-crystals,” Nature 404, 740–743 (2000).
[CrossRef]

Pineda, M.

L. L. Chan, M. Pineda, J. T. Heeres, P. J. Hergenrother, and B. T. Cunningham, “A general method for discovering inhibitors of protein–DNA interactions using photonic crystal biosensors,” ACS Chem. Biol. 3, 437–448 (2008).

Prashar, A.

N. Li, X. R. Cheng, A. Brahmendra, A. Prashar, T. Endo, C. Guyard, M. Terrebiznik, and K. Kerman, “Photonic crystal on copolymer film for bacteria detection,” Biosens. Bioelectron. 41, 354–358 (2013).
[CrossRef]

Pu, Y. Y.

W. D. Mao, G. Q. Liang, Y. Y. Pu, H. Z. Wang, and Z. H. Zeng, “Complicated three-dimensional photonic crystals fabricated by holographic lithography,” Appl. Phys. Lett. 91, 261911 (2007).
[CrossRef]

Rabson, D. A.

D. A. Rabson, N. D. Mermin, D. S. Rokhsar, and D. C. Wright, “The space groups of axial crystals and quasi-crystals,” Rev. Mod. Phys. 63, 699–733 (1991).
[CrossRef]

Rappe, A. M.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a photonic band gap in two dimensions,” Appl. Phys. Lett. 61, 495–497 (1992).
[CrossRef]

Rechtsman, M.

L. Levi, M. Rechtsman, B. Freedman, T. Schwartz, and M. Segev, “Disorder-enhanced transport in photonics quasi-crystals,” Science 332, 1541–1544 (2011).
[CrossRef]

Reiver, S. H.

Y. Y. Li, F. Cunin, J. R. Link, T. Gao, R. E. Betts, S. H. Reiver, V. Chin, S. N. Bhatia, and M. J. Sailor, “Polymer replicas of photonic porous silicon for sensing and drug delivery applications,” Science 299, 2045–2047 (2003).
[CrossRef]

Rodriguez, D.

D. Xu, K. P. Chen, A. Harb, D. Rodriguez, K. Lozano, and Y. Lin, “Phase tunable holographic fabrication for three-dimensional photonic crystal templates by using a single optical element,” Appl. Phys. Lett. 94, 231116 (2009).
[CrossRef]

Rokhsar, D. S.

D. A. Rabson, N. D. Mermin, D. S. Rokhsar, and D. C. Wright, “The space groups of axial crystals and quasi-crystals,” Rev. Mod. Phys. 63, 699–733 (1991).
[CrossRef]

Romero-Vivas, J.

Sailor, M. J.

Y. Y. Li, F. Cunin, J. R. Link, T. Gao, R. E. Betts, S. H. Reiver, V. Chin, S. N. Bhatia, and M. J. Sailor, “Polymer replicas of photonic porous silicon for sensing and drug delivery applications,” Science 299, 2045–2047 (2003).
[CrossRef]

Sato, M.

T. Endo, M. Sato, H. Kajita, N. Okuda, S. Tanaka, and H. Hisamoto, “Printed two-dimensional photonic crystals for single-step label-free biosensing of insulin under wet conditions,” Lab Chip 12, 1995–1999 (2012).
[CrossRef]

Schmidt, V.

Schwartz, T.

L. Levi, M. Rechtsman, B. Freedman, T. Schwartz, and M. Segev, “Disorder-enhanced transport in photonics quasi-crystals,” Science 332, 1541–1544 (2011).
[CrossRef]

Segev, M.

L. Levi, M. Rechtsman, B. Freedman, T. Schwartz, and M. Segev, “Disorder-enhanced transport in photonics quasi-crystals,” Science 332, 1541–1544 (2011).
[CrossRef]

Sharp, D. N.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum of holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef]

Sheng, P.

X. Wang, J. Xu, J. C. W. Lee, Y. K. Pang, W. Y. Tam, C. T. Chan, and P. Sheng, “Realization of optical periodic quasi-crystals using holographic lithography,” Appl. Phys. Lett. 88, 051901 (2006).
[CrossRef]

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystals,” Adv. Mater. 15, 1526–1528 (2003).
[CrossRef]

Sigalas, M. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Smith, B. K.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Sotomayor Torres, C.

Su, H. M.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[CrossRef]

Sun, X. W.

D. Luo, Q. G. Du, H. T. Dai, H. V. Demir, H. Z. Yang, W. Jiand, and X. W. Sun, “Strongly linearly polarized low threshold lasing of all organic photonic quasi-crystals,” Sci. Rep. 2, 627 (2012).

