Abstract

Plasmonic nanostructures enable microscopic optical manipulation such as light trapping in photonic devices. However, integration of embedded nanostructures into photonic devices has been limited by tractability of nanoscale and microscale descriptions in device architectures. This work uses a linear algebraic model to distinguish geometric optical responses of nanoparticles integrated into dielectric substrates interacting with macroscopic back-reflectors from absorptive and nonlinear plasmonic effects. Measured transmission, reflection, and attenuation (losses) from ceramic and polymer composites supporting two- and three-dimensional distributions of gold nanoparticles, respectively, are predictable using the model. A unique equilateral display format correlates geometric optical behavior and attenuation to nanoparticle density and back-reflector opacity, allowing intuitive, visual specification of density and opacity necessary to obtain a particular optical performance. The model and display format are useful for facile design and integration of plasmonic nanostructures into photonic devices for light manipulation.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
    [CrossRef]
  2. M. L. Brongersma and V. M. Shalaev, “The case for plasmonics,” Science 328, 440–441 (2010).
    [CrossRef]
  3. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
    [CrossRef]
  4. R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with Angstrom length resolution,” ACS Nano 6, 9237–9246 (2012).
    [CrossRef]
  5. J. R. Lombardi and R. L. Birke, “A unified approach to surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 112, 5605–5617 (2008).
    [CrossRef]
  6. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41, 1578–1586 (2008).
    [CrossRef]
  7. D. K. Roper, W. Ahn, B. Taylor, and A. G. D. Asen, “Enhanced spectral sensing by electromagnetic coupling with localized surface plasmons on subwavelength structures,” IEEE Sens. J. 10, 531–540 (2010).
    [CrossRef]
  8. P. Blake, J. Obermann, B. Harbin, and D. K. Roper, “Enhanced nanoparticle response from coupled dipole excitation for plasmon sensors,” IEEE Sens. J. 11, 3332–3340 (2011).
    [CrossRef]
  9. E. Hecht, Optics, 4th ed. (Addison-Wesley, 2001).
  10. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
    [CrossRef]
  11. S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103, 4212–4217 (1999).
    [CrossRef]
  12. M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2, 136–159 (2008).
    [CrossRef]
  13. D. K. Roper, W. Ahn, and M. Hoepfner, “Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles,” J. Phys. Chem. C 111, 3636–3641 (2007).
    [CrossRef]
  14. D. Kim, S. Hohng, V. Malyarchuk, Y. Yoon, Y. Ahn, K. Yee, J. Park, J. Kim, Q. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
    [CrossRef]
  15. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
  16. M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix method and its applications to electromagnetic scattering by particles: a current perspective,” J. Quant. Spectrosc. Radiat. Transfer 111, 1700–1703 (2010).
    [CrossRef]
  17. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for periodic targets: theory and tests,” J. Opt. Soc. Am. A 25, 2693–2703 (2008).
    [CrossRef]
  18. D. DeJarnette, D. K. Roper, and B. Harbin, “Geometric effects on far-field coupling between multipoles of nanoparticles in square arrays,” J. Opt. Soc. Am. B 29, 88–100 (2012).
    [CrossRef]
  19. J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. A 203, 385–420 (1904).
    [CrossRef]
  20. G. A. Niklasson, C. G. Granqvist, and O. Hunderi, “Effective medium models for the optical properties of inhomogeneous materials,” Appl. Opt. 20, 26–30 (1981).
    [CrossRef]
  21. J. Toudert, L. Simonot, S. Camelio, and D. Babonneau, “Advanced optical effective medium modeling for a single layer of polydisperse ellipsoidal nanoparticles embedded in a homogeneous dielectric medium: Surface plasmon resonances,” Phys. Rev. B 86, 045415 (2012).
  22. E. Pedrueza, J. L. Valdés, V. Chirvony, R. Abargues, J. Hernández-Saz, M. Herrera, S. I. Molina, and J. P. Martínez-Pastor, “Novel method of preparation of gold-nanoparticle-doped TiO2 and SiO2 plasmonic thin films: optical characterization and comparison with Maxwell-Garnett modeling,” Adv. Funct. Mater. 21, 3502–3507 (2011).
    [CrossRef]
  23. K. R. Berry, A. G. Russell, P. A. Blake, and D. K. Roper, “Gold nanoparticles reduced in situ and dispersed in polymer thin films: optical and thermal properties,” Nanotechnology 23, 375703 (2012).
    [CrossRef]
  24. L. N. Hadley and D. M. Dennison, “Reflection and transmission interference filters,” J. Opt. Soc. Am. 37, 451–465 (1947).
    [CrossRef]
  25. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
    [CrossRef]
  26. W. Ahn, B. Taylor, A. G. Dall’ Asén, and D. K. Roper, “Electroless gold island thin films: photoluminescence and thermal transformation to nanoparticle ensembles,” Langmuir 24, 4174–4184 (2008).
    [CrossRef]
  27. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
    [CrossRef]
  28. K. Leosson, T. Rosenzveig, P. G. Hermannsson, and A. Boltasseva, “Compact plasmonic variable optical attenuator,” Opt. Express 16, 15546–15552 (2008).
    [CrossRef]
  29. P. O. Caffrey, B. K. Nayak, and M. C. Gupta, “Ultrafast laser-induced microstructure/nanostructure replication and optical properties,” Appl. Opt. 51, 604–609 (2012).
    [CrossRef]
  30. V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Optical properties of silicon light trapping structures for photovoltaics,” Sol. Energ. Mat. Sol. C. 94, 2251–2257 (2010).
    [CrossRef]
  31. A. Curry, G. Nusz, A. Chilkoti, and A. Wax, “Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield micro-spectroscopy,” Opt. Express 13, 2668–2677 (2005).
    [CrossRef]
  32. G. G. Jang, M. E. Hawkridge, and D. K. Roper, “Silver disposition and dynamics during electroless metal thin film synthesis,” J. Mater. Chem. 22, 21942–21953 (2012).
    [CrossRef]
  33. J. Y. Kwon, D. H. Lee, M. Chitambar, S. Maldonado, A. Tuteja, and A. Boukai, “High efficiency thin upgraded metallurgical-grade silicon solar cells on flexible substrates,” Nano Lett. 12, 5143–5147 (2012).
    [CrossRef]
  34. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).
  35. M. Ploschner, T. Čižmár, M. Mazilu, A. Di Falco, and K. Dholakia, “Bidirectional optical sorting of gold nanoparticles,” Nano Lett. 12, 1923–1927 (2012).
    [CrossRef]
  36. H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).
    [CrossRef]
  37. L. Shi, Z. Zhou, and B. Tang, “Full-band absorption enhancement in ultrathin-film solar cells through the excitation of multiresonant guided modes,” Appl. Opt. 51, 2436–2440 (2012).
    [CrossRef]
  38. D. C. Kohlgraf-Owens and P. G. Kik, “Numerical study of surface plasmon enhanced nonlinear absorption and refraction,” Opt. Express 16, 10823–10834 (2008).
    [CrossRef]
  39. W. Ahn, P. Blake, J. Shultz, M. E. Ware, and D. K. Roper, “Fabrication of regular arrays of gold nanospheres by thermal transformation of electroless-plated films,” J. Vac. Sci. Technol. B 28, 638–642 (2010).
    [CrossRef]
  40. H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430–432 (2007).
    [CrossRef]
  41. J. R. Dunklin, G. T. Forcherio, K. R. Berry, and D. K. Roper, “Asymmetric reduction of gold nanoparticles into thermoplasmonic polydimethylsiloxane thin films,” ACS Appl. Mater. Interfaces, doi: 10.1021/am4018785 (to be published, 2013).
    [CrossRef]
  42. T. Sannomiya, C. Hafner, and J. Vörös, “Shape-dependent sensitivity of single plasmonic nanoparticles for biosensing,” J. Biomed. Opt. 14, 064027 (2009).
    [CrossRef]
  43. “Next generation solar cells: trapping sunlight with microbeads,” Apollon Research Magazine, 2013. Available at http://www.apollon.uio.no/english/articles/2013/trapping-sunlight.html
  44. M. Hall, “EMPA announces 20.4% efficient thin film CIGS-on-polymer cell,” PV Magazine, 2013. Available at http://www.pv-magazine.com/news/details/beitrag/empa-announces-204-efficient-thin-film-cigs-on-polymer-cell_100009893/#axzz2JTvoRbi6 .
  45. G. Rostami, M. Shahabadi, A. Afzali Kusha, and A. Rostami, “Nanoscale all-optical plasmonic switching using electromagnetically induced transparency,” Appl. Opt. 51, 5019–5027 (2012).
    [CrossRef]
  46. J. Kao, P. Bai, V. P. Chuang, Z. Jiang, P. Ercius, and T. Xu, “Nanoparticle assemblies in thin films of supramolecular nanocomposites,” Nano Lett. 12, 2610–2618 (2012).
    [CrossRef]

