Abstract

This study will examine the feasibility of applying the hydrodynamic effect to ultrasmooth surface polishing. Differing from conventional pad polishing, hydrodynamic effect polishing is noncontact, as the polishing wheel is floated on the workpiece under the hydrodynamic effect. The material removal mechanism and the removal contour are analyzed in detail. Dynamic pressure and shear stress distribution on the workpiece are numerically simulated in three dimensions under different clearances between the polishing wheel and the workpiece, showing that the dynamic pressure distribution and the magnitude of shear stress on the workpiece are greatly influenced by the clearance. It is clearly demonstrated from fixed-point polishing experiments that material removal rates and contours are determined by the combined action of dynamic pressure and shear stress. A material removal analytic model is presented with the hydrodynamic effect polishing method. Finally, a polishing experiment is conducted on a quartz glass and the plastic scratches, cracks, and bumpy structures on the initial surface are clearly removed. Moreover, the processed surface roughness is improved to 0.145 nm rms, 0.116 nm Ra.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ando, M. Negishi, M. Takimoto, A. Deguchi, and N. Nakamura, “Super-smooth polishing on aspherical surfaces,” Nanotechnology 6, 111–120 (1995).
    [CrossRef]
  2. F. H. Zhang, X. Z. Song, Y. Zhang, and D. R. Luan, “Figuring of an ultra-smooth surface in nanoparticle colloid jet machining,” J. Micromech. Microeng. 19, 054009 (2009).
    [CrossRef]
  3. U. Dinger, G. Seitz, S. Schulte, F. Eisert, C. Munster, S. Burkart, S. Stacklies, C. Bustaus, H. Hofer, M. Mayer, B. Fellner, O. Hocky, M. Rupp, K. Riedelsheimer, and P. Kurz, “Fabrication and metrology of diffraction limited soft x-ray optics for the EUV microlithography,” Proc. SPIE 5193, 18–28 (2004).
    [CrossRef]
  4. Y. Mori, K. Yamamura, K. Endo, K. Yamauchi, K. Yasutake, H. Goto, H. Kakiuchi, Y. Sano, and H. Mimura, “Creation of perfect surfaces,” J. Cryst. Growth 275, 39–50 (2005).
    [CrossRef]
  5. Y. Mori, K. Yamauchi, and K. Endo, “Elastic emission machining,” Precis. Eng. 9, 123–128 (1987).
    [CrossRef]
  6. M. Kanaoka, C. Liu, K. Nomura, M. Ando, H. Takino, and Y. Fukuda, “Figuring and smoothing capabilities of elastic emission machining for low-thermal-expansion glass optics,” J. Vac. Sci. Technol. B 25, 2110–2113 (2007).
    [CrossRef]
  7. J. M. Bennett, J. J. Shaffer, Y. Shibano, and Y. Namba, “Float polishing of optical materials,” Appl. Opt. 26, 696–703 (1987).
    [CrossRef]
  8. S. F. Soares, D. R. Baselt, J. P. Black, K. C. Jungling, and W. K. Stowell, “Float-polishing process and analysis of float-polished quartz,” Appl. Opt. 33, 89–95 (1994).
    [CrossRef]
  9. J. L. Wang, “Supersmooth polishing with sub-Angstrom roughness,” Proc. SPIE 8416, 841609 (2012).
    [CrossRef]
  10. J. L. Wang, “Ultra-precision optical fabrication on fused silica,” Proc. SPIE 8416, 841620 (2012).
    [CrossRef]
  11. K. Yamauchi, K. Hirose, H. Goto, K. Sugiyama, K. Inagaki, K. Yamamura, Y. Sano, and Y. Mori, “First-principles simulations of removal process in EEM (elastic emission machining),” Comput. Mater. Sci. 14, 232–235 (1999).
    [CrossRef]
  12. L. H. Zhang, J. L. Wang, and J. Zhang, “Super-smooth surface fabrication technique and experimental research,” Appl. Opt. 51, 6612–6617 (2012).
    [CrossRef]
  13. W. Q. Peng, S. Y. Li, C. L. Guan, X. M. Shen, Y. F. Dai, and Z. Wang, “Improvement of magnetorheological finishing surface quality by nanoparticle jet polishing,” Opt. Eng. 52, 043401 (2013).
    [CrossRef]
  14. Y.-T. Su, S.-Y. Wang, and J.-S. Hsiau, “On machining rate of hydrodynamic polishing process,” Wear 188, 77–87 (1995).
    [CrossRef]
  15. S.-Y. Wang and Y.-T. Su, “An investigation on machinability of different materials by hydrodynamic polishing process,” Wear 211, 185–191 (1997).
    [CrossRef]
  16. M. Kanaoka, C. Liu, K. Nomura, M. Ando, H. Takino, Y. Fukuda, Y. Mori, H. Mimura, and K. Yamauchi, “Processing efficiency of elastic emission machining for low-thermal-expansion material,” Surf. Interface Anal. 40, 1002–1006 (2008).
    [CrossRef]
  17. Y. W. Zhao, D. M. Maietta, and L. Chang, “An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow,” J. Tribol. 122, 86–93 (2000).
    [CrossRef]
  18. L. B. Zhou, T. Shiina, Z. J. Qiu, J. Shimizu, T. Yamamoto, and T. Tashiro, “Research on chemo-mechanical grinding of large size quartz glass substrate,” Precis. Eng. 33, 499–504 (2009).
    [CrossRef]