Suzuki, H.

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing action due to the two-dimensional quasi-periodicity of photonic quasi-crystals with a Penrose lattice,” Phys. Rev. Lett. 92, 123906 (2004).
[CrossRef]

Tam, W. Y.

J. Xu, R. Ma, X. Wang, and W. Y. Tam, “Icosahedral quasi-crystals for visible wavelengths by optical interference holography,” Opt. Express 15, 4287–4295 (2007).
[CrossRef]

X. Wang, J. Xu, J. C. W. Lee, Y. K. Pang, W. Y. Tam, C. T. Chan, and P. Sheng, “Realization of optical periodic quasi-crystals using holographic lithography,” Appl. Phys. Lett. 88, 051901 (2006).
[CrossRef]

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[CrossRef]

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystals,” Adv. Mater. 15, 1526–1528 (2003).
[CrossRef]

Tamamura, T.

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing action due to the two-dimensional quasi-periodicity of photonic quasi-crystals with a Penrose lattice,” Phys. Rev. Lett. 92, 123906 (2004).
[CrossRef]

Tanaka, S.

T. Endo, M. Sato, H. Kajita, N. Okuda, S. Tanaka, and H. Hisamoto, “Printed two-dimensional photonic crystals for single-step label-free biosensing of insulin under wet conditions,” Lab Chip 12, 1995–1999 (2012).
[CrossRef]

Terrebiznik, M.

N. Li, X. R. Cheng, A. Brahmendra, A. Prashar, T. Endo, C. Guyard, M. Terrebiznik, and K. Kerman, “Photonic crystal on copolymer film for bacteria detection,” Biosens. Bioelectron. 41, 354–358 (2013).
[CrossRef]

Thomas, E. L.

C. Park, J. Yoon, and E. L. Thomas, “Enabling nanotechnology with self assembled block copolymer patterns,” Polymer 44, 6725–6760 (2003).
[CrossRef]

Tomoda, K.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
[CrossRef]

Tsai, F. M.

P. T. Lee, T. Q. Lu, F. M. Tsai, T. C. Lu, and H. C. Kuo, “Whispering gallery mode of modified octagonal quasi-periodic photonic crystal single-defect microcavity and its side-mode reduction,” Appl. Phys. Lett. 88, 201104 (2006).
[CrossRef]

Turberfield, A. J.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum of holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef]

Vardeny, Z. V.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446, 517–521 (2007).
[CrossRef]

Wang, G. P.

Y. Yang, S. Zhang, and G. P. Wang, “Fabrication of two-dimensional metallodielectric quasi-crystals by single-beam holography,” Appl. Phys. Lett. 88, 251104 (2006).
[CrossRef]

Y. Yang and G. P. Wang, “Realization of periodic and quasi-periodic microstructures with sub-diffraction-limit feature sizes by far-field holographic lithography,” Appl. Phys. Lett. 89, 111104 (2006).
[CrossRef]

Wang, H. Z.

W. D. Mao, G. Q. Liang, Y. Y. Pu, H. Z. Wang, and Z. H. Zeng, “Complicated three-dimensional photonic crystals fabricated by holographic lithography,” Appl. Phys. Lett. 91, 261911 (2007).
[CrossRef]

W. D. Mao, G. Q. Liang, H. Zou, H. Z. Wang, R. Zhang, and Z. H. Zeng, “Design and fabrication of two-dimensional holographic photonic quasi-crystals with high-order symmetries,” J. Opt. Soc. Am. B 23, 2046–2050 (2006).
[CrossRef]

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[CrossRef]

Wang, X.

J. Xu, R. Ma, X. Wang, and W. Y. Tam, “Icosahedral quasi-crystals for visible wavelengths by optical interference holography,” Opt. Express 15, 4287–4295 (2007).
[CrossRef]

X. Wang, J. Xu, J. C. W. Lee, Y. K. Pang, W. Y. Tam, C. T. Chan, and P. Sheng, “Realization of optical periodic quasi-crystals using holographic lithography,” Appl. Phys. Lett. 88, 051901 (2006).
[CrossRef]

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[CrossRef]

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystals,” Adv. Mater. 15, 1526–1528 (2003).
[CrossRef]

Wang, Y.