2012

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with Angstrom length resolution,” ACS Nano 6, 9237–9246 (2012).
[CrossRef]

J. Toudert, L. Simonot, S. Camelio, and D. Babonneau, “Advanced optical effective medium modeling for a single layer of polydisperse ellipsoidal nanoparticles embedded in a homogeneous dielectric medium: Surface plasmon resonances,” Phys. Rev. B 86, 045415 (2012).

K. R. Berry, A. G. Russell, P. A. Blake, and D. K. Roper, “Gold nanoparticles reduced in situ and dispersed in polymer thin films: optical and thermal properties,” Nanotechnology 23, 375703 (2012).
[CrossRef]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[CrossRef]

G. G. Jang, M. E. Hawkridge, and D. K. Roper, “Silver disposition and dynamics during electroless metal thin film synthesis,” J. Mater. Chem. 22, 21942–21953 (2012).
[CrossRef]

J. Y. Kwon, D. H. Lee, M. Chitambar, S. Maldonado, A. Tuteja, and A. Boukai, “High efficiency thin upgraded metallurgical-grade silicon solar cells on flexible substrates,” Nano Lett. 12, 5143–5147 (2012).
[CrossRef]

M. Ploschner, T. Čižmár, M. Mazilu, A. Di Falco, and K. Dholakia, “Bidirectional optical sorting of gold nanoparticles,” Nano Lett. 12, 1923–1927 (2012).
[CrossRef]

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).
[CrossRef]

J. Kao, P. Bai, V. P. Chuang, Z. Jiang, P. Ercius, and T. Xu, “Nanoparticle assemblies in thin films of supramolecular nanocomposites,” Nano Lett. 12, 2610–2618 (2012).
[CrossRef]

D. DeJarnette, D. K. Roper, and B. Harbin, “Geometric effects on far-field coupling between multipoles of nanoparticles in square arrays,” J. Opt. Soc. Am. B 29, 88–100 (2012).
[CrossRef]

P. O. Caffrey, B. K. Nayak, and M. C. Gupta, “Ultrafast laser-induced microstructure/nanostructure replication and optical properties,” Appl. Opt. 51, 604–609 (2012).
[CrossRef]

L. Shi, Z. Zhou, and B. Tang, “Full-band absorption enhancement in ultrathin-film solar cells through the excitation of multiresonant guided modes,” Appl. Opt. 51, 2436–2440 (2012).
[CrossRef]

G. Rostami, M. Shahabadi, A. Afzali Kusha, and A. Rostami, “Nanoscale all-optical plasmonic switching using electromagnetically induced transparency,” Appl. Opt. 51, 5019–5027 (2012).
[CrossRef]

2011

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[CrossRef]

E. Pedrueza, J. L. Valdés, V. Chirvony, R. Abargues, J. Hernández-Saz, M. Herrera, S. I. Molina, and J. P. Martínez-Pastor, “Novel method of preparation of gold-nanoparticle-doped TiO2 and SiO2 plasmonic thin films: optical characterization and comparison with Maxwell-Garnett modeling,” Adv. Funct. Mater. 21, 3502–3507 (2011).
[CrossRef]

P. Blake, J. Obermann, B. Harbin, and D. K. Roper, “Enhanced nanoparticle response from coupled dipole excitation for plasmon sensors,” IEEE Sens. J. 11, 3332–3340 (2011).
[CrossRef]

2010

D. K. Roper, W. Ahn, B. Taylor, and A. G. D. Asen, “Enhanced spectral sensing by electromagnetic coupling with localized surface plasmons on subwavelength structures,” IEEE Sens. J. 10, 531–540 (2010).
[CrossRef]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

M. L. Brongersma and V. M. Shalaev, “The case for plasmonics,” Science 328, 440–441 (2010).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef]

