Abstract

In this report, a high-resolution, high-signal-to-noise-coded aperture spectrometer is introduced that replaces the traditional single slit with two-dimensional array slits manufactured by microelectromechanic system technology. The encoding and decoding principle of this coded aperture spectrometer is described, as well as the instrument structure. We then discuss the side-effect, which is caused by sub-aperture manufacturing errors in size and position and the smear noise in the imaging CCD. The side-effect adversely affects the decoding wavelength accuracy of this spectrometer, so we present some effective ways to avoid this phenomenon and to increase the decoding wavelength accuracy of the spectrometer. In the end, we present our experimental results.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. T. E. Golay, “Multi-slit spectrometry,” J. Opt. Soc. Am. 39, 437–444 (1949).
    [CrossRef]
  2. H. Suto and H. Takami, “Waveguide image slicer,” Appl. Opt. 36, 4582–4586 (1997).
    [CrossRef]
  3. J. T. Meade, B. B. Behr, and A. R. Hajian, “A new high-resolution, high-throughput spectrometer: first experience as applied to Raman spectroscopy,” Proc. SPIE 8374, 83740V (2012).
    [CrossRef]
  4. E. Beckert, K. G. Strassmeier, M. Woche, R. Eberhardt, A. Tunnermann, and M. Andersen, “Waveguide image-slicers for ultrahigh resolution spectroscopy,” Proc. SPIE 7018, 70182J (2008).
    [CrossRef]
  5. J. A. Decker and M. Harwit, “Experimental operation of a Hadamard spectrometer,” Appl. Opt. 8, 2552–2554 (1969).
    [CrossRef]
  6. M. E. Gehm, S. T. McCain, N. P. Pitsianis, D. J. Brady, P. Potuluri, and M. E. Sullivan, “Static 2D aperture coding for multi-modal multiplex spectroscopy,” Appl. Opt. 45, 2965–3183 (2006).
    [CrossRef]
  7. S. McCain, M. Gehm, Y. Wang, N. Pitsianis, and D. Brady, “Coded aperture Raman spectroscopy for quantitative measurements of ethanol in a tissue phantom,” Appl. Spectrosc. 60, 663–671 (2006).
    [CrossRef]
  8. A. A. Wagadarikar, M. E. Gehm, and D. J. Brady, “Performance comparison of aperture codes for multimodal, multiplex spectroscopy,” Appl. Opt. 46, 4932–4942 (2007).
    [CrossRef]
  9. M. Harwit and N. Sloane, Hadamard Transform Optics (Academic, 1979), pp. 57–61.
  10. Y. S. Han, E. Choi, and M. G. Kang, “Smear removal algorithm using the optical black region for CCD imaging sensors,” IEEE Trans. Consum. Electron. 55, 2287–2293 (2009).
    [CrossRef]
  11. S. P. Love, “Programmable matched filter and Hadamard transform hyperspectral imagers based on micro-mirror arrays,” Proc. SPIE 7210, 721007 (2009).
    [CrossRef]
  12. I. Daubechies, “The wavelet transform, time-frequency localization, and signal analysis,” IEEE Trans. Inf. Theory 36, 961–1005 (1990).
    [CrossRef]

2012 (1)

J. T. Meade, B. B. Behr, and A. R. Hajian, “A new high-resolution, high-throughput spectrometer: first experience as applied to Raman spectroscopy,” Proc. SPIE 8374, 83740V (2012).
[CrossRef]

2009 (2)

Y. S. Han, E. Choi, and M. G. Kang, “Smear removal algorithm using the optical black region for CCD imaging sensors,” IEEE Trans. Consum. Electron. 55, 2287–2293 (2009).
[CrossRef]

S. P. Love, “Programmable matched filter and Hadamard transform hyperspectral imagers based on micro-mirror arrays,” Proc. SPIE 7210, 721007 (2009).
[CrossRef]

2008 (1)

E. Beckert, K. G. Strassmeier, M. Woche, R. Eberhardt, A. Tunnermann, and M. Andersen, “Waveguide image-slicers for ultrahigh resolution spectroscopy,” Proc. SPIE 7018, 70182J (2008).
[CrossRef]

2007 (1)

2006 (2)

1997 (1)

1990 (1)

I. Daubechies, “The wavelet transform, time-frequency localization, and signal analysis,” IEEE Trans. Inf. Theory 36, 961–1005 (1990).
[CrossRef]

1969 (1)

1949 (1)

Andersen, M.