Y. Wang, X. Hu, X. Xu, B. Cheng, and D. Zhang, “Localized modes in defect-free dodecagonal quasi-periodic photonic crystals,” Phys. Rev. B 68, 165106 (2003).
[CrossRef]

Wathuthanthri, I.

K. Du, I. Wathuthanthri, W. Mao, W. Xu, and C. H. Choi, “Large-area pattern transfer of metallic nanostructures on glass substrates via interference lithography,” Nanotechnology 22, 285306 (2011).
[CrossRef]

Wright, D. C.

D. A. Rabson, N. D. Mermin, D. S. Rokhsar, and D. C. Wright, “The space groups of axial crystals and quasi-crystals,” Rev. Mod. Phys. 63, 699–733 (1991).
[CrossRef]

Xia, Y. N.

Y. N. Xia, B. Gates, Y. D. Yin, and Y. Lu, “Monodispersed colloidal spheres: old materials with new applications,” Adv. Mater. 12, 693–713 (2000).
[CrossRef]

Xu, D.

D. Xu, K. P. Chen, A. Harb, D. Rodriguez, K. Lozano, and Y. Lin, “Phase tunable holographic fabrication for three-dimensional photonic crystal templates by using a single optical element,” Appl. Phys. Lett. 94, 231116 (2009).
[CrossRef]

Xu, J.

J. Xu, R. Ma, X. Wang, and W. Y. Tam, “Icosahedral quasi-crystals for visible wavelengths by optical interference holography,” Opt. Express 15, 4287–4295 (2007).
[CrossRef]

X. Wang, J. Xu, J. C. W. Lee, Y. K. Pang, W. Y. Tam, C. T. Chan, and P. Sheng, “Realization of optical periodic quasi-crystals using holographic lithography,” Appl. Phys. Lett. 88, 051901 (2006).
[CrossRef]

Xu, J. F.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[CrossRef]

Xu, W.

K. Du, I. Wathuthanthri, W. Mao, W. Xu, and C. H. Choi, “Large-area pattern transfer of metallic nanostructures on glass substrates via interference lithography,” Nanotechnology 22, 285306 (2011).
[CrossRef]

Xu, X.

Y. Wang, X. Hu, X. Xu, B. Cheng, and D. Zhang, “Localized modes in defect-free dodecagonal quasi-periodic photonic crystals,” Phys. Rev. B 68, 165106 (2003).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef]

Yamamoto, N.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
[CrossRef]

Yang, H. Z.

D. Luo, Q. G. Du, H. T. Dai, H. V. Demir, H. Z. Yang, W. Jiand, and X. W. Sun, “Strongly linearly polarized low threshold lasing of all organic photonic quasi-crystals,” Sci. Rep. 2, 627 (2012).

Yang, Y.

Y. Yang, S. Zhang, and G. P. Wang, “Fabrication of two-dimensional metallodielectric quasi-crystals by single-beam holography,” Appl. Phys. Lett. 88, 251104 (2006).
[CrossRef]

Y. Yang and G. P. Wang, “Realization of periodic and quasi-periodic microstructures with sub-diffraction-limit feature sizes by far-field holographic lithography,” Appl. Phys. Lett. 89, 111104 (2006).
[CrossRef]

Yin, J.

J. Yin, X. Huang, S. Liu, and S. Hu, “Photonic bandgap properties of 8-fold symmetric photonic quasi-crystals,” Opt. Commun. 269, 385–388 (2007).
[CrossRef]

Yin, Y. D.

Y. N. Xia, B. Gates, Y. D. Yin, and Y. Lu, “Monodispersed colloidal spheres: old materials with new applications,” Adv. Mater. 12, 693–713 (2000).
[CrossRef]

Yoon, J.

C. Park, J. Yoon, and E. L. Thomas, “Enabling nanotechnology with self assembled block copolymer patterns,” Polymer 44, 6725–6760 (2003).
[CrossRef]

Zeng, Z. H.

W. D. Mao, G. Q. Liang, Y. Y. Pu, H. Z. Wang, and Z. H. Zeng, “Complicated three-dimensional photonic crystals fabricated by holographic lithography,” Appl. Phys. Lett. 91, 261911 (2007).
[CrossRef]

W. D. Mao, G. Q. Liang, H. Zou, H. Z. Wang, R. Zhang, and Z. H. Zeng, “Design and fabrication of two-dimensional holographic photonic quasi-crystals with high-order symmetries,” J. Opt. Soc. Am. B 23, 2046–2050 (2006).
[CrossRef]

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[CrossRef]

Zhang, D.