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix method and its applications to electromagnetic scattering by particles: a current perspective,” J. Quant. Spectrosc. Radiat. Transfer 111, 1700–1703 (2010).
[CrossRef]

V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Optical properties of silicon light trapping structures for photovoltaics,” Sol. Energ. Mat. Sol. C. 94, 2251–2257 (2010).
[CrossRef]

W. Ahn, P. Blake, J. Shultz, M. E. Ware, and D. K. Roper, “Fabrication of regular arrays of gold nanospheres by thermal transformation of electroless-plated films,” J. Vac. Sci. Technol. B 28, 638–642 (2010).
[CrossRef]

2009

T. Sannomiya, C. Hafner, and J. Vörös, “Shape-dependent sensitivity of single plasmonic nanoparticles for biosensing,” J. Biomed. Opt. 14, 064027 (2009).
[CrossRef]

2008

J. R. Lombardi and R. L. Birke, “A unified approach to surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 112, 5605–5617 (2008).
[CrossRef]

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41, 1578–1586 (2008).
[CrossRef]

W. Ahn, B. Taylor, A. G. Dall’ Asén, and D. K. Roper, “Electroless gold island thin films: photoluminescence and thermal transformation to nanoparticle ensembles,” Langmuir 24, 4174–4184 (2008).
[CrossRef]

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2, 136–159 (2008).
[CrossRef]

D. C. Kohlgraf-Owens and P. G. Kik, “Numerical study of surface plasmon enhanced nonlinear absorption and refraction,” Opt. Express 16, 10823–10834 (2008).
[CrossRef]

K. Leosson, T. Rosenzveig, P. G. Hermannsson, and A. Boltasseva, “Compact plasmonic variable optical attenuator,” Opt. Express 16, 15546–15552 (2008).
[CrossRef]

B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for periodic targets: theory and tests,” J. Opt. Soc. Am. A 25, 2693–2703 (2008).
[CrossRef]

2007

D. K. Roper, W. Ahn, and M. Hoepfner, “Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles,” J. Phys. Chem. C 111, 3636–3641 (2007).
[CrossRef]

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430–432 (2007).
[CrossRef]

2005

2003

D. Kim, S. Hohng, V. Malyarchuk, Y. Yoon, Y. Ahn, K. Yee, J. Park, J. Kim, Q. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[CrossRef]

1999

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103, 4212–4217 (1999).
[CrossRef]

1981

1966

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).

1947

1908

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
[CrossRef]

1904

J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. A 203, 385–420 (1904).
[CrossRef]

Abargues, R.

E. Pedrueza, J. L. Valdés, V. Chirvony, R. Abargues, J. Hernández-Saz, M. Herrera, S. I. Molina, and J. P. Martínez-Pastor, “Novel method of preparation of gold-nanoparticle-doped TiO2 and SiO2 plasmonic thin films: optical characterization and comparison with Maxwell-Garnett modeling,” Adv. Funct. Mater. 21, 3502–3507 (2011).
[CrossRef]

Afzali Kusha, A.

Ahn, W.

D. K. Roper, W. Ahn, B. Taylor, and A. G. D. Asen, “Enhanced spectral sensing by electromagnetic coupling with localized surface plasmons on subwavelength structures,” IEEE Sens. J. 10, 531–540 (2010).
[CrossRef]

W. Ahn, P. Blake, J. Shultz, M. E. Ware, and D. K. Roper, “Fabrication of regular arrays of gold nanospheres by thermal transformation of electroless-plated films,” J. Vac. Sci. Technol. B 28, 638–642 (2010).
[CrossRef]

W. Ahn, B. Taylor, A. G. Dall’ Asén, and D. K. Roper, “Electroless gold island thin films: photoluminescence and thermal transformation to nanoparticle ensembles,” Langmuir 24, 4174–4184 (2008).
[CrossRef]

D. K. Roper, W. Ahn, and M. Hoepfner, “Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles,” J. Phys. Chem. C 111, 3636–3641 (2007).
[CrossRef]

Ahn, Y.

D. Kim, S. Hohng, V. Malyarchuk, Y. Yoon, Y. Ahn, K. Yee, J. Park, J. Kim, Q. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[CrossRef]

Aizpurua, J.

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2, 136–159 (2008).
[CrossRef]

Asen, A. G. D.

D. K. Roper, W. Ahn, B. Taylor, and A. G. D. Asen, “Enhanced spectral sensing by electromagnetic coupling with localized surface plasmons on subwavelength structures,” IEEE Sens. J. 10, 531–540 (2010).
[CrossRef]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef]

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430–432 (2007).
[CrossRef]

Babonneau, D.

J. Toudert, L. Simonot, S. Camelio, and D. Babonneau, “Advanced optical effective medium modeling for a single layer of polydisperse ellipsoidal nanoparticles embedded in a homogeneous dielectric medium: Surface plasmon resonances,” Phys. Rev. B 86, 045415 (2012).

Bai, P.

J. Kao, P. Bai, V. P. Chuang, Z. Jiang, P. Ercius, and T. Xu, “Nanoparticle assemblies in thin films of supramolecular nanocomposites,” Nano Lett. 12, 2610–2618 (2012).
[CrossRef]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

Berry, K. R.

K. R. Berry, A. G. Russell, P. A. Blake, and D. K. Roper, “Gold nanoparticles reduced in situ and dispersed in polymer thin films: optical and thermal properties,” Nanotechnology 23, 375703 (2012).
[CrossRef]

J. R. Dunklin, G. T. Forcherio, K. R. Berry, and D. K. Roper, “Asymmetric reduction of gold nanoparticles into thermoplasmonic polydimethylsiloxane thin films,” ACS Appl. Mater. Interfaces, doi: 10.1021/am4018785 (to be published, 2013).
[CrossRef]

Birke, R. L.

J. R. Lombardi and R. L. Birke, “A unified approach to surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 112, 5605–5617 (2008).
[CrossRef]

Blake, P.

P. Blake, J. Obermann, B. Harbin, and D. K. Roper, “Enhanced nanoparticle response from coupled dipole excitation for plasmon sensors,” IEEE Sens. J. 11, 3332–3340 (2011).
[CrossRef]

W. Ahn, P. Blake, J. Shultz, M. E. Ware, and D. K. Roper, “Fabrication of regular arrays of gold nanospheres by thermal transformation of electroless-plated films,” J. Vac. Sci. Technol. B 28, 638–642 (2010).
[CrossRef]

Blake, P. A.

