Abstract

Recently proposed lensless object scanning holography (LOSH) [Opt. Express 20, 9382 (2012)] is a fully lensless method capable of improving the image quality in digital Fourier holography applied to one-dimensional (1D) reflective objects and it involves a very simplified experimental setup. LOSH is based on the recording and digital postprocessing of a set of digital lensless Fourier transform holograms, which finally results in a synthetic image with improved resolution, field-of-view (FOV), signal-to-noise ratio (SNR), and depth of field. In this paper, LOSH is extended to the cases of two-dimensional (2D) mirror-like and 1D diffuse-based objects. For 2D mirror-like objects, the experimental results show an impressive image quality improvement over a factor of 3 in FOV, SNR, and resolution, as good as that obtained for the 1D case but in two dimensions. For 1D diffuse-based objects, in general the speckle affects the image resolution, which will not be only a function of the aperture size. In this case, increasing the aperture produces a decrease of the speckle size. Moreover, due to the overlapping of speckles between successive images, different types of digital processing can be applied to obtain the final synthetic image: fully incoherent, fully coherent, and partially coherent. The last, arising from the incoherent sum of several independent sets of coherently added images, provides the best improvement in the resolution. Experimental results for both types of objects are presented.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
    [Crossref]
  2. E. N. Leith and J. Upatnieks, “Wavefront reconstruction with diffuse illumination and three-dimensional objects,” J. Opt. Soc. Am. 54, 1295–1301 (1964).
    [Crossref]
  3. G. W. Stroke, “Lensless Fourier-transform method for optical holography,” Appl. Phys. Lett. 6, 201–203 (1965).
    [Crossref]
  4. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
    [Crossref]
  5. T. Huang, “Digital holography,” Proc. IEEE 59, 1335–1346 (1971).
    [Crossref]
  6. J. W. Goodman, Speckle Phenomena: Theory and Applications (Roberts & Company, 2007).
  7. F. Le Clerc, M. Gross, and L. Collot, “Synthetic aperture experiment in the visible with on-axis digital heterodyne holography,” Opt. Lett. 26, 1550–1552 (2001).
    [Crossref]
  8. J. H. Massig, “Digital off-axis holography with a synthetic aperture,” Opt. Lett. 27, 2179–2181 (2002).
    [Crossref]
  9. P. Almoro, G. Pedrini, and W. Osten, “Aperture synthesis in phase retrieval using a volume-speckle field,” Opt. Lett. 32, 733–735 (2007).
    [Crossref]
  10. J. Di, J. Zhao, H. Jiang, P. Zhang, Q. Fan, and W. Sun, “High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear CCD scanning,” Appl. Opt. 47, 5654–5659 (2008).
    [Crossref]
  11. V. Micó, L. Granero, Z. Zalevsky, and J. García, “Superresolved phase-shifting Gabor holography by CCD shift,” Pure Appl. Opt. 11, 125408 (2009).
    [Crossref]
  12. C. Yuan, H. Zhai, and H. Liu, “Angular multiplexing in pulsed digital holography for aperture synthesis,” Opt. Lett. 33, 2356–2358 (2008).
    [Crossref]
  13. L. Granero, V. Micó, Z. Zalevsky, and J. García, “Synthetic aperture superresolved microscopy in digital lensless Fourier holography by time and angular multiplexing of the object information,” Appl. Opt. 49, 845–857 (2010).
    [Crossref]
  14. V. Micó and Z. Zalevsky, “Superresolved digital in-line holographic microscopy for high resolution lensless biological imaging,” J. Biomed. Opt. 15, 046027 (2010).
    [Crossref]
  15. L. Granero, Z. Zalevsky, and V. Micó, “Single-exposure two-dimensional superresolution in digital holography using a vertical cavity surface-emitting laser source array,” Opt. Lett. 36, 1149–1151 (2011).
    [Crossref]
  16. V. Micó, Z. Zalevsky, and J. García, “Optical superresolution: imaging beyond Abbe’s diffraction limit,” J. Holography Speckle 5, 110–123 (2009).
    [Crossref]
  17. C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143–3145 (2002).
    [Crossref]
  18. M. S. Hezaveh, M. R. Riahi, R. Massudi, and H. Latifi, “Digital holographic scanning of large objects using a rotating optical slab,” Int. J. Imaging Syst. Technol. 16, 258–261 (2006).
    [Crossref]
  19. L. Granero, V. Micó, Z. Zalevsky, and J. García, “Superresolution imaging method using phase-shifting digital lensless Fourier holography,” Opt. Express 17, 15008–15022 (2009).
    [Crossref]
  20. R. Binet, J. Colineau, and J.-C. Lehureau, “Short-range synthetic aperture imaging at 633 nm by digital holography,” Appl. Opt. 41, 4775–4782 (2002).
    [Crossref]
  21. Y. Zhang, X. Lu, Y. Luo, L. Zhong, and C. She, “Synthetic aperture holography by movement of object,” Proc. SPIE 5636, 581–588 (2005).
    [Crossref]
  22. V. Micó, C. Ferreira, and J. García, “Surpassing digital holography limits by lensless object scanning holography,” Opt. Express 20, 9382–9395 (2012).
    [Crossref]
  23. J.-P. Liu, C.-C. Lee, Y.-H. Lo, and D.-Z. Luo, “Vertical-bandwidth-limited digital holography,” Opt. Lett. 37, 2574–2576 (2012).
    [Crossref]
  24. W. Lukosz, “Optical systems with resolving powers exceeding the classical limits,” J. Opt. Soc. Am. 56, 1463–1472 (1966).
    [Crossref]
  25. D. P. Kelly, B. M. Hennelly, N. Pandey, T. J. Naughton, and W. T. Rhodes, “Resolution limits in practical digital holographic systems,” Opt. Eng. 48, 095801 (2009).
    [Crossref]
  26. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
  27. S. V. Egge, U. Österberg, and A. Aksnes, “Speckle contrast of the sum of N partially correlated speckle patterns,” J. Opt. Soc. Am. A 29, 1188–1198 (2012).
    [Crossref]

