Abstract

A method for active control of the spatial profile of a laser beam using adaptive thermal lensing is described. A segmented electrical heater was used to generate thermal gradients across a transmissive optical element, resulting in a controllable thermal lens. The segmented heater also allows the generation of cylindrical lenses, and provides the capability to steer the beam in both horizontal and vertical planes. Using this device as an actuator, a feedback control loop was developed to stabilize the beam size and position.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Foster and L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys. 41, 3656–3663 (1970).
    [CrossRef]
  2. C. E. Greninger, “Thermally induced wave-front distortions in laser windows,” Appl. Opt. 25, 2474–2475 (1986).
    [CrossRef]
  3. P. Hello and J.-Y. Vinet, “Analytical models of transient thermoelastic deformations of mirrors heated by high power cw laser beams,” J. Phys. 51, 2243–2261 (1990).
    [CrossRef]
  4. M. A. Arain, W. Z. Korth, L. F. Williams, R. M. Martin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Adaptive control of modal properties of optical beams using photothermal effects,” Opt. Express 18, 2767–2781 (2010).
    [CrossRef]
  5. Z. G. Yang, H. Q. Chen, J. F. Chen, and L. Wang, “Investigation of solid-state lasers aberration compensation using an intra-cavity adaptive optic mirror,” Proc. SPIE 6279, 62796R (2007).
    [CrossRef]
  6. C. S. Long, P. W. Loveday, and A. Forbes, “A piezoelectric deformable mirror for intra-cavity laser adaptive optics,” Proc. SPIE 6930, 69300Y (2008).
    [CrossRef]
  7. S. Piehler, B. Weichelt, A. Voss, M. A. Abdou, and T. Graf, “Active mirrors for intra-cavity compensation of the aspherical thermal lens in thin-disk lasers,” Proc. SPIE 8236, 82360J (2012).
    [CrossRef]
  8. R. Schmiedl, “Adaptive optics for CO2 laser material processing,” in 2nd International Workshop on Adaptive Optics for Industry and Medicine (World Scientific Publishing, 2000), pp. 32–36.
  9. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979).
    [CrossRef]
  10. D. P. Jablonowski and S. H. Lee, “A coherent optical feedback system for optical information processing,” Appl. Phys. 8, 51–58 (1975).
    [CrossRef]
  11. T. L. Kelly, A. F. Naumov, M. Y. Loktev, M. A. Rakhmatulin, and O. A. Zayakin, “Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses,” Opt. Commun. 181, 295–301 (2000).
    [CrossRef]
  12. G. M. Harry, for the LIGO Scientific Collaboration, “Advanced LIGO: the next generation of gravitational wave detectors,” Class. Quantum Grav. 27, 084006 (2010).
    [CrossRef]
  13. L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
    [CrossRef]
  14. M. A. Arain, “A note on substrate thermal lensing in the input mode cleaner,” (2007). https://dcc.ligo.org/public/0027/T070202/000/T070202-00.pdf .
  15. D. Michel, T. Graf, H. J. Glur, W. Lüthy, and H. P. Weber, “Thermo-optically driven adaptive mirror for laser applications,” Appl. Phys. B 79, 721–724 (2004).
    [CrossRef]
  16. M. A. Arain, V. Quetschke, J. Gleason, L. F. Williams, M. Rakhmanov, J. Lee, R. J. Cruz, G. Mueller, D. B. Tanner, and D. H. Reitze, “Adaptive beam shaping by controlled thermal lensing in optical elements,” Appl. Opt. 46, 2153–2165 (2007).
    [CrossRef]
  17. R. Lawrence, D. Ottaway, M. Zucker, and P. Fritschel, “Active correction of thermal lensing through external radiative thermal actuation,” Opt. Lett. 29, 2635–2637 (2004).
    [CrossRef]
  18. J. Schwarz, M. Geissel, P. Rambo, J. Porter, D. Headley, and M. Ramsey, “Development of a variable focal length concave mirror for on-shot thermal lens correction in rod amplifiers,” Opt. Express 14, 10957–10969 (2006).
    [CrossRef]
  19. Product of Allied Vision Technologies, model number gc780, working at mono 8 mode.
  20. E. Morrison, D. I. Robertson, H. Ward, and B. J. Meers, “Automatic alignment of optical interferometers,” Appl. Opt. 33, 5041–5049 (1994).
    [CrossRef]
  21. G. Mueller, Q. Shu, R. Adhikari, D. B. Tanner, D. Reitze, D. Sigg, N. Mavalvala, and J. Camp, “Determination and optimization of mode matching into optical cavities by heterodyne detection,” Opt. Lett. 25, 266–268 (2000).
    [CrossRef]