K. R. Berry, A. G. Russell, P. A. Blake, and D. K. Roper, “Gold nanoparticles reduced in situ and dispersed in polymer thin films: optical and thermal properties,” Nanotechnology 23, 375703 (2012).
[CrossRef]

Boltasseva, A.

Boukai, A.

J. Y. Kwon, D. H. Lee, M. Chitambar, S. Maldonado, A. Tuteja, and A. Boukai, “High efficiency thin upgraded metallurgical-grade silicon solar cells on flexible substrates,” Nano Lett. 12, 5143–5147 (2012).
[CrossRef]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

M. L. Brongersma and V. M. Shalaev, “The case for plasmonics,” Science 328, 440–441 (2010).
[CrossRef]

Bryant, G.

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2, 136–159 (2008).
[CrossRef]

Caffrey, P. O.

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

Camelio, S.

J. Toudert, L. Simonot, S. Camelio, and D. Babonneau, “Advanced optical effective medium modeling for a single layer of polydisperse ellipsoidal nanoparticles embedded in a homogeneous dielectric medium: Surface plasmon resonances,” Phys. Rev. B 86, 045415 (2012).

Chilkoti, A.

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with Angstrom length resolution,” ACS Nano 6, 9237–9246 (2012).
[CrossRef]

A. Curry, G. Nusz, A. Chilkoti, and A. Wax, “Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield micro-spectroscopy,” Opt. Express 13, 2668–2677 (2005).
[CrossRef]

Chirvony, V.

E. Pedrueza, J. L. Valdés, V. Chirvony, R. Abargues, J. Hernández-Saz, M. Herrera, S. I. Molina, and J. P. Martínez-Pastor, “Novel method of preparation of gold-nanoparticle-doped TiO2 and SiO2 plasmonic thin films: optical characterization and comparison with Maxwell-Garnett modeling,” Adv. Funct. Mater. 21, 3502–3507 (2011).
[CrossRef]

Chitambar, M.

J. Y. Kwon, D. H. Lee, M. Chitambar, S. Maldonado, A. Tuteja, and A. Boukai, “High efficiency thin upgraded metallurgical-grade silicon solar cells on flexible substrates,” Nano Lett. 12, 5143–5147 (2012).
[CrossRef]

Chuang, V. P.

J. Kao, P. Bai, V. P. Chuang, Z. Jiang, P. Ercius, and T. Xu, “Nanoparticle assemblies in thin films of supramolecular nanocomposites,” Nano Lett. 12, 2610–2618 (2012).
[CrossRef]

Cižmár, T.

M. Ploschner, T. Čižmár, M. Mazilu, A. Di Falco, and K. Dholakia, “Bidirectional optical sorting of gold nanoparticles,” Nano Lett. 12, 1923–1927 (2012).
[CrossRef]

Curry, A.

Dall’ Asén, A. G.

W. Ahn, B. Taylor, A. G. Dall’ Asén, and D. K. Roper, “Electroless gold island thin films: photoluminescence and thermal transformation to nanoparticle ensembles,” Langmuir 24, 4174–4184 (2008).
[CrossRef]

DeJarnette, D.

Dennison, D. M.

Dholakia, K.

M. Ploschner, T. Čižmár, M. Mazilu, A. Di Falco, and K. Dholakia, “Bidirectional optical sorting of gold nanoparticles,” Nano Lett. 12, 1923–1927 (2012).
[CrossRef]

Di Falco, A.

M. Ploschner, T. Čižmár, M. Mazilu, A. Di Falco, and K. Dholakia, “Bidirectional optical sorting of gold nanoparticles,” Nano Lett. 12, 1923–1927 (2012).
[CrossRef]

Dionne, J. A.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430–432 (2007).
[CrossRef]

Draine, B. T.

Dunklin, J. R.

J. R. Dunklin, G. T. Forcherio, K. R. Berry, and D. K. Roper, “Asymmetric reduction of gold nanoparticles into thermoplasmonic polydimethylsiloxane thin films,” ACS Appl. Mater. Interfaces, doi: 10.1021/am4018785 (to be published, 2013).
[CrossRef]

El-Sayed, I. H.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41, 1578–1586 (2008).
[CrossRef]

El-Sayed, M. A.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41, 1578–1586 (2008).
[CrossRef]

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103, 4212–4217 (1999).
[CrossRef]

Ercius, P.

J. Kao, P. Bai, V. P. Chuang, Z. Jiang, P. Ercius, and T. Xu, “Nanoparticle assemblies in thin films of supramolecular nanocomposites,” Nano Lett. 12, 2610–2618 (2012).
[CrossRef]

Flatau, P. J.

Forcherio, G. T.

J. R. Dunklin, G. T. Forcherio, K. R. Berry, and D. K. Roper, “Asymmetric reduction of gold nanoparticles into thermoplasmonic polydimethylsiloxane thin films,” ACS Appl. Mater. Interfaces, doi: 10.1021/am4018785 (to be published, 2013).
[CrossRef]

Garnett, J. C. M.

J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. A 203, 385–420 (1904).
[CrossRef]

Granqvist, C. G.

Gupta, M. C.

P. O. Caffrey, B. K. Nayak, and M. C. Gupta, “Ultrafast laser-induced microstructure/nanostructure replication and optical properties,” Appl. Opt. 51, 604–609 (2012).
[CrossRef]

V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Optical properties of silicon light trapping structures for photovoltaics,” Sol. Energ. Mat. Sol. C. 94, 2251–2257 (2010).
[CrossRef]

Hadley, L. N.

Hafner, C.

T. Sannomiya, C. Hafner, and J. Vörös, “Shape-dependent sensitivity of single plasmonic nanoparticles for biosensing,” J. Biomed. Opt. 14, 064027 (2009).
[CrossRef]

Harbin, B.

D. DeJarnette, D. K. Roper, and B. Harbin, “Geometric effects on far-field coupling between multipoles of nanoparticles in square arrays,” J. Opt. Soc. Am. B 29, 88–100 (2012).
[CrossRef]

P. Blake, J. Obermann, B. Harbin, and D. K. Roper, “Enhanced nanoparticle response from coupled dipole excitation for plasmon sensors,” IEEE Sens. J. 11, 3332–3340 (2011).
[CrossRef]

Hawkridge, M. E.