2013

W. Q. Peng, S. Y. Li, C. L. Guan, X. M. Shen, Y. F. Dai, and Z. Wang, “Improvement of magnetorheological finishing surface quality by nanoparticle jet polishing,” Opt. Eng. 52, 043401 (2013).
[CrossRef]

2012

J. L. Wang, “Supersmooth polishing with sub-Angstrom roughness,” Proc. SPIE 8416, 841609 (2012).
[CrossRef]

J. L. Wang, “Ultra-precision optical fabrication on fused silica,” Proc. SPIE 8416, 841620 (2012).
[CrossRef]

L. H. Zhang, J. L. Wang, and J. Zhang, “Super-smooth surface fabrication technique and experimental research,” Appl. Opt. 51, 6612–6617 (2012).
[CrossRef]

2009

F. H. Zhang, X. Z. Song, Y. Zhang, and D. R. Luan, “Figuring of an ultra-smooth surface in nanoparticle colloid jet machining,” J. Micromech. Microeng. 19, 054009 (2009).
[CrossRef]

L. B. Zhou, T. Shiina, Z. J. Qiu, J. Shimizu, T. Yamamoto, and T. Tashiro, “Research on chemo-mechanical grinding of large size quartz glass substrate,” Precis. Eng. 33, 499–504 (2009).
[CrossRef]

2008

M. Kanaoka, C. Liu, K. Nomura, M. Ando, H. Takino, Y. Fukuda, Y. Mori, H. Mimura, and K. Yamauchi, “Processing efficiency of elastic emission machining for low-thermal-expansion material,” Surf. Interface Anal. 40, 1002–1006 (2008).
[CrossRef]

2007

M. Kanaoka, C. Liu, K. Nomura, M. Ando, H. Takino, and Y. Fukuda, “Figuring and smoothing capabilities of elastic emission machining for low-thermal-expansion glass optics,” J. Vac. Sci. Technol. B 25, 2110–2113 (2007).
[CrossRef]

2005

Y. Mori, K. Yamamura, K. Endo, K. Yamauchi, K. Yasutake, H. Goto, H. Kakiuchi, Y. Sano, and H. Mimura, “Creation of perfect surfaces,” J. Cryst. Growth 275, 39–50 (2005).
[CrossRef]

2004

U. Dinger, G. Seitz, S. Schulte, F. Eisert, C. Munster, S. Burkart, S. Stacklies, C. Bustaus, H. Hofer, M. Mayer, B. Fellner, O. Hocky, M. Rupp, K. Riedelsheimer, and P. Kurz, “Fabrication and metrology of diffraction limited soft x-ray optics for the EUV microlithography,” Proc. SPIE 5193, 18–28 (2004).
[CrossRef]

2000

Y. W. Zhao, D. M. Maietta, and L. Chang, “An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow,” J. Tribol. 122, 86–93 (2000).
[CrossRef]

1999

K. Yamauchi, K. Hirose, H. Goto, K. Sugiyama, K. Inagaki, K. Yamamura, Y. Sano, and Y. Mori, “First-principles simulations of removal process in EEM (elastic emission machining),” Comput. Mater. Sci. 14, 232–235 (1999).
[CrossRef]

1997

S.-Y. Wang and Y.-T. Su, “An investigation on machinability of different materials by hydrodynamic polishing process,” Wear 211, 185–191 (1997).
[CrossRef]

1995

Y.-T. Su, S.-Y. Wang, and J.-S. Hsiau, “On machining rate of hydrodynamic polishing process,” Wear 188, 77–87 (1995).
[CrossRef]

M. Ando, M. Negishi, M. Takimoto, A. Deguchi, and N. Nakamura, “Super-smooth polishing on aspherical surfaces,” Nanotechnology 6, 111–120 (1995).
[CrossRef]

1994

1987

J. M. Bennett, J. J. Shaffer, Y. Shibano, and Y. Namba, “Float polishing of optical materials,” Appl. Opt. 26, 696–703 (1987).
[CrossRef]

Y. Mori, K. Yamauchi, and K. Endo, “Elastic emission machining,” Precis. Eng. 9, 123–128 (1987).
[CrossRef]

Ando, M.

M. Kanaoka, C. Liu, K. Nomura, M. Ando, H. Takino, Y. Fukuda, Y. Mori, H. Mimura, and K. Yamauchi, “Processing efficiency of elastic emission machining for low-thermal-expansion material,” Surf. Interface Anal. 40, 1002–1006 (2008).
[CrossRef]

M. Kanaoka, C. Liu, K. Nomura, M. Ando, H. Takino, and Y. Fukuda, “Figuring and smoothing capabilities of elastic emission machining for low-thermal-expansion glass optics,” J. Vac. Sci. Technol. B 25, 2110–2113 (2007).
[CrossRef]

M. Ando, M. Negishi, M. Takimoto, A. Deguchi, and N. Nakamura, “Super-smooth polishing on aspherical surfaces,” Nanotechnology 6, 111–120 (1995).
[CrossRef]

Baselt, D. R.