Y. Wang, X. Hu, X. Xu, B. Cheng, and D. Zhang, “Localized modes in defect-free dodecagonal quasi-periodic photonic crystals,” Phys. Rev. B 68, 165106 (2003).
[CrossRef]

Zhang, R.

Zhang, S.

Y. Yang, S. Zhang, and G. P. Wang, “Fabrication of two-dimensional metallodielectric quasi-crystals by single-beam holography,” Appl. Phys. Lett. 88, 251104 (2006).
[CrossRef]

Zhang, X. S.

Zoorob, M. E.

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasi-crystals,” Nature 404, 740–743 (2000).
[CrossRef]

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete and absolute photonic bandgaps in highly symmetric photonic quasi-crystals embedded in low refractive index materials,” Mater. Sci. Eng. B 74168–174 (2000).
[CrossRef]

Zou, H.

Zubrzycki, W.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

ACS Chem. Biol. (1)

L. L. Chan, M. Pineda, J. T. Heeres, P. J. Hergenrother, and B. T. Cunningham, “A general method for discovering inhibitors of protein–DNA interactions using photonic crystal biosensors,” ACS Chem. Biol. 3, 437–448 (2008).

Adv. Mater. (2)

Y. N. Xia, B. Gates, Y. D. Yin, and Y. Lu, “Monodispersed colloidal spheres: old materials with new applications,” Adv. Mater. 12, 693–713 (2000).
[CrossRef]

X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystals,” Adv. Mater. 15, 1526–1528 (2003).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (8)

P. T. Lee, T. Q. Lu, F. M. Tsai, T. C. Lu, and H. C. Kuo, “Whispering gallery mode of modified octagonal quasi-periodic photonic crystal single-defect microcavity and its side-mode reduction,” Appl. Phys. Lett. 88, 201104 (2006).
[CrossRef]

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Existence of a photonic band gap in two dimensions,” Appl. Phys. Lett. 61, 495–497 (1992).
[CrossRef]

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[CrossRef]

W. D. Mao, G. Q. Liang, Y. Y. Pu, H. Z. Wang, and Z. H. Zeng, “Complicated three-dimensional photonic crystals fabricated by holographic lithography,” Appl. Phys. Lett. 91, 261911 (2007).
[CrossRef]

D. Xu, K. P. Chen, A. Harb, D. Rodriguez, K. Lozano, and Y. Lin, “Phase tunable holographic fabrication for three-dimensional photonic crystal templates by using a single optical element,” Appl. Phys. Lett. 94, 231116 (2009).
[CrossRef]

Y. Yang, S. Zhang, and G. P. Wang, “Fabrication of two-dimensional metallodielectric quasi-crystals by single-beam holography,” Appl. Phys. Lett. 88, 251104 (2006).
[CrossRef]

Y. Yang and G. P. Wang, “Realization of periodic and quasi-periodic microstructures with sub-diffraction-limit feature sizes by far-field holographic lithography,” Appl. Phys. Lett. 89, 111104 (2006).
[CrossRef]

X. Wang, J. Xu, J. C. W. Lee, Y. K. Pang, W. Y. Tam, C. T. Chan, and P. Sheng, “Realization of optical periodic quasi-crystals using holographic lithography,” Appl. Phys. Lett. 88, 051901 (2006).
[CrossRef]

Biosens. Bioelectron. (1)

N. Li, X. R. Cheng, A. Brahmendra, A. Prashar, T. Endo, C. Guyard, M. Terrebiznik, and K. Kerman, “Photonic crystal on copolymer film for bacteria detection,” Biosens. Bioelectron. 41, 354–358 (2013).
[CrossRef]

J. Opt. Soc. Am. B (1)

Lab Chip (1)

T. Endo, M. Sato, H. Kajita, N. Okuda, S. Tanaka, and H. Hisamoto, “Printed two-dimensional photonic crystals for single-step label-free biosensing of insulin under wet conditions,” Lab Chip 12, 1995–1999 (2012).
[CrossRef]

Mater. Sci. Eng. B (1)

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete and absolute photonic bandgaps in highly symmetric photonic quasi-crystals embedded in low refractive index materials,” Mater. Sci. Eng. B 74168–174 (2000).
[CrossRef]

Nanotechnology (1)

K. Du, I. Wathuthanthri, W. Mao, W. Xu, and C. H. Choi, “Large-area pattern transfer of metallic nanostructures on glass substrates via interference lithography,” Nanotechnology 22, 285306 (2011).
[CrossRef]