G. G. Jang, M. E. Hawkridge, and D. K. Roper, “Silver disposition and dynamics during electroless metal thin film synthesis,” J. Mater. Chem. 22, 21942–21953 (2012).
[CrossRef]

Hecht, E.

E. Hecht, Optics, 4th ed. (Addison-Wesley, 2001).

Hermannsson, P. G.

Hernández-Saz, J.

E. Pedrueza, J. L. Valdés, V. Chirvony, R. Abargues, J. Hernández-Saz, M. Herrera, S. I. Molina, and J. P. Martínez-Pastor, “Novel method of preparation of gold-nanoparticle-doped TiO2 and SiO2 plasmonic thin films: optical characterization and comparison with Maxwell-Garnett modeling,” Adv. Funct. Mater. 21, 3502–3507 (2011).
[CrossRef]

Herrera, M.

E. Pedrueza, J. L. Valdés, V. Chirvony, R. Abargues, J. Hernández-Saz, M. Herrera, S. I. Molina, and J. P. Martínez-Pastor, “Novel method of preparation of gold-nanoparticle-doped TiO2 and SiO2 plasmonic thin films: optical characterization and comparison with Maxwell-Garnett modeling,” Adv. Funct. Mater. 21, 3502–3507 (2011).
[CrossRef]

Hill, R. T.

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with Angstrom length resolution,” ACS Nano 6, 9237–9246 (2012).
[CrossRef]

Hoepfner, M.

D. K. Roper, W. Ahn, and M. Hoepfner, “Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles,” J. Phys. Chem. C 111, 3636–3641 (2007).
[CrossRef]

Hohng, S.

D. Kim, S. Hohng, V. Malyarchuk, Y. Yoon, Y. Ahn, K. Yee, J. Park, J. Kim, Q. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[CrossRef]

Huang, X.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41, 1578–1586 (2008).
[CrossRef]

Hucknall, A.

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with Angstrom length resolution,” ACS Nano 6, 9237–9246 (2012).
[CrossRef]

Hunderi, O.

Iyengar, V. V.

V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Optical properties of silicon light trapping structures for photovoltaics,” Sol. Energ. Mat. Sol. C. 94, 2251–2257 (2010).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).

Jain, P. K.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41, 1578–1586 (2008).
[CrossRef]

Jang, G. G.

G. G. Jang, M. E. Hawkridge, and D. K. Roper, “Silver disposition and dynamics during electroless metal thin film synthesis,” J. Mater. Chem. 22, 21942–21953 (2012).
[CrossRef]

Jiang, Z.

J. Kao, P. Bai, V. P. Chuang, Z. Jiang, P. Ercius, and T. Xu, “Nanoparticle assemblies in thin films of supramolecular nanocomposites,” Nano Lett. 12, 2610–2618 (2012).
[CrossRef]

Jokerst, N. M.

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with Angstrom length resolution,” ACS Nano 6, 9237–9246 (2012).
[CrossRef]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[CrossRef]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

Kao, J.

J. Kao, P. Bai, V. P. Chuang, Z. Jiang, P. Ercius, and T. Xu, “Nanoparticle assemblies in thin films of supramolecular nanocomposites,” Nano Lett. 12, 2610–2618 (2012).
[CrossRef]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[CrossRef]

Kik, P. G.

Kim, D.

D. Kim, S. Hohng, V. Malyarchuk, Y. Yoon, Y. Ahn, K. Yee, J. Park, J. Kim, Q. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[CrossRef]

Kim, J.

D. Kim, S. Hohng, V. Malyarchuk, Y. Yoon, Y. Ahn, K. Yee, J. Park, J. Kim, Q. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[CrossRef]

Kohlgraf-Owens, D. C.

Kwon, J. Y.

J. Y. Kwon, D. H. Lee, M. Chitambar, S. Maldonado, A. Tuteja, and A. Boukai, “High efficiency thin upgraded metallurgical-grade silicon solar cells on flexible substrates,” Nano Lett. 12, 5143–5147 (2012).
[CrossRef]

Lee, D. H.

J. Y. Kwon, D. H. Lee, M. Chitambar, S. Maldonado, A. Tuteja, and A. Boukai, “High efficiency thin upgraded metallurgical-grade silicon solar cells on flexible substrates,” Nano Lett. 12, 5143–5147 (2012).
[CrossRef]

Leosson, K.

Lezec, H. J.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430–432 (2007).
[CrossRef]

Lienau, C.

D. Kim, S. Hohng, V. Malyarchuk, Y. Yoon, Y. Ahn, K. Yee, J. Park, J. Kim, Q. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[CrossRef]

Link, S.

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103, 4212–4217 (1999).
[CrossRef]

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[CrossRef]

Lombardi, J. R.

J. R. Lombardi and R. L. Birke, “A unified approach to surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 112, 5605–5617 (2008).
[CrossRef]

Mackowski, D. W.

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix method and its applications to electromagnetic scattering by particles: a current perspective,” J. Quant. Spectrosc. Radiat. Transfer 111, 1700–1703 (2010).
[CrossRef]

Maldonado, S.

J. Y. Kwon, D. H. Lee, M. Chitambar, S. Maldonado, A. Tuteja, and A. Boukai, “High efficiency thin upgraded metallurgical-grade silicon solar cells on flexible substrates,” Nano Lett. 12, 5143–5147 (2012).
[CrossRef]

Malyarchuk, V.

D. Kim, S. Hohng, V. Malyarchuk, Y. Yoon, Y. Ahn, K. Yee, J. Park, J. Kim, Q. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[CrossRef]

Martínez-Pastor, J. P.

E. Pedrueza, J. L. Valdés, V. Chirvony, R. Abargues, J. Hernández-Saz, M. Herrera, S. I. Molina, and J. P. Martínez-Pastor, “Novel method of preparation of gold-nanoparticle-doped TiO2 and SiO2 plasmonic thin films: optical characterization and comparison with Maxwell-Garnett modeling,” Adv. Funct. Mater. 21, 3502–3507 (2011).
[CrossRef]

Mazilu, M.

M. Ploschner, T. Čižmár, M. Mazilu, A. Di Falco, and K. Dholakia, “Bidirectional optical sorting of gold nanoparticles,” Nano Lett. 12, 1923–1927 (2012).
[CrossRef]

Mie, G.

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
[CrossRef]

Mishchenko, M. I.