2012 (3)

2011 (1)

2010 (2)

L. Granero, V. Micó, Z. Zalevsky, and J. García, “Synthetic aperture superresolved microscopy in digital lensless Fourier holography by time and angular multiplexing of the object information,” Appl. Opt. 49, 845–857 (2010).
[Crossref]

V. Micó and Z. Zalevsky, “Superresolved digital in-line holographic microscopy for high resolution lensless biological imaging,” J. Biomed. Opt. 15, 046027 (2010).
[Crossref]

2009 (4)

V. Micó, L. Granero, Z. Zalevsky, and J. García, “Superresolved phase-shifting Gabor holography by CCD shift,” Pure Appl. Opt. 11, 125408 (2009).
[Crossref]

V. Micó, Z. Zalevsky, and J. García, “Optical superresolution: imaging beyond Abbe’s diffraction limit,” J. Holography Speckle 5, 110–123 (2009).
[Crossref]

D. P. Kelly, B. M. Hennelly, N. Pandey, T. J. Naughton, and W. T. Rhodes, “Resolution limits in practical digital holographic systems,” Opt. Eng. 48, 095801 (2009).
[Crossref]

L. Granero, V. Micó, Z. Zalevsky, and J. García, “Superresolution imaging method using phase-shifting digital lensless Fourier holography,” Opt. Express 17, 15008–15022 (2009).
[Crossref]

2008 (2)

2007 (1)

2006 (1)

M. S. Hezaveh, M. R. Riahi, R. Massudi, and H. Latifi, “Digital holographic scanning of large objects using a rotating optical slab,” Int. J. Imaging Syst. Technol. 16, 258–261 (2006).
[Crossref]

2005 (1)

Y. Zhang, X. Lu, Y. Luo, L. Zhong, and C. She, “Synthetic aperture holography by movement of object,” Proc. SPIE 5636, 581–588 (2005).
[Crossref]

2002 (3)

2001 (1)

1971 (1)

T. Huang, “Digital holography,” Proc. IEEE 59, 1335–1346 (1971).
[Crossref]

1967 (1)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

1966 (1)

1965 (1)

G. W. Stroke, “Lensless Fourier-transform method for optical holography,” Appl. Phys. Lett. 6, 201–203 (1965).
[Crossref]

1964 (1)

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref]

Aksnes, A.

Almoro, P.

Binet, R.

Bo, F.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143–3145 (2002).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

Colineau, J.

Collot, L.

Di, J.

Egge, S. V.

Fan, Q.

Ferreira, C.

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref]

García, J.

Goodman, J. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

J. W. Goodman, Speckle Phenomena: Theory and Applications (Roberts & Company, 2007).

Granero, L.

Gross, M.

Hennelly, B. M.