Bennett, J. M.

Black, J. P.

Burkart, S.

U. Dinger, G. Seitz, S. Schulte, F. Eisert, C. Munster, S. Burkart, S. Stacklies, C. Bustaus, H. Hofer, M. Mayer, B. Fellner, O. Hocky, M. Rupp, K. Riedelsheimer, and P. Kurz, “Fabrication and metrology of diffraction limited soft x-ray optics for the EUV microlithography,” Proc. SPIE 5193, 18–28 (2004).
[CrossRef]

Bustaus, C.

U. Dinger, G. Seitz, S. Schulte, F. Eisert, C. Munster, S. Burkart, S. Stacklies, C. Bustaus, H. Hofer, M. Mayer, B. Fellner, O. Hocky, M. Rupp, K. Riedelsheimer, and P. Kurz, “Fabrication and metrology of diffraction limited soft x-ray optics for the EUV microlithography,” Proc. SPIE 5193, 18–28 (2004).
[CrossRef]

Chang, L.

Y. W. Zhao, D. M. Maietta, and L. Chang, “An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow,” J. Tribol. 122, 86–93 (2000).
[CrossRef]

Dai, Y. F.

W. Q. Peng, S. Y. Li, C. L. Guan, X. M. Shen, Y. F. Dai, and Z. Wang, “Improvement of magnetorheological finishing surface quality by nanoparticle jet polishing,” Opt. Eng. 52, 043401 (2013).
[CrossRef]

Deguchi, A.

M. Ando, M. Negishi, M. Takimoto, A. Deguchi, and N. Nakamura, “Super-smooth polishing on aspherical surfaces,” Nanotechnology 6, 111–120 (1995).
[CrossRef]

Dinger, U.

U. Dinger, G. Seitz, S. Schulte, F. Eisert, C. Munster, S. Burkart, S. Stacklies, C. Bustaus, H. Hofer, M. Mayer, B. Fellner, O. Hocky, M. Rupp, K. Riedelsheimer, and P. Kurz, “Fabrication and metrology of diffraction limited soft x-ray optics for the EUV microlithography,” Proc. SPIE 5193, 18–28 (2004).
[CrossRef]

Eisert, F.

U. Dinger, G. Seitz, S. Schulte, F. Eisert, C. Munster, S. Burkart, S. Stacklies, C. Bustaus, H. Hofer, M. Mayer, B. Fellner, O. Hocky, M. Rupp, K. Riedelsheimer, and P. Kurz, “Fabrication and metrology of diffraction limited soft x-ray optics for the EUV microlithography,” Proc. SPIE 5193, 18–28 (2004).
[CrossRef]

Endo, K.

Y. Mori, K. Yamamura, K. Endo, K. Yamauchi, K. Yasutake, H. Goto, H. Kakiuchi, Y. Sano, and H. Mimura, “Creation of perfect surfaces,” J. Cryst. Growth 275, 39–50 (2005).
[CrossRef]

Y. Mori, K. Yamauchi, and K. Endo, “Elastic emission machining,” Precis. Eng. 9, 123–128 (1987).
[CrossRef]

Fellner, B.

U. Dinger, G. Seitz, S. Schulte, F. Eisert, C. Munster, S. Burkart, S. Stacklies, C. Bustaus, H. Hofer, M. Mayer, B. Fellner, O. Hocky, M. Rupp, K. Riedelsheimer, and P. Kurz, “Fabrication and metrology of diffraction limited soft x-ray optics for the EUV microlithography,” Proc. SPIE 5193, 18–28 (2004).
[CrossRef]

Fukuda, Y.

M. Kanaoka, C. Liu, K. Nomura, M. Ando, H. Takino, Y. Fukuda, Y. Mori, H. Mimura, and K. Yamauchi, “Processing efficiency of elastic emission machining for low-thermal-expansion material,” Surf. Interface Anal. 40, 1002–1006 (2008).
[CrossRef]

M. Kanaoka, C. Liu, K. Nomura, M. Ando, H. Takino, and Y. Fukuda, “Figuring and smoothing capabilities of elastic emission machining for low-thermal-expansion glass optics,” J. Vac. Sci. Technol. B 25, 2110–2113 (2007).
[CrossRef]

Goto, H.

Y. Mori, K. Yamamura, K. Endo, K. Yamauchi, K. Yasutake, H. Goto, H. Kakiuchi, Y. Sano, and H. Mimura, “Creation of perfect surfaces,” J. Cryst. Growth 275, 39–50 (2005).
[CrossRef]

K. Yamauchi, K. Hirose, H. Goto, K. Sugiyama, K. Inagaki, K. Yamamura, Y. Sano, and Y. Mori, “First-principles simulations of removal process in EEM (elastic emission machining),” Comput. Mater. Sci. 14, 232–235 (1999).
[CrossRef]

Guan, C. L.