2012 (1)

S. Piehler, B. Weichelt, A. Voss, M. A. Abdou, and T. Graf, “Active mirrors for intra-cavity compensation of the aspherical thermal lens in thin-disk lasers,” Proc. SPIE 8236, 82360J (2012).
[CrossRef]

2011 (1)

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
[CrossRef]

2010 (2)

G. M. Harry, for the LIGO Scientific Collaboration, “Advanced LIGO: the next generation of gravitational wave detectors,” Class. Quantum Grav. 27, 084006 (2010).
[CrossRef]

M. A. Arain, W. Z. Korth, L. F. Williams, R. M. Martin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Adaptive control of modal properties of optical beams using photothermal effects,” Opt. Express 18, 2767–2781 (2010).
[CrossRef]

2008 (1)

C. S. Long, P. W. Loveday, and A. Forbes, “A piezoelectric deformable mirror for intra-cavity laser adaptive optics,” Proc. SPIE 6930, 69300Y (2008).
[CrossRef]

2007 (2)

Z. G. Yang, H. Q. Chen, J. F. Chen, and L. Wang, “Investigation of solid-state lasers aberration compensation using an intra-cavity adaptive optic mirror,” Proc. SPIE 6279, 62796R (2007).
[CrossRef]

M. A. Arain, V. Quetschke, J. Gleason, L. F. Williams, M. Rakhmanov, J. Lee, R. J. Cruz, G. Mueller, D. B. Tanner, and D. H. Reitze, “Adaptive beam shaping by controlled thermal lensing in optical elements,” Appl. Opt. 46, 2153–2165 (2007).
[CrossRef]

2006 (1)

2004 (2)

R. Lawrence, D. Ottaway, M. Zucker, and P. Fritschel, “Active correction of thermal lensing through external radiative thermal actuation,” Opt. Lett. 29, 2635–2637 (2004).
[CrossRef]

D. Michel, T. Graf, H. J. Glur, W. Lüthy, and H. P. Weber, “Thermo-optically driven adaptive mirror for laser applications,” Appl. Phys. B 79, 721–724 (2004).
[CrossRef]

2000 (2)

T. L. Kelly, A. F. Naumov, M. Y. Loktev, M. A. Rakhmatulin, and O. A. Zayakin, “Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses,” Opt. Commun. 181, 295–301 (2000).
[CrossRef]

G. Mueller, Q. Shu, R. Adhikari, D. B. Tanner, D. Reitze, D. Sigg, N. Mavalvala, and J. Camp, “Determination and optimization of mode matching into optical cavities by heterodyne detection,” Opt. Lett. 25, 266–268 (2000).
[CrossRef]

1994 (1)

1990 (1)

P. Hello and J.-Y. Vinet, “Analytical models of transient thermoelastic deformations of mirrors heated by high power cw laser beams,” J. Phys. 51, 2243–2261 (1990).
[CrossRef]

1986 (1)

1979 (1)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979).
[CrossRef]

1975 (1)

D. P. Jablonowski and S. H. Lee, “A coherent optical feedback system for optical information processing,” Appl. Phys. 8, 51–58 (1975).
[CrossRef]

1970 (1)

J. D. Foster and L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys. 41, 3656–3663 (1970).
[CrossRef]

Abdou, M. A.

S. Piehler, B. Weichelt, A. Voss, M. A. Abdou, and T. Graf, “Active mirrors for intra-cavity compensation of the aspherical thermal lens in thin-disk lasers,” Proc. SPIE 8236, 82360J (2012).
[CrossRef]

Adhikari, R.

Arain, M. A.