D. P. Kelly, B. M. Hennelly, N. Pandey, T. J. Naughton, and W. T. Rhodes, “Resolution limits in practical digital holographic systems,” Opt. Eng. 48, 095801 (2009).
[Crossref]

Hezaveh, M. S.

M. S. Hezaveh, M. R. Riahi, R. Massudi, and H. Latifi, “Digital holographic scanning of large objects using a rotating optical slab,” Int. J. Imaging Syst. Technol. 16, 258–261 (2006).
[Crossref]

Huang, T.

T. Huang, “Digital holography,” Proc. IEEE 59, 1335–1346 (1971).
[Crossref]

Jiang, H.

Kelly, D. P.

D. P. Kelly, B. M. Hennelly, N. Pandey, T. J. Naughton, and W. T. Rhodes, “Resolution limits in practical digital holographic systems,” Opt. Eng. 48, 095801 (2009).
[Crossref]

Latifi, H.

M. S. Hezaveh, M. R. Riahi, R. Massudi, and H. Latifi, “Digital holographic scanning of large objects using a rotating optical slab,” Int. J. Imaging Syst. Technol. 16, 258–261 (2006).
[Crossref]

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

Le Clerc, F.

Lee, C.-C.

Lehureau, J.-C.

Leith, E. N.

Liu, C.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143–3145 (2002).
[Crossref]

Liu, H.

Liu, J.-P.

Liu, Z.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143–3145 (2002).
[Crossref]

Lo, Y.-H.

Lu, X.

Y. Zhang, X. Lu, Y. Luo, L. Zhong, and C. She, “Synthetic aperture holography by movement of object,” Proc. SPIE 5636, 581–588 (2005).
[Crossref]

Lukosz, W.

Luo, D.-Z.

Luo, Y.

Y. Zhang, X. Lu, Y. Luo, L. Zhong, and C. She, “Synthetic aperture holography by movement of object,” Proc. SPIE 5636, 581–588 (2005).
[Crossref]

Massig, J. H.

Massudi, R.

M. S. Hezaveh, M. R. Riahi, R. Massudi, and H. Latifi, “Digital holographic scanning of large objects using a rotating optical slab,” Int. J. Imaging Syst. Technol. 16, 258–261 (2006).
[Crossref]

Micó, V.

Naughton, T. J.

D. P. Kelly, B. M. Hennelly, N. Pandey, T. J. Naughton, and W. T. Rhodes, “Resolution limits in practical digital holographic systems,” Opt. Eng. 48, 095801 (2009).
[Crossref]

Osten, W.

Österberg, U.

Pandey, N.

D. P. Kelly, B. M. Hennelly, N. Pandey, T. J. Naughton, and W. T. Rhodes, “Resolution limits in practical digital holographic systems,” Opt. Eng. 48, 095801 (2009).
[Crossref]

Pedrini, G.

Rhodes, W. T.

D. P. Kelly, B. M. Hennelly, N. Pandey, T. J. Naughton, and W. T. Rhodes, “Resolution limits in practical digital holographic systems,” Opt. Eng. 48, 095801 (2009).
[Crossref]

Riahi, M. R.

M. S. Hezaveh, M. R. Riahi, R. Massudi, and H. Latifi, “Digital holographic scanning of large objects using a rotating optical slab,” Int. J. Imaging Syst. Technol. 16, 258–261 (2006).
[Crossref]

She, C.

Y. Zhang, X. Lu, Y. Luo, L. Zhong, and C. She, “Synthetic aperture holography by movement of object,” Proc. SPIE 5636, 581–588 (2005).
[Crossref]

Stroke, G. W.

G. W. Stroke, “Lensless Fourier-transform method for optical holography,” Appl. Phys. Lett. 6, 201–203 (1965).
[Crossref]

Sun, W.

Upatnieks, J.

Wang, Y.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143–3145 (2002).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

Yuan, C.

Zalevsky, Z.