W. Q. Peng, S. Y. Li, C. L. Guan, X. M. Shen, Y. F. Dai, and Z. Wang, “Improvement of magnetorheological finishing surface quality by nanoparticle jet polishing,” Opt. Eng. 52, 043401 (2013).
[CrossRef]

Hirose, K.

K. Yamauchi, K. Hirose, H. Goto, K. Sugiyama, K. Inagaki, K. Yamamura, Y. Sano, and Y. Mori, “First-principles simulations of removal process in EEM (elastic emission machining),” Comput. Mater. Sci. 14, 232–235 (1999).
[CrossRef]

Hocky, O.

U. Dinger, G. Seitz, S. Schulte, F. Eisert, C. Munster, S. Burkart, S. Stacklies, C. Bustaus, H. Hofer, M. Mayer, B. Fellner, O. Hocky, M. Rupp, K. Riedelsheimer, and P. Kurz, “Fabrication and metrology of diffraction limited soft x-ray optics for the EUV microlithography,” Proc. SPIE 5193, 18–28 (2004).
[CrossRef]

Hofer, H.

U. Dinger, G. Seitz, S. Schulte, F. Eisert, C. Munster, S. Burkart, S. Stacklies, C. Bustaus, H. Hofer, M. Mayer, B. Fellner, O. Hocky, M. Rupp, K. Riedelsheimer, and P. Kurz, “Fabrication and metrology of diffraction limited soft x-ray optics for the EUV microlithography,” Proc. SPIE 5193, 18–28 (2004).
[CrossRef]

Hsiau, J.-S.

Y.-T. Su, S.-Y. Wang, and J.-S. Hsiau, “On machining rate of hydrodynamic polishing process,” Wear 188, 77–87 (1995).
[CrossRef]

Inagaki, K.

K. Yamauchi, K. Hirose, H. Goto, K. Sugiyama, K. Inagaki, K. Yamamura, Y. Sano, and Y. Mori, “First-principles simulations of removal process in EEM (elastic emission machining),” Comput. Mater. Sci. 14, 232–235 (1999).
[CrossRef]

Jungling, K. C.

Kakiuchi, H.

Y. Mori, K. Yamamura, K. Endo, K. Yamauchi, K. Yasutake, H. Goto, H. Kakiuchi, Y. Sano, and H. Mimura, “Creation of perfect surfaces,” J. Cryst. Growth 275, 39–50 (2005).
[CrossRef]

Kanaoka, M.

M. Kanaoka, C. Liu, K. Nomura, M. Ando, H. Takino, Y. Fukuda, Y. Mori, H. Mimura, and K. Yamauchi, “Processing efficiency of elastic emission machining for low-thermal-expansion material,” Surf. Interface Anal. 40, 1002–1006 (2008).
[CrossRef]

M. Kanaoka, C. Liu, K. Nomura, M. Ando, H. Takino, and Y. Fukuda, “Figuring and smoothing capabilities of elastic emission machining for low-thermal-expansion glass optics,” J. Vac. Sci. Technol. B 25, 2110–2113 (2007).
[CrossRef]

Kurz, P.

U. Dinger, G. Seitz, S. Schulte, F. Eisert, C. Munster, S. Burkart, S. Stacklies, C. Bustaus, H. Hofer, M. Mayer, B. Fellner, O. Hocky, M. Rupp, K. Riedelsheimer, and P. Kurz, “Fabrication and metrology of diffraction limited soft x-ray optics for the EUV microlithography,” Proc. SPIE 5193, 18–28 (2004).
[CrossRef]

Li, S. Y.

W. Q. Peng, S. Y. Li, C. L. Guan, X. M. Shen, Y. F. Dai, and Z. Wang, “Improvement of magnetorheological finishing surface quality by nanoparticle jet polishing,” Opt. Eng. 52, 043401 (2013).
[CrossRef]

Liu, C.

M. Kanaoka, C. Liu, K. Nomura, M. Ando, H. Takino, Y. Fukuda, Y. Mori, H. Mimura, and K. Yamauchi, “Processing efficiency of elastic emission machining for low-thermal-expansion material,” Surf. Interface Anal. 40, 1002–1006 (2008).
[CrossRef]

M. Kanaoka, C. Liu, K. Nomura, M. Ando, H. Takino, and Y. Fukuda, “Figuring and smoothing capabilities of elastic emission machining for low-thermal-expansion glass optics,” J. Vac. Sci. Technol. B 25, 2110–2113 (2007).
[CrossRef]

Luan, D. R.

F. H. Zhang, X. Z. Song, Y. Zhang, and D. R. Luan, “Figuring of an ultra-smooth surface in nanoparticle colloid jet machining,” J. Micromech. Microeng. 19, 054009 (2009).
[CrossRef]

Maietta, D. M.

Y. W. Zhao, D. M. Maietta, and L. Chang, “An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow,” J. Tribol. 122, 86–93 (2000).
[CrossRef]

Mayer, M.