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix method and its applications to electromagnetic scattering by particles: a current perspective,” J. Quant. Spectrosc. Radiat. Transfer 111, 1700–1703 (2010).
[CrossRef]

Mock, J. J.

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with Angstrom length resolution,” ACS Nano 6, 9237–9246 (2012).
[CrossRef]

Molina, S. I.

E. Pedrueza, J. L. Valdés, V. Chirvony, R. Abargues, J. Hernández-Saz, M. Herrera, S. I. Molina, and J. P. Martínez-Pastor, “Novel method of preparation of gold-nanoparticle-doped TiO2 and SiO2 plasmonic thin films: optical characterization and comparison with Maxwell-Garnett modeling,” Adv. Funct. Mater. 21, 3502–3507 (2011).
[CrossRef]

Nayak, B. K.

P. O. Caffrey, B. K. Nayak, and M. C. Gupta, “Ultrafast laser-induced microstructure/nanostructure replication and optical properties,” Appl. Opt. 51, 604–609 (2012).
[CrossRef]

V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Optical properties of silicon light trapping structures for photovoltaics,” Sol. Energ. Mat. Sol. C. 94, 2251–2257 (2010).
[CrossRef]

Niklasson, G. A.

Nusz, G.

Obermann, J.

P. Blake, J. Obermann, B. Harbin, and D. K. Roper, “Enhanced nanoparticle response from coupled dipole excitation for plasmon sensors,” IEEE Sens. J. 11, 3332–3340 (2011).
[CrossRef]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[CrossRef]

Park, J.

D. Kim, S. Hohng, V. Malyarchuk, Y. Yoon, Y. Ahn, K. Yee, J. Park, J. Kim, Q. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[CrossRef]

Park, Q.

D. Kim, S. Hohng, V. Malyarchuk, Y. Yoon, Y. Ahn, K. Yee, J. Park, J. Kim, Q. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[CrossRef]

Pedrueza, E.

E. Pedrueza, J. L. Valdés, V. Chirvony, R. Abargues, J. Hernández-Saz, M. Herrera, S. I. Molina, and J. P. Martínez-Pastor, “Novel method of preparation of gold-nanoparticle-doped TiO2 and SiO2 plasmonic thin films: optical characterization and comparison with Maxwell-Garnett modeling,” Adv. Funct. Mater. 21, 3502–3507 (2011).
[CrossRef]

Pelton, M.

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2, 136–159 (2008).
[CrossRef]

Ploschner, M.

M. Ploschner, T. Čižmár, M. Mazilu, A. Di Falco, and K. Dholakia, “Bidirectional optical sorting of gold nanoparticles,” Nano Lett. 12, 1923–1927 (2012).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef]

Roper, D. K.

D. DeJarnette, D. K. Roper, and B. Harbin, “Geometric effects on far-field coupling between multipoles of nanoparticles in square arrays,” J. Opt. Soc. Am. B 29, 88–100 (2012).
[CrossRef]

G. G. Jang, M. E. Hawkridge, and D. K. Roper, “Silver disposition and dynamics during electroless metal thin film synthesis,” J. Mater. Chem. 22, 21942–21953 (2012).
[CrossRef]

K. R. Berry, A. G. Russell, P. A. Blake, and D. K. Roper, “Gold nanoparticles reduced in situ and dispersed in polymer thin films: optical and thermal properties,” Nanotechnology 23, 375703 (2012).
[CrossRef]

P. Blake, J. Obermann, B. Harbin, and D. K. Roper, “Enhanced nanoparticle response from coupled dipole excitation for plasmon sensors,” IEEE Sens. J. 11, 3332–3340 (2011).
[CrossRef]

W. Ahn, P. Blake, J. Shultz, M. E. Ware, and D. K. Roper, “Fabrication of regular arrays of gold nanospheres by thermal transformation of electroless-plated films,” J. Vac. Sci. Technol. B 28, 638–642 (2010).
[CrossRef]

D. K. Roper, W. Ahn, B. Taylor, and A. G. D. Asen, “Enhanced spectral sensing by electromagnetic coupling with localized surface plasmons on subwavelength structures,” IEEE Sens. J. 10, 531–540 (2010).
[CrossRef]

W. Ahn, B. Taylor, A. G. Dall’ Asén, and D. K. Roper, “Electroless gold island thin films: photoluminescence and thermal transformation to nanoparticle ensembles,” Langmuir 24, 4174–4184 (2008).
[CrossRef]

D. K. Roper, W. Ahn, and M. Hoepfner, “Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles,” J. Phys. Chem. C 111, 3636–3641 (2007).
[CrossRef]

J. R. Dunklin, G. T. Forcherio, K. R. Berry, and D. K. Roper, “Asymmetric reduction of gold nanoparticles into thermoplasmonic polydimethylsiloxane thin films,” ACS Appl. Mater. Interfaces, doi: 10.1021/am4018785 (to be published, 2013).
[CrossRef]

Rosenzveig, T.

Rostami, A.

Rostami, G.

Russell, A. G.

K. R. Berry, A. G. Russell, P. A. Blake, and D. K. Roper, “Gold nanoparticles reduced in situ and dispersed in polymer thin films: optical and thermal properties,” Nanotechnology 23, 375703 (2012).
[CrossRef]

Sannomiya, T.

T. Sannomiya, C. Hafner, and J. Vörös, “Shape-dependent sensitivity of single plasmonic nanoparticles for biosensing,” J. Biomed. Opt. 14, 064027 (2009).
[CrossRef]

Santbergen, R.

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).
[CrossRef]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

Shahabadi, M.

Shalaev, V. M.

M. L. Brongersma and V. M. Shalaev, “The case for plasmonics,” Science 328, 440–441 (2010).
[CrossRef]

Shi, L.

Shultz, J.

W. Ahn, P. Blake, J. Shultz, M. E. Ware, and D. K. Roper, “Fabrication of regular arrays of gold nanospheres by thermal transformation of electroless-plated films,” J. Vac. Sci. Technol. B 28, 638–642 (2010).
[CrossRef]

Simonot, L.

J. Toudert, L. Simonot, S. Camelio, and D. Babonneau, “Advanced optical effective medium modeling for a single layer of polydisperse ellipsoidal nanoparticles embedded in a homogeneous dielectric medium: Surface plasmon resonances,” Phys. Rev. B 86, 045415 (2012).