Bogan, C.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
[CrossRef]

Camp, J.

Chen, H. Q.

Z. G. Yang, H. Q. Chen, J. F. Chen, and L. Wang, “Investigation of solid-state lasers aberration compensation using an intra-cavity adaptive optic mirror,” Proc. SPIE 6279, 62796R (2007).
[CrossRef]

Chen, J. F.

Z. G. Yang, H. Q. Chen, J. F. Chen, and L. Wang, “Investigation of solid-state lasers aberration compensation using an intra-cavity adaptive optic mirror,” Proc. SPIE 6279, 62796R (2007).
[CrossRef]

Cruz, R. J.

Forbes, A.

C. S. Long, P. W. Loveday, and A. Forbes, “A piezoelectric deformable mirror for intra-cavity laser adaptive optics,” Proc. SPIE 6930, 69300Y (2008).
[CrossRef]

Foster, J. D.

J. D. Foster and L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys. 41, 3656–3663 (1970).
[CrossRef]

Frede, M.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
[CrossRef]

Fritschel, P.

Geissel, M.

Gleason, J.

Glur, H. J.

D. Michel, T. Graf, H. J. Glur, W. Lüthy, and H. P. Weber, “Thermo-optically driven adaptive mirror for laser applications,” Appl. Phys. B 79, 721–724 (2004).
[CrossRef]

Graf, T.

S. Piehler, B. Weichelt, A. Voss, M. A. Abdou, and T. Graf, “Active mirrors for intra-cavity compensation of the aspherical thermal lens in thin-disk lasers,” Proc. SPIE 8236, 82360J (2012).
[CrossRef]

D. Michel, T. Graf, H. J. Glur, W. Lüthy, and H. P. Weber, “Thermo-optically driven adaptive mirror for laser applications,” Appl. Phys. B 79, 721–724 (2004).
[CrossRef]

Greninger, C. E.

Harry, G. M.

G. M. Harry, for the LIGO Scientific Collaboration, “Advanced LIGO: the next generation of gravitational wave detectors,” Class. Quantum Grav. 27, 084006 (2010).
[CrossRef]

Headley, D.

Hello, P.

P. Hello and J.-Y. Vinet, “Analytical models of transient thermoelastic deformations of mirrors heated by high power cw laser beams,” J. Phys. 51, 2243–2261 (1990).
[CrossRef]

Jablonowski, D. P.

D. P. Jablonowski and S. H. Lee, “A coherent optical feedback system for optical information processing,” Appl. Phys. 8, 51–58 (1975).
[CrossRef]

Kelly, T. L.

T. L. Kelly, A. F. Naumov, M. Y. Loktev, M. A. Rakhmatulin, and O. A. Zayakin, “Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses,” Opt. Commun. 181, 295–301 (2000).
[CrossRef]

Kluzik, R.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
[CrossRef]

Korth, W. Z.

Kracht, D.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
[CrossRef]

Kwee, P.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
[CrossRef]

Lawrence, R.

Lee, J.

Lee, S. H.

D. P. Jablonowski and S. H. Lee, “A coherent optical feedback system for optical information processing,” Appl. Phys. 8, 51–58 (1975).
[CrossRef]

Loktev, M. Y.

T. L. Kelly, A. F. Naumov, M. Y. Loktev, M. A. Rakhmatulin, and O. A. Zayakin, “Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses,” Opt. Commun. 181, 295–301 (2000).
[CrossRef]

Long, C. S.

C. S. Long, P. W. Loveday, and A. Forbes, “A piezoelectric deformable mirror for intra-cavity laser adaptive optics,” Proc. SPIE 6930, 69300Y (2008).
[CrossRef]

Loveday, P. W.

C. S. Long, P. W. Loveday, and A. Forbes, “A piezoelectric deformable mirror for intra-cavity laser adaptive optics,” Proc. SPIE 6930, 69300Y (2008).
[CrossRef]

Lüthy, W.

D. Michel, T. Graf, H. J. Glur, W. Lüthy, and H. P. Weber, “Thermo-optically driven adaptive mirror for laser applications,” Appl. Phys. B 79, 721–724 (2004).
[CrossRef]

Martin, R. M.