Nature (4)

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasi-crystals,” Nature 404, 740–743 (2000).
[CrossRef]

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature 446, 517–521 (2007).
[CrossRef]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum of holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef]

Opt. Commun. (1)

J. Yin, X. Huang, S. Liu, and S. Hu, “Photonic bandgap properties of 8-fold symmetric photonic quasi-crystals,” Opt. Commun. 269, 385–388 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (1)

Y. Wang, X. Hu, X. Xu, B. Cheng, and D. Zhang, “Localized modes in defect-free dodecagonal quasi-periodic photonic crystals,” Phys. Rev. B 68, 165106 (2003).
[CrossRef]

Phys. Rev. Lett. (4)

M. Notomi, H. Suzuki, T. Tamamura, and K. Edagawa, “Lasing action due to the two-dimensional quasi-periodicity of photonic quasi-crystals with a Penrose lattice,” Phys. Rev. Lett. 92, 123906 (2004).
[CrossRef]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef]

Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasi-crystals,” Phys. Rev. Lett. 80, 956–959 (1998).
[CrossRef]

Polymer (1)

C. Park, J. Yoon, and E. L. Thomas, “Enabling nanotechnology with self assembled block copolymer patterns,” Polymer 44, 6725–6760 (2003).
[CrossRef]

Rev. Mod. Phys. (1)

D. A. Rabson, N. D. Mermin, D. S. Rokhsar, and D. C. Wright, “The space groups of axial crystals and quasi-crystals,” Rev. Mod. Phys. 63, 699–733 (1991).
[CrossRef]

Sci. Rep. (1)

D. Luo, Q. G. Du, H. T. Dai, H. V. Demir, H. Z. Yang, W. Jiand, and X. W. Sun, “Strongly linearly polarized low threshold lasing of all organic photonic quasi-crystals,” Sci. Rep. 2, 627 (2012).

Science (3)

L. Levi, M. Rechtsman, B. Freedman, T. Schwartz, and M. Segev, “Disorder-enhanced transport in photonics quasi-crystals,” Science 332, 1541–1544 (2011).
[CrossRef]

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000).
[CrossRef]

Y. Y. Li, F. Cunin, J. R. Link, T. Gao, R. E. Betts, S. H. Reiver, V. Chin, S. N. Bhatia, and M. J. Sailor, “Polymer replicas of photonic porous silicon for sensing and drug delivery applications,” Science 299, 2045–2047 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Simulated patterns of (a) 10- and (b) 12-fold PQCs in MATLAB. (c) is the projection of the special five beams in the XY plane, where θ=36° for 10-fold and 30° for 12-fold symmetry.

Fig. 2.
Fig. 2.

(a) Our specially designed prism, which has a θ=45° angle between the side surface and the bottom and a bottom diameter D of 25.4 mm. The heights of the cone H1 and cylinder H2 are 12.7 and 5 mm, respectively. The emergent beams from the bottom are shown in (b), where the five green beams from the side surface and the dark beam from the top surface are shown. Considering the refractive index of our glass n=1.51, we have α=26.3° and β=45°. (c) Illustration of five-beam overlap. The center dark green is the overlap area of all five beams.

Fig. 3.
Fig. 3.

Optical setup of this special prism-assisted HL experiment.

Fig. 4.
Fig. 4.

(a) Overall view of our fabricated sample. (b) Simulated pattern of the special five-beam interference in MATLAB. (c)–(l) Patterns observed under SEM from five points on (a): center (C), top (T), bottom (B), left (L), and right (R), where the right ones are the magnified images of the left. All of them have obvious eight-fold symmetry.

Fig. 5.
Fig. 5.

(a) Slightly underexposed sample with more clear dots, where (b) is the magnified image of (a). (c) Single-defect microcavity in our sample.

Fig. 6.
Fig. 6.

(a) 3D pattern of the special six beams simulated in MATLAB, and (b) the pattern in the XY plane at Z=0. (c) and (d) are the simulated and experimentally verified five-beam cell patterns. (e)–(h) Simulated and experimentally verified six-beam cell patterns, showing nonuniform intensity interference dots.

Fig. 7.
Fig. 7.

(a) Large-area view of the special six-beam exposed pattern in photoresist, looking like a sunflower, with (b) as a magnified image of (a).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I=i|Ei|2+i,j2EiEjcosθijcos[(KiKj)r+(φiφj)],
v=Φ(N)=N(p11)p1(p21)p2,

Metrics