Smets, A. H. M.

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).
[CrossRef]

Smith, D. R.

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with Angstrom length resolution,” ACS Nano 6, 9237–9246 (2012).
[CrossRef]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[CrossRef]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[CrossRef]

Tan, H.

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).
[CrossRef]

Tang, B.

Taylor, B.

D. K. Roper, W. Ahn, B. Taylor, and A. G. D. Asen, “Enhanced spectral sensing by electromagnetic coupling with localized surface plasmons on subwavelength structures,” IEEE Sens. J. 10, 531–540 (2010).
[CrossRef]

W. Ahn, B. Taylor, A. G. Dall’ Asén, and D. K. Roper, “Electroless gold island thin films: photoluminescence and thermal transformation to nanoparticle ensembles,” Langmuir 24, 4174–4184 (2008).
[CrossRef]

Toudert, J.

J. Toudert, L. Simonot, S. Camelio, and D. Babonneau, “Advanced optical effective medium modeling for a single layer of polydisperse ellipsoidal nanoparticles embedded in a homogeneous dielectric medium: Surface plasmon resonances,” Phys. Rev. B 86, 045415 (2012).

Travis, L. D.

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix method and its applications to electromagnetic scattering by particles: a current perspective,” J. Quant. Spectrosc. Radiat. Transfer 111, 1700–1703 (2010).
[CrossRef]

Tuteja, A.

J. Y. Kwon, D. H. Lee, M. Chitambar, S. Maldonado, A. Tuteja, and A. Boukai, “High efficiency thin upgraded metallurgical-grade silicon solar cells on flexible substrates,” Nano Lett. 12, 5143–5147 (2012).
[CrossRef]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[CrossRef]

Valdés, J. L.

E. Pedrueza, J. L. Valdés, V. Chirvony, R. Abargues, J. Hernández-Saz, M. Herrera, S. I. Molina, and J. P. Martínez-Pastor, “Novel method of preparation of gold-nanoparticle-doped TiO2 and SiO2 plasmonic thin films: optical characterization and comparison with Maxwell-Garnett modeling,” Adv. Funct. Mater. 21, 3502–3507 (2011).
[CrossRef]

Vörös, J.

T. Sannomiya, C. Hafner, and J. Vörös, “Shape-dependent sensitivity of single plasmonic nanoparticles for biosensing,” J. Biomed. Opt. 14, 064027 (2009).
[CrossRef]

Ware, M. E.

W. Ahn, P. Blake, J. Shultz, M. E. Ware, and D. K. Roper, “Fabrication of regular arrays of gold nanospheres by thermal transformation of electroless-plated films,” J. Vac. Sci. Technol. B 28, 638–642 (2010).
[CrossRef]

Wax, A.

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

Wolter, S. D.

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with Angstrom length resolution,” ACS Nano 6, 9237–9246 (2012).
[CrossRef]

Xu, T.

J. Kao, P. Bai, V. P. Chuang, Z. Jiang, P. Ercius, and T. Xu, “Nanoparticle assemblies in thin films of supramolecular nanocomposites,” Nano Lett. 12, 2610–2618 (2012).
[CrossRef]

Yee, K.

D. Kim, S. Hohng, V. Malyarchuk, Y. Yoon, Y. Ahn, K. Yee, J. Park, J. Kim, Q. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[CrossRef]

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).

Yoon, Y.

D. Kim, S. Hohng, V. Malyarchuk, Y. Yoon, Y. Ahn, K. Yee, J. Park, J. Kim, Q. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[CrossRef]

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[CrossRef]

Zeman, M.

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).
[CrossRef]

Zhou, Z.

Acc. Chem. Res.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41, 1578–1586 (2008).
[CrossRef]

ACS Nano

R. T. Hill, J. J. Mock, A. Hucknall, S. D. Wolter, N. M. Jokerst, D. R. Smith, and A. Chilkoti, “Plasmon ruler with Angstrom length resolution,” ACS Nano 6, 9237–9246 (2012).
[CrossRef]

Adv. Funct. Mater.

E. Pedrueza, J. L. Valdés, V. Chirvony, R. Abargues, J. Hernández-Saz, M. Herrera, S. I. Molina, and J. P. Martínez-Pastor, “Novel method of preparation of gold-nanoparticle-doped TiO2 and SiO2 plasmonic thin films: optical characterization and comparison with Maxwell-Garnett modeling,” Adv. Funct. Mater. 21, 3502–3507 (2011).
[CrossRef]

Ann. Phys.

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330, 377–445 (1908).
[CrossRef]

Appl. Opt.

IEEE Sens. J.

D. K. Roper, W. Ahn, B. Taylor, and A. G. D. Asen, “Enhanced spectral sensing by electromagnetic coupling with localized surface plasmons on subwavelength structures,” IEEE Sens. J. 10, 531–540 (2010).
[CrossRef]

P. Blake, J. Obermann, B. Harbin, and D. K. Roper, “Enhanced nanoparticle response from coupled dipole excitation for plasmon sensors,” IEEE Sens. J. 11, 3332–3340 (2011).
[CrossRef]

IEEE Trans. Antennas Propag.

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).

J. Biomed. Opt.

T. Sannomiya, C. Hafner, and J. Vörös, “Shape-dependent sensitivity of single plasmonic nanoparticles for biosensing,” J. Biomed. Opt. 14, 064027 (2009).
[CrossRef]

J. Mater. Chem.

G. G. Jang, M. E. Hawkridge, and D. K. Roper, “Silver disposition and dynamics during electroless metal thin film synthesis,” J. Mater. Chem. 22, 21942–21953 (2012).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

J. Phys. Chem. B

S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103, 4212–4217 (1999).
[CrossRef]

J. Phys. Chem. C

D. K. Roper, W. Ahn, and M. Hoepfner, “Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles,” J. Phys. Chem. C 111, 3636–3641 (2007).
[CrossRef]

J. R. Lombardi and R. L. Birke, “A unified approach to surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 112, 5605–5617 (2008).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix method and its applications to electromagnetic scattering by particles: a current perspective,” J. Quant. Spectrosc. Radiat. Transfer 111, 1700–1703 (2010).
[CrossRef]

J. Vac. Sci. Technol. B

W. Ahn, P. Blake, J. Shultz, M. E. Ware, and D. K. Roper, “Fabrication of regular arrays of gold nanospheres by thermal transformation of electroless-plated films,” J. Vac. Sci. Technol. B 28, 638–642 (2010).
[CrossRef]

Langmuir

W. Ahn, B. Taylor, A. G. Dall’ Asén, and D. K. Roper, “Electroless gold island thin films: photoluminescence and thermal transformation to nanoparticle ensembles,” Langmuir 24, 4174–4184 (2008).
[CrossRef]

Laser Photon. Rev.