Mavalvala, N.

Meers, B. J.

Michel, D.

D. Michel, T. Graf, H. J. Glur, W. Lüthy, and H. P. Weber, “Thermo-optically driven adaptive mirror for laser applications,” Appl. Phys. B 79, 721–724 (2004).
[CrossRef]

Morrison, E.

Mueller, G.

Naumov, A. F.

T. L. Kelly, A. F. Naumov, M. Y. Loktev, M. A. Rakhmatulin, and O. A. Zayakin, “Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses,” Opt. Commun. 181, 295–301 (2000).
[CrossRef]

Neumann, J.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
[CrossRef]

Osterink, L. M.

J. D. Foster and L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys. 41, 3656–3663 (1970).
[CrossRef]

Ottaway, D.

Piehler, S.

S. Piehler, B. Weichelt, A. Voss, M. A. Abdou, and T. Graf, “Active mirrors for intra-cavity compensation of the aspherical thermal lens in thin-disk lasers,” Proc. SPIE 8236, 82360J (2012).
[CrossRef]

Poeld, J.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
[CrossRef]

Porter, J.

Puncken, O.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
[CrossRef]

Quetschke, V.

Rakhmanov, M.

Rakhmatulin, M. A.

T. L. Kelly, A. F. Naumov, M. Y. Loktev, M. A. Rakhmatulin, and O. A. Zayakin, “Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses,” Opt. Commun. 181, 295–301 (2000).
[CrossRef]

Rambo, P.

Ramsey, M.

Reitze, D.

Reitze, D. H.

Robertson, D. I.

Sato, S.

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979).
[CrossRef]

Schmiedl, R.

R. Schmiedl, “Adaptive optics for CO2 laser material processing,” in 2nd International Workshop on Adaptive Optics for Industry and Medicine (World Scientific Publishing, 2000), pp. 32–36.

Schwarz, J.

Shu, Q.

Sigg, D.

Tanner, D. B.

Veltkamp, C.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
[CrossRef]

Vinet, J.-Y.

P. Hello and J.-Y. Vinet, “Analytical models of transient thermoelastic deformations of mirrors heated by high power cw laser beams,” J. Phys. 51, 2243–2261 (1990).
[CrossRef]

Voss, A.

S. Piehler, B. Weichelt, A. Voss, M. A. Abdou, and T. Graf, “Active mirrors for intra-cavity compensation of the aspherical thermal lens in thin-disk lasers,” Proc. SPIE 8236, 82360J (2012).
[CrossRef]

Wang, L.

Z. G. Yang, H. Q. Chen, J. F. Chen, and L. Wang, “Investigation of solid-state lasers aberration compensation using an intra-cavity adaptive optic mirror,” Proc. SPIE 6279, 62796R (2007).
[CrossRef]

Ward, H.

Weber, H. P.

D. Michel, T. Graf, H. J. Glur, W. Lüthy, and H. P. Weber, “Thermo-optically driven adaptive mirror for laser applications,” Appl. Phys. B 79, 721–724 (2004).
[CrossRef]

Weichelt, B.

S. Piehler, B. Weichelt, A. Voss, M. A. Abdou, and T. Graf, “Active mirrors for intra-cavity compensation of the aspherical thermal lens in thin-disk lasers,” Proc. SPIE 8236, 82360J (2012).
[CrossRef]

Wessels, P.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
[CrossRef]

Williams, L. F.

Willke, B.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
[CrossRef]

Winkelmann, L.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
[CrossRef]

Yang, Z. G.

Z. G. Yang, H. Q. Chen, J. F. Chen, and L. Wang, “Investigation of solid-state lasers aberration compensation using an intra-cavity adaptive optic mirror,” Proc. SPIE 6279, 62796R (2007).
[CrossRef]

Zayakin, O. A.

T. L. Kelly, A. F. Naumov, M. Y. Loktev, M. A. Rakhmatulin, and O. A. Zayakin, “Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses,” Opt. Commun. 181, 295–301 (2000).
[CrossRef]

Zucker, M.