L. Granero, Z. Zalevsky, and V. Micó, “Single-exposure two-dimensional superresolution in digital holography using a vertical cavity surface-emitting laser source array,” Opt. Lett. 36, 1149–1151 (2011).
[Crossref]

V. Micó and Z. Zalevsky, “Superresolved digital in-line holographic microscopy for high resolution lensless biological imaging,” J. Biomed. Opt. 15, 046027 (2010).
[Crossref]

L. Granero, V. Micó, Z. Zalevsky, and J. García, “Synthetic aperture superresolved microscopy in digital lensless Fourier holography by time and angular multiplexing of the object information,” Appl. Opt. 49, 845–857 (2010).
[Crossref]

V. Micó, L. Granero, Z. Zalevsky, and J. García, “Superresolved phase-shifting Gabor holography by CCD shift,” Pure Appl. Opt. 11, 125408 (2009).
[Crossref]

V. Micó, Z. Zalevsky, and J. García, “Optical superresolution: imaging beyond Abbe’s diffraction limit,” J. Holography Speckle 5, 110–123 (2009).
[Crossref]

L. Granero, V. Micó, Z. Zalevsky, and J. García, “Superresolution imaging method using phase-shifting digital lensless Fourier holography,” Opt. Express 17, 15008–15022 (2009).
[Crossref]

Zhai, H.

Zhang, P.

Zhang, Y.

Y. Zhang, X. Lu, Y. Luo, L. Zhong, and C. She, “Synthetic aperture holography by movement of object,” Proc. SPIE 5636, 581–588 (2005).
[Crossref]

Zhao, J.

Zhong, L.

Y. Zhang, X. Lu, Y. Luo, L. Zhong, and C. She, “Synthetic aperture holography by movement of object,” Proc. SPIE 5636, 581–588 (2005).
[Crossref]

Zhu, J.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143–3145 (2002).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (3)

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81, 3143–3145 (2002).
[Crossref]

G. W. Stroke, “Lensless Fourier-transform method for optical holography,” Appl. Phys. Lett. 6, 201–203 (1965).
[Crossref]

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).
[Crossref]

Int. J. Imaging Syst. Technol. (1)

M. S. Hezaveh, M. R. Riahi, R. Massudi, and H. Latifi, “Digital holographic scanning of large objects using a rotating optical slab,” Int. J. Imaging Syst. Technol. 16, 258–261 (2006).
[Crossref]

J. Biomed. Opt. (1)

V. Micó and Z. Zalevsky, “Superresolved digital in-line holographic microscopy for high resolution lensless biological imaging,” J. Biomed. Opt. 15, 046027 (2010).
[Crossref]

J. Holography Speckle (1)

V. Micó, Z. Zalevsky, and J. García, “Optical superresolution: imaging beyond Abbe’s diffraction limit,” J. Holography Speckle 5, 110–123 (2009).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

Nature (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref]

Opt. Eng. (1)

D. P. Kelly, B. M. Hennelly, N. Pandey, T. J. Naughton, and W. T. Rhodes, “Resolution limits in practical digital holographic systems,” Opt. Eng. 48, 095801 (2009).
[Crossref]

Opt. Express (2)

Opt. Lett. (6)

Proc. IEEE (1)

T. Huang, “Digital holography,” Proc. IEEE 59, 1335–1346 (1971).
[Crossref]

Proc. SPIE (1)

Y. Zhang, X. Lu, Y. Luo, L. Zhong, and C. She, “Synthetic aperture holography by movement of object,” Proc. SPIE 5636, 581–588 (2005).
[Crossref]

Pure Appl. Opt. (1)

V. Micó, L. Granero, Z. Zalevsky, and J. García, “Superresolved phase-shifting Gabor holography by CCD shift,” Pure Appl. Opt. 11, 125408 (2009).
[Crossref]

Other (2)

J. W. Goodman, Speckle Phenomena: Theory and Applications (Roberts & Company, 2007).

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

Supplementary Material (2)

» Media 1: MOV (2813 KB)     
» Media 2: MOV (3973 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Upper view of the proposed LOSH layout: (a) ray tracing for imaging and reference beams and (b) identification of the main parameters for the mathematical analysis.

Fig. 2.
Fig. 2.

Experimental setup for LOSH: (a) picture at the laboratory for a 2D mirror-like object and (b) sketch for the diffuse reflective object case.

Fig. 3.
Fig. 3.

Schematic chart of LOSH. The images depicted in the chart correspond with experimental results obtained when LOSH is applied to 1D mirror-like objects [22].

Fig. 4.
Fig. 4.

FOV extension by LOSH for 2D mirror-like objects: (a) FT of the recorded hologram, (b) filtering the information contained in the upper and right hologram order of (a), and (c) addition of all the bandpass images to synthesize the final improved image (Media 1).

Fig. 5.
Fig. 5.

FOV extension for 2D mirror-like objects: (a) conventional and (b) 2D extended FOV images before and after applying LOSH, respectively.

Fig. 6