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2, 136–159 (2008).
[CrossRef]

Nano Lett.

J. Y. Kwon, D. H. Lee, M. Chitambar, S. Maldonado, A. Tuteja, and A. Boukai, “High efficiency thin upgraded metallurgical-grade silicon solar cells on flexible substrates,” Nano Lett. 12, 5143–5147 (2012).
[CrossRef]

M. Ploschner, T. Čižmár, M. Mazilu, A. Di Falco, and K. Dholakia, “Bidirectional optical sorting of gold nanoparticles,” Nano Lett. 12, 1923–1927 (2012).
[CrossRef]

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12, 4070–4076 (2012).
[CrossRef]

J. Kao, P. Bai, V. P. Chuang, Z. Jiang, P. Ercius, and T. Xu, “Nanoparticle assemblies in thin films of supramolecular nanocomposites,” Nano Lett. 12, 2610–2618 (2012).
[CrossRef]

Nanotechnology

K. R. Berry, A. G. Russell, P. A. Blake, and D. K. Roper, “Gold nanoparticles reduced in situ and dispersed in polymer thin films: optical and thermal properties,” Nanotechnology 23, 375703 (2012).
[CrossRef]

Nat. Mater.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef]

Nat. Photonics

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6, 737–748 (2012).
[CrossRef]

Opt. Express

Philos. Trans. R. Soc. A

J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. A 203, 385–420 (1904).
[CrossRef]

Phys. Rev. B

J. Toudert, L. Simonot, S. Camelio, and D. Babonneau, “Advanced optical effective medium modeling for a single layer of polydisperse ellipsoidal nanoparticles embedded in a homogeneous dielectric medium: Surface plasmon resonances,” Phys. Rev. B 86, 045415 (2012).

Phys. Rev. Lett.

D. Kim, S. Hohng, V. Malyarchuk, Y. Yoon, Y. Ahn, K. Yee, J. Park, J. Kim, Q. Park, and C. Lienau, “Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures,” Phys. Rev. Lett. 91, 143901 (2003).
[CrossRef]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[CrossRef]

Science

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430–432 (2007).
[CrossRef]

M. L. Brongersma and V. M. Shalaev, “The case for plasmonics,” Science 328, 440–441 (2010).
[CrossRef]

Sol. Energ. Mat. Sol. C.

V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Optical properties of silicon light trapping structures for photovoltaics,” Sol. Energ. Mat. Sol. C. 94, 2251–2257 (2010).
[CrossRef]

Other

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).

J. R. Dunklin, G. T. Forcherio, K. R. Berry, and D. K. Roper, “Asymmetric reduction of gold nanoparticles into thermoplasmonic polydimethylsiloxane thin films,” ACS Appl. Mater. Interfaces, doi: 10.1021/am4018785 (to be published, 2013).
[CrossRef]

“Next generation solar cells: trapping sunlight with microbeads,” Apollon Research Magazine, 2013. Available at http://www.apollon.uio.no/english/articles/2013/trapping-sunlight.html

M. Hall, “EMPA announces 20.4% efficient thin film CIGS-on-polymer cell,” PV Magazine, 2013. Available at http://www.pv-magazine.com/news/details/beitrag/empa-announces-204-efficient-thin-film-cigs-on-polymer-cell_100009893/#axzz2JTvoRbi6 .

E. Hecht, Optics, 4th ed. (Addison-Wesley, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the classical photon pathways in a two-component system given as a function of its constituent components’ optical properties: transmission (Ti), reflection (Ri), and attenuation (Ai), where i is the nanocomposite (NC) or back-reflector (BR) component. Note that the angular path of RBR does not reflect the assumptions of the derivations, and is purely for illustrative purposes.

Fig. 2.
Fig. 2.

Spectroscopy apparatus for nanocomposite optical characterization. Resonant illumination of a nanocomposite adjacent to a back-reflector results in transmission, measured by a power meter, and reflection, captured by an integrating sphere and measured with a spectrometer.

Fig. 3.
Fig. 3.

Fractional transmission (T), reflection (R), and attenuation (A) for AuNP dispersions adjacent to back-reflectors (triangles) with 0.0922, 0.3063, and 0.9478 reflectance (increasing hatching density). Measurements for each system are described by the shape, color, and hatching of a large filled symbol. Circles represent PDMS thin films with 0.0% Au (gray), 0.1% Au, 0.4% Au, and 0.6% Au (darkening purple hues). Squares represent bare (gray) and AuNP-covered (yellow) quartz substrates. Predictions for each measured system are indicated by a small filled dot connected to a symbol (or underneath when experimental and predicted values closely coincide). Predictions for T, R, and A for a particular back-reflector paired with a thin film featuring constant RNC and decreasing TNC (increasing Au content) are shown as solid orange lines. Dotted lines guide the eye to follow pairings of a nanocomposite with back-reflectors of increasing reflectance.

Fig. 4.
Fig. 4.

Mie (solid lines) and measured (dashed line) spectral data for a random array of AuNPs on quartz. The AuNPs had an average diameter of 21nm±7nm. Scattering (green), absorption (red), and extinction (blue) are shown for Mie predictions. Mie theory predicted an extinction peak at 512.85 nm and a peak of 512.80 nm was observed. Wavelength of the laser in spectroscopy apparatus was 532 nm (black vertical line). Right inset shows an SEM image of the AuNP sample area with a 100 nm scale bar. Left inset shows spectra for Au-PDMS thin films of 0.1%, 0.4%, and 0.6% (darkening purple hues) Au by mass.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Ai=1(Ti+Ri).
T=TNCTBRn=1RBRn1RNCn1.
R=n=1{RNC,n=1TNC2RBRn1RNCn2,n>1.
A=n=1{ANC+TNCABR,n=1TNC(ANCRBRn1RNCn2+ABRRBRn1RNCn1),n>1.
Ti=PTPtot,
Ri=IRItot.
neff=αnmedium+(1α)nsubstrate.

Metrics