U. Dinger, G. Seitz, S. Schulte, F. Eisert, C. Munster, S. Burkart, S. Stacklies, C. Bustaus, H. Hofer, M. Mayer, B. Fellner, O. Hocky, M. Rupp, K. Riedelsheimer, and P. Kurz, “Fabrication and metrology of diffraction limited soft x-ray optics for the EUV microlithography,” Proc. SPIE 5193, 18–28 (2004).
[CrossRef]

Mimura, H.

M. Kanaoka, C. Liu, K. Nomura, M. Ando, H. Takino, Y. Fukuda, Y. Mori, H. Mimura, and K. Yamauchi, “Processing efficiency of elastic emission machining for low-thermal-expansion material,” Surf. Interface Anal. 40, 1002–1006 (2008).
[CrossRef]

Y. Mori, K. Yamamura, K. Endo, K. Yamauchi, K. Yasutake, H. Goto, H. Kakiuchi, Y. Sano, and H. Mimura, “Creation of perfect surfaces,” J. Cryst. Growth 275, 39–50 (2005).
[CrossRef]

Mori, Y.

M. Kanaoka, C. Liu, K. Nomura, M. Ando, H. Takino, Y. Fukuda, Y. Mori, H. Mimura, and K. Yamauchi, “Processing efficiency of elastic emission machining for low-thermal-expansion material,” Surf. Interface Anal. 40, 1002–1006 (2008).
[CrossRef]

Y. Mori, K. Yamamura, K. Endo, K. Yamauchi, K. Yasutake, H. Goto, H. Kakiuchi, Y. Sano, and H. Mimura, “Creation of perfect surfaces,” J. Cryst. Growth 275, 39–50 (2005).
[CrossRef]

K. Yamauchi, K. Hirose, H. Goto, K. Sugiyama, K. Inagaki, K. Yamamura, Y. Sano, and Y. Mori, “First-principles simulations of removal process in EEM (elastic emission machining),” Comput. Mater. Sci. 14, 232–235 (1999).
[CrossRef]

Y. Mori, K. Yamauchi, and K. Endo, “Elastic emission machining,” Precis. Eng. 9, 123–128 (1987).
[CrossRef]

Munster, C.

U. Dinger, G. Seitz, S. Schulte, F. Eisert, C. Munster, S. Burkart, S. Stacklies, C. Bustaus, H. Hofer, M. Mayer, B. Fellner, O. Hocky, M. Rupp, K. Riedelsheimer, and P. Kurz, “Fabrication and metrology of diffraction limited soft x-ray optics for the EUV microlithography,” Proc. SPIE 5193, 18–28 (2004).
[CrossRef]

Nakamura, N.

M. Ando, M. Negishi, M. Takimoto, A. Deguchi, and N. Nakamura, “Super-smooth polishing on aspherical surfaces,” Nanotechnology 6, 111–120 (1995).
[CrossRef]

Namba, Y.

Negishi, M.

M. Ando, M. Negishi, M. Takimoto, A. Deguchi, and N. Nakamura, “Super-smooth polishing on aspherical surfaces,” Nanotechnology 6, 111–120 (1995).
[CrossRef]

Nomura, K.

M. Kanaoka, C. Liu, K. Nomura, M. Ando, H. Takino, Y. Fukuda, Y. Mori, H. Mimura, and K. Yamauchi, “Processing efficiency of elastic emission machining for low-thermal-expansion material,” Surf. Interface Anal. 40, 1002–1006 (2008).
[CrossRef]

M. Kanaoka, C. Liu, K. Nomura, M. Ando, H. Takino, and Y. Fukuda, “Figuring and smoothing capabilities of elastic emission machining for low-thermal-expansion glass optics,” J. Vac. Sci. Technol. B 25, 2110–2113 (2007).
[CrossRef]

Peng, W. Q.

W. Q. Peng, S. Y. Li, C. L. Guan, X. M. Shen, Y. F. Dai, and Z. Wang, “Improvement of magnetorheological finishing surface quality by nanoparticle jet polishing,” Opt. Eng. 52, 043401 (2013).
[CrossRef]

Qiu, Z. J.

L. B. Zhou, T. Shiina, Z. J. Qiu, J. Shimizu, T. Yamamoto, and T. Tashiro, “Research on chemo-mechanical grinding of large size quartz glass substrate,” Precis. Eng. 33, 499–504 (2009).
[CrossRef]

Riedelsheimer, K.

U. Dinger, G. Seitz, S. Schulte, F. Eisert, C. Munster, S. Burkart, S. Stacklies, C. Bustaus, H. Hofer, M. Mayer, B. Fellner, O. Hocky, M. Rupp, K. Riedelsheimer, and P. Kurz, “Fabrication and metrology of diffraction limited soft x-ray optics for the EUV microlithography,” Proc. SPIE 5193, 18–28 (2004).
[CrossRef]

Rupp, M.