E. Beckert, K. G. Strassmeier, M. Woche, R. Eberhardt, A. Tunnermann, and M. Andersen, “Waveguide image-slicers for ultrahigh resolution spectroscopy,” Proc. SPIE 7018, 70182J (2008).
[CrossRef]

Beckert, E.

E. Beckert, K. G. Strassmeier, M. Woche, R. Eberhardt, A. Tunnermann, and M. Andersen, “Waveguide image-slicers for ultrahigh resolution spectroscopy,” Proc. SPIE 7018, 70182J (2008).
[CrossRef]

Behr, B. B.

J. T. Meade, B. B. Behr, and A. R. Hajian, “A new high-resolution, high-throughput spectrometer: first experience as applied to Raman spectroscopy,” Proc. SPIE 8374, 83740V (2012).
[CrossRef]

Brady, D.

Brady, D. J.

Choi, E.

Y. S. Han, E. Choi, and M. G. Kang, “Smear removal algorithm using the optical black region for CCD imaging sensors,” IEEE Trans. Consum. Electron. 55, 2287–2293 (2009).
[CrossRef]

Daubechies, I.

I. Daubechies, “The wavelet transform, time-frequency localization, and signal analysis,” IEEE Trans. Inf. Theory 36, 961–1005 (1990).
[CrossRef]

Decker, J. A.

Eberhardt, R.

E. Beckert, K. G. Strassmeier, M. Woche, R. Eberhardt, A. Tunnermann, and M. Andersen, “Waveguide image-slicers for ultrahigh resolution spectroscopy,” Proc. SPIE 7018, 70182J (2008).
[CrossRef]

Gehm, M.

Gehm, M. E.

Golay, M. T. E.

Hajian, A. R.

J. T. Meade, B. B. Behr, and A. R. Hajian, “A new high-resolution, high-throughput spectrometer: first experience as applied to Raman spectroscopy,” Proc. SPIE 8374, 83740V (2012).
[CrossRef]

Han, Y. S.

Y. S. Han, E. Choi, and M. G. Kang, “Smear removal algorithm using the optical black region for CCD imaging sensors,” IEEE Trans. Consum. Electron. 55, 2287–2293 (2009).
[CrossRef]

Harwit, M.

Kang, M. G.

Y. S. Han, E. Choi, and M. G. Kang, “Smear removal algorithm using the optical black region for CCD imaging sensors,” IEEE Trans. Consum. Electron. 55, 2287–2293 (2009).
[CrossRef]

Love, S. P.

S. P. Love, “Programmable matched filter and Hadamard transform hyperspectral imagers based on micro-mirror arrays,” Proc. SPIE 7210, 721007 (2009).
[CrossRef]

McCain, S.

McCain, S. T.

Meade, J. T.

J. T. Meade, B. B. Behr, and A. R. Hajian, “A new high-resolution, high-throughput spectrometer: first experience as applied to Raman spectroscopy,” Proc. SPIE 8374, 83740V (2012).
[CrossRef]

Pitsianis, N.

Pitsianis, N. P.

Potuluri, P.

Sloane, N.

M. Harwit and N. Sloane, Hadamard Transform Optics (Academic, 1979), pp. 57–61.

Strassmeier, K. G.

E. Beckert, K. G. Strassmeier, M. Woche, R. Eberhardt, A. Tunnermann, and M. Andersen, “Waveguide image-slicers for ultrahigh resolution spectroscopy,” Proc. SPIE 7018, 70182J (2008).
[CrossRef]

Sullivan, M. E.

Suto, H.

Takami, H.

Tunnermann, A.

E. Beckert, K. G. Strassmeier, M. Woche, R. Eberhardt, A. Tunnermann, and M. Andersen, “Waveguide image-slicers for ultrahigh resolution spectroscopy,” Proc. SPIE 7018, 70182J (2008).
[CrossRef]

Wagadarikar, A. A.