Appl. Opt. (3)

Appl. Phys. (1)

D. P. Jablonowski and S. H. Lee, “A coherent optical feedback system for optical information processing,” Appl. Phys. 8, 51–58 (1975).
[CrossRef]

Appl. Phys. B (2)

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102, 529–538 (2011).
[CrossRef]

D. Michel, T. Graf, H. J. Glur, W. Lüthy, and H. P. Weber, “Thermo-optically driven adaptive mirror for laser applications,” Appl. Phys. B 79, 721–724 (2004).
[CrossRef]

Class. Quantum Grav. (1)

G. M. Harry, for the LIGO Scientific Collaboration, “Advanced LIGO: the next generation of gravitational wave detectors,” Class. Quantum Grav. 27, 084006 (2010).
[CrossRef]

J. Appl. Phys. (1)

J. D. Foster and L. M. Osterink, “Thermal effects in a Nd:YAG laser,” J. Appl. Phys. 41, 3656–3663 (1970).
[CrossRef]

J. Phys. (1)

P. Hello and J.-Y. Vinet, “Analytical models of transient thermoelastic deformations of mirrors heated by high power cw laser beams,” J. Phys. 51, 2243–2261 (1990).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979).
[CrossRef]

Opt. Commun. (1)

T. L. Kelly, A. F. Naumov, M. Y. Loktev, M. A. Rakhmatulin, and O. A. Zayakin, “Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses,” Opt. Commun. 181, 295–301 (2000).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Proc. SPIE (3)

Z. G. Yang, H. Q. Chen, J. F. Chen, and L. Wang, “Investigation of solid-state lasers aberration compensation using an intra-cavity adaptive optic mirror,” Proc. SPIE 6279, 62796R (2007).
[CrossRef]

C. S. Long, P. W. Loveday, and A. Forbes, “A piezoelectric deformable mirror for intra-cavity laser adaptive optics,” Proc. SPIE 6930, 69300Y (2008).
[CrossRef]

S. Piehler, B. Weichelt, A. Voss, M. A. Abdou, and T. Graf, “Active mirrors for intra-cavity compensation of the aspherical thermal lens in thin-disk lasers,” Proc. SPIE 8236, 82360J (2012).
[CrossRef]

Other (3)

R. Schmiedl, “Adaptive optics for CO2 laser material processing,” in 2nd International Workshop on Adaptive Optics for Industry and Medicine (World Scientific Publishing, 2000), pp. 32–36.

Product of Allied Vision Technologies, model number gc780, working at mono 8 mode.

M. A. Arain, “A note on substrate thermal lensing in the input mode cleaner,” (2007). https://dcc.ligo.org/public/0027/T070202/000/T070202-00.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Conceptual design of the thermal compensating system. The heated compensation plate is used to compensate the laser-induced thermal lens.

Fig. 2.
Fig. 2.

Design of the adaptive optic. The SF57 glass is heated by four independent heaters to produce the required thermal profile.

Fig. 3.
Fig. 3.

Simplified experimental setup of the compensating system. Both the aberrator and compensator are FSHs. The aberrator was used to emulate a laser heating-induced thermal lens. A feedback system was employed to drive the heaters in the compensator such as to maintain the original beam parameters, as measured at the CCD.

Fig. 4.
Fig. 4.

Transfer function of input signals V(t)=5+0.3sin(2πft)V on the labeled heating element to beam spot width (left) and centroid position (right). Only the transfer functions from each actuator to its primary actuation axis are shown.

Fig. 5.
Fig. 5.

Temperature profile of the aberrator under the symmetric (left) and astigmatic (right) heating conditions.

Fig. 6.
Fig. 6.

Time series of the measured beam parameters while the beam-shaping feedback loop was closed. Impulsive beam aberrations were applied at 90 and 860 s.

Fig. 7.
Fig. 7.

Time series of the measured beam parameters while the beam-shaping feedback loop was closed, for astigmatic aberrations. Impulsive astigmatic beam aberrations were applied at 420, 1800, and 2450 s.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

[ΔwHΔpHΔwVΔpV]=[M11M12M13M14M21M22M23M24M31M32M33M34M41M42M43M44][ΔVleftΔVrightΔVtopΔVbottom],

Metrics