U. Dinger, G. Seitz, S. Schulte, F. Eisert, C. Munster, S. Burkart, S. Stacklies, C. Bustaus, H. Hofer, M. Mayer, B. Fellner, O. Hocky, M. Rupp, K. Riedelsheimer, and P. Kurz, “Fabrication and metrology of diffraction limited soft x-ray optics for the EUV microlithography,” Proc. SPIE 5193, 18–28 (2004).
[CrossRef]

Sano, Y.

Y. Mori, K. Yamamura, K. Endo, K. Yamauchi, K. Yasutake, H. Goto, H. Kakiuchi, Y. Sano, and H. Mimura, “Creation of perfect surfaces,” J. Cryst. Growth 275, 39–50 (2005).
[CrossRef]

K. Yamauchi, K. Hirose, H. Goto, K. Sugiyama, K. Inagaki, K. Yamamura, Y. Sano, and Y. Mori, “First-principles simulations of removal process in EEM (elastic emission machining),” Comput. Mater. Sci. 14, 232–235 (1999).
[CrossRef]

Schulte, S.

U. Dinger, G. Seitz, S. Schulte, F. Eisert, C. Munster, S. Burkart, S. Stacklies, C. Bustaus, H. Hofer, M. Mayer, B. Fellner, O. Hocky, M. Rupp, K. Riedelsheimer, and P. Kurz, “Fabrication and metrology of diffraction limited soft x-ray optics for the EUV microlithography,” Proc. SPIE 5193, 18–28 (2004).
[CrossRef]

Seitz, G.

U. Dinger, G. Seitz, S. Schulte, F. Eisert, C. Munster, S. Burkart, S. Stacklies, C. Bustaus, H. Hofer, M. Mayer, B. Fellner, O. Hocky, M. Rupp, K. Riedelsheimer, and P. Kurz, “Fabrication and metrology of diffraction limited soft x-ray optics for the EUV microlithography,” Proc. SPIE 5193, 18–28 (2004).
[CrossRef]

Shaffer, J. J.

Shen, X. M.

W. Q. Peng, S. Y. Li, C. L. Guan, X. M. Shen, Y. F. Dai, and Z. Wang, “Improvement of magnetorheological finishing surface quality by nanoparticle jet polishing,” Opt. Eng. 52, 043401 (2013).
[CrossRef]

Shibano, Y.

Shiina, T.

L. B. Zhou, T. Shiina, Z. J. Qiu, J. Shimizu, T. Yamamoto, and T. Tashiro, “Research on chemo-mechanical grinding of large size quartz glass substrate,” Precis. Eng. 33, 499–504 (2009).
[CrossRef]

Shimizu, J.

L. B. Zhou, T. Shiina, Z. J. Qiu, J. Shimizu, T. Yamamoto, and T. Tashiro, “Research on chemo-mechanical grinding of large size quartz glass substrate,” Precis. Eng. 33, 499–504 (2009).
[CrossRef]

Soares, S. F.

Song, X. Z.

F. H. Zhang, X. Z. Song, Y. Zhang, and D. R. Luan, “Figuring of an ultra-smooth surface in nanoparticle colloid jet machining,” J. Micromech. Microeng. 19, 054009 (2009).
[CrossRef]

Stacklies, S.

U. Dinger, G. Seitz, S. Schulte, F. Eisert, C. Munster, S. Burkart, S. Stacklies, C. Bustaus, H. Hofer, M. Mayer, B. Fellner, O. Hocky, M. Rupp, K. Riedelsheimer, and P. Kurz, “Fabrication and metrology of diffraction limited soft x-ray optics for the EUV microlithography,” Proc. SPIE 5193, 18–28 (2004).
[CrossRef]

Stowell, W. K.

Su, Y.-T.

S.-Y. Wang and Y.-T. Su, “An investigation on machinability of different materials by hydrodynamic polishing process,” Wear 211, 185–191 (1997).
[CrossRef]

Y.-T. Su, S.-Y. Wang, and J.-S. Hsiau, “On machining rate of hydrodynamic polishing process,” Wear 188, 77–87 (1995).
[CrossRef]

Sugiyama, K.

K. Yamauchi, K. Hirose, H. Goto, K. Sugiyama, K. Inagaki, K. Yamamura, Y. Sano, and Y. Mori, “First-principles simulations of removal process in EEM (elastic emission machining),” Comput. Mater. Sci. 14, 232–235 (1999).
[CrossRef]

Takimoto, M.

M. Ando, M. Negishi, M. Takimoto, A. Deguchi, and N. Nakamura, “Super-smooth polishing on aspherical surfaces,” Nanotechnology 6, 111–120 (1995).
[CrossRef]

Takino, H.

M. Kanaoka, C. Liu, K. Nomura, M. Ando, H. Takino, Y. Fukuda, Y. Mori, H. Mimura, and K. Yamauchi, “Processing efficiency of elastic emission machining for low-thermal-expansion material,” Surf. Interface Anal. 40, 1002–1006 (2008).
[CrossRef]

M. Kanaoka, C. Liu, K. Nomura, M. Ando, H. Takino, and Y. Fukuda, “Figuring and smoothing capabilities of elastic emission machining for low-thermal-expansion glass optics,” J. Vac. Sci. Technol. B 25, 2110–2113 (2007).
[CrossRef]

Tashiro, T.