Wang, Y.

Woche, M.

E. Beckert, K. G. Strassmeier, M. Woche, R. Eberhardt, A. Tunnermann, and M. Andersen, “Waveguide image-slicers for ultrahigh resolution spectroscopy,” Proc. SPIE 7018, 70182J (2008).
[CrossRef]

Appl. Opt. (4)

Appl. Spectrosc. (1)

IEEE Trans. Consum. Electron. (1)

Y. S. Han, E. Choi, and M. G. Kang, “Smear removal algorithm using the optical black region for CCD imaging sensors,” IEEE Trans. Consum. Electron. 55, 2287–2293 (2009).
[CrossRef]

IEEE Trans. Inf. Theory (1)

I. Daubechies, “The wavelet transform, time-frequency localization, and signal analysis,” IEEE Trans. Inf. Theory 36, 961–1005 (1990).
[CrossRef]

J. Opt. Soc. Am. (1)

Proc. SPIE (3)

S. P. Love, “Programmable matched filter and Hadamard transform hyperspectral imagers based on micro-mirror arrays,” Proc. SPIE 7210, 721007 (2009).
[CrossRef]

J. T. Meade, B. B. Behr, and A. R. Hajian, “A new high-resolution, high-throughput spectrometer: first experience as applied to Raman spectroscopy,” Proc. SPIE 8374, 83740V (2012).
[CrossRef]

E. Beckert, K. G. Strassmeier, M. Woche, R. Eberhardt, A. Tunnermann, and M. Andersen, “Waveguide image-slicers for ultrahigh resolution spectroscopy,” Proc. SPIE 7018, 70182J (2008).
[CrossRef]

Other (1)

M. Harwit and N. Sloane, Hadamard Transform Optics (Academic, 1979), pp. 57–61.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Schematic of a traditional grating spectrometer. (b) Schematic of 2D slit array (order=3). (c) Schematic of 2D slit-array HT spectrometer.

Fig. 2.
Fig. 2.

Impaction of mask errors. (a) Sub-slit width error, (b) sub-slit position error in dispersive (column) direction, and (c) sub-slit height and position error in perpendicular dispersive (row) direction.

Fig. 3.
Fig. 3.

Comparison between the reconstructed spectrums from (a) 2D silicon-slit-array used in lithographic exposure mask made by laser phototypesetting technology and (b) another 2D silicon-slit-array used in lithographic exposure mask made by e-beam direct writing technology.

Fig. 4.
Fig. 4.

(a) 2D-coded apertures (cyclic-S matrix code with order 15) and (b) Spectrum detected by the spectrometer with a conventional single slit and a 15*15-coded aperture. (c) Peak intensities at 546 nm in the 50 detections of an Hg lamp.

Fig. 5.
Fig. 5.

(a) Smear noise on the CCD detector. (b) Side-effect caused by smear noise in the decoding spectrum.

Fig. 6.
Fig. 6.

(a) Signals on CCD before removal of smear noise. (b) Signals on CCD after implementing the removal algorithm. (c) Spectral distribution of the fifth row of the apertures before smear correction (curve A) and after smear correction (curve B). (d) The intensities of one pixel on the detector before and after the smear correction.

Tables (1)

Tables Icon

Table 1. Standard Deviation of the Pixel Intensities Before and After the Smear Correction

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

[110101011][η1η2η3]=[ψ1ψ2ψ3].
Wη=ψ.
η=Wψ.
[η1η2η3]=[1+ε1101+ε201011][ϕλ1ϕλ2ϕλ3]=[η1+ε1ϕλ1η2+ε2ϕλ1η3]
{δϕλ1=12(ε1+ε2)ϕλ1δϕλ2=12(ε1ε2)ϕλ1δϕλ3=12(ε1+ε2)ϕλ1.
{δϕλ1=12(ϕλ1+μa1+ϕλ1+μa2)δϕλ2=12(ϕλ1+μa1ϕλ1+μa2)δϕλ3=12(ϕλ1+μa1+ϕλ1+μa2).
Wη+ε=ϕ.
η=η+Wε.

Metrics