L. B. Zhou, T. Shiina, Z. J. Qiu, J. Shimizu, T. Yamamoto, and T. Tashiro, “Research on chemo-mechanical grinding of large size quartz glass substrate,” Precis. Eng. 33, 499–504 (2009).
[CrossRef]

Wang, J. L.

J. L. Wang, “Ultra-precision optical fabrication on fused silica,” Proc. SPIE 8416, 841620 (2012).
[CrossRef]

J. L. Wang, “Supersmooth polishing with sub-Angstrom roughness,” Proc. SPIE 8416, 841609 (2012).
[CrossRef]

L. H. Zhang, J. L. Wang, and J. Zhang, “Super-smooth surface fabrication technique and experimental research,” Appl. Opt. 51, 6612–6617 (2012).
[CrossRef]

Wang, S.-Y.

S.-Y. Wang and Y.-T. Su, “An investigation on machinability of different materials by hydrodynamic polishing process,” Wear 211, 185–191 (1997).
[CrossRef]

Y.-T. Su, S.-Y. Wang, and J.-S. Hsiau, “On machining rate of hydrodynamic polishing process,” Wear 188, 77–87 (1995).
[CrossRef]

Wang, Z.

W. Q. Peng, S. Y. Li, C. L. Guan, X. M. Shen, Y. F. Dai, and Z. Wang, “Improvement of magnetorheological finishing surface quality by nanoparticle jet polishing,” Opt. Eng. 52, 043401 (2013).
[CrossRef]

Yamamoto, T.

L. B. Zhou, T. Shiina, Z. J. Qiu, J. Shimizu, T. Yamamoto, and T. Tashiro, “Research on chemo-mechanical grinding of large size quartz glass substrate,” Precis. Eng. 33, 499–504 (2009).
[CrossRef]

Yamamura, K.

Y. Mori, K. Yamamura, K. Endo, K. Yamauchi, K. Yasutake, H. Goto, H. Kakiuchi, Y. Sano, and H. Mimura, “Creation of perfect surfaces,” J. Cryst. Growth 275, 39–50 (2005).
[CrossRef]

K. Yamauchi, K. Hirose, H. Goto, K. Sugiyama, K. Inagaki, K. Yamamura, Y. Sano, and Y. Mori, “First-principles simulations of removal process in EEM (elastic emission machining),” Comput. Mater. Sci. 14, 232–235 (1999).
[CrossRef]

Yamauchi, K.

M. Kanaoka, C. Liu, K. Nomura, M. Ando, H. Takino, Y. Fukuda, Y. Mori, H. Mimura, and K. Yamauchi, “Processing efficiency of elastic emission machining for low-thermal-expansion material,” Surf. Interface Anal. 40, 1002–1006 (2008).
[CrossRef]

Y. Mori, K. Yamamura, K. Endo, K. Yamauchi, K. Yasutake, H. Goto, H. Kakiuchi, Y. Sano, and H. Mimura, “Creation of perfect surfaces,” J. Cryst. Growth 275, 39–50 (2005).
[CrossRef]

K. Yamauchi, K. Hirose, H. Goto, K. Sugiyama, K. Inagaki, K. Yamamura, Y. Sano, and Y. Mori, “First-principles simulations of removal process in EEM (elastic emission machining),” Comput. Mater. Sci. 14, 232–235 (1999).
[CrossRef]

Y. Mori, K. Yamauchi, and K. Endo, “Elastic emission machining,” Precis. Eng. 9, 123–128 (1987).
[CrossRef]

Yasutake, K.

Y. Mori, K. Yamamura, K. Endo, K. Yamauchi, K. Yasutake, H. Goto, H. Kakiuchi, Y. Sano, and H. Mimura, “Creation of perfect surfaces,” J. Cryst. Growth 275, 39–50 (2005).
[CrossRef]

Zhang, F. H.

F. H. Zhang, X. Z. Song, Y. Zhang, and D. R. Luan, “Figuring of an ultra-smooth surface in nanoparticle colloid jet machining,” J. Micromech. Microeng. 19, 054009 (2009).
[CrossRef]

Zhang, J.

Zhang, L. H.

Zhang, Y.

F. H. Zhang, X. Z. Song, Y. Zhang, and D. R. Luan, “Figuring of an ultra-smooth surface in nanoparticle colloid jet machining,” J. Micromech. Microeng. 19, 054009 (2009).
[CrossRef]

Zhao, Y. W.

Y. W. Zhao, D. M. Maietta, and L. Chang, “An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow,” J. Tribol. 122, 86–93 (2000).
[CrossRef]

Zhou, L. B.

L. B. Zhou, T. Shiina, Z. J. Qiu, J. Shimizu, T. Yamamoto, and T. Tashiro, “Research on chemo-mechanical grinding of large size quartz glass substrate,” Precis. Eng. 33, 499–504 (2009).
[CrossRef]

Appl. Opt.

Comput. Mater. Sci.

K. Yamauchi, K. Hirose, H. Goto, K. Sugiyama, K. Inagaki, K. Yamamura, Y. Sano, and Y. Mori, “First-principles simulations of removal process in EEM (elastic emission machining),” Comput. Mater. Sci. 14, 232–235 (1999).
[CrossRef]

J. Cryst. Growth

Y. Mori, K. Yamamura, K. Endo, K. Yamauchi, K. Yasutake, H. Goto, H. Kakiuchi, Y. Sano, and H. Mimura, “Creation of perfect surfaces,” J. Cryst. Growth 275, 39–50 (2005).
[CrossRef]

J. Micromech. Microeng.

F. H. Zhang, X. Z. Song, Y. Zhang, and D. R. Luan, “Figuring of an ultra-smooth surface in nanoparticle colloid jet machining,” J. Micromech. Microeng. 19, 054009 (2009).
[CrossRef]

J. Tribol.

Y. W. Zhao, D. M. Maietta, and L. Chang, “An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow,” J. Tribol. 122, 86–93 (2000).
[CrossRef]

J. Vac. Sci. Technol. B

M. Kanaoka, C. Liu, K. Nomura, M. Ando, H. Takino, and Y. Fukuda, “Figuring and smoothing capabilities of elastic emission machining for low-thermal-expansion glass optics,” J. Vac. Sci. Technol. B 25, 2110–2113 (2007).
[CrossRef]

Nanotechnology

M. Ando, M. Negishi, M. Takimoto, A. Deguchi, and N. Nakamura, “Super-smooth polishing on aspherical surfaces,” Nanotechnology 6, 111–120 (1995).
[CrossRef]

Opt. Eng.

W. Q. Peng, S. Y. Li, C. L. Guan, X. M. Shen, Y. F. Dai, and Z. Wang, “Improvement of magnetorheological finishing surface quality by nanoparticle jet polishing,” Opt. Eng. 52, 043401 (2013).
[CrossRef]

Precis. Eng.

Y. Mori, K. Yamauchi, and K. Endo, “Elastic emission machining,” Precis. Eng. 9, 123–128 (1987).
[CrossRef]

L. B. Zhou, T. Shiina, Z. J. Qiu, J. Shimizu, T. Yamamoto, and T. Tashiro, “Research on chemo-mechanical grinding of large size quartz glass substrate,” Precis. Eng. 33, 499–504 (2009).
[CrossRef]

Proc. SPIE

J. L. Wang, “Supersmooth polishing with sub-Angstrom roughness,” Proc. SPIE 8416, 841609 (2012).
[CrossRef]

J. L. Wang, “Ultra-precision optical fabrication on fused silica,” Proc. SPIE 8416, 841620 (2012).
[CrossRef]

U. Dinger, G. Seitz, S. Schulte, F. Eisert, C. Munster, S. Burkart, S. Stacklies, C. Bustaus, H. Hofer, M. Mayer, B. Fellner, O. Hocky, M. Rupp, K. Riedelsheimer, and P. Kurz, “Fabrication and metrology of diffraction limited soft x-ray optics for the EUV microlithography,” Proc. SPIE 5193, 18–28 (2004).
[CrossRef]

Surf. Interface Anal.

M. Kanaoka, C. Liu, K. Nomura, M. Ando, H. Takino, Y. Fukuda, Y. Mori, H. Mimura, and K. Yamauchi, “Processing efficiency of elastic emission machining for low-thermal-expansion material,” Surf. Interface Anal. 40, 1002–1006 (2008).
[CrossRef]

Wear

Y.-T. Su, S.-Y. Wang, and J.-S. Hsiau, “On machining rate of hydrodynamic polishing process,” Wear 188, 77–87 (1995).
[CrossRef]

S.-Y. Wang and Y.-T. Su, “An investigation on machinability of different materials by hydrodynamic polishing process,” Wear 211, 185–191 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Hydrodynamic effect polishing model.

Fig. 2.
Fig. 2.

Distribution of dynamic pressure under different clearances: (a) axonometric view and (b) upward view.

Fig. 3.
Fig. 3.

Distribution of shear stress under different clearances: (a) axonometric view and (b) upward view.

Fig. 4.
Fig. 4.

Removal contours at different film thicknesses: (a) 10 μm, (b) 30 μm, and (c) 60 μm.

Fig. 5.
Fig. 5.

Surface microstructure measured by AFM: (a) before polishing and (b) after polishing.

Fig. 6.
Fig. 6.

PSD analysis for AFM measurement results.

Fig. 7.
Fig. 7.

Contact model between nanoparticle and workpiece surface.

Fig. 8.
Fig. 8.

Schematic of rough surface at atom scale.

Tables (1)

Tables Icon

Table 1. Process Parameters and Conditions

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

3h2hxPx+h32Px2+3h2hyPy+h32Py2=6μωRhx,
τ=μdvdz,
τminCγDa,
MR={Cτ+eττmin0τ<τmin.
MR(x,y)={Cτ(x,y)+C1P(x,y)+eτ(x,y)τmin0τ(x,y)<τmin,
Fn=PdSeff.
F=916(rEw)2(πkHw)3,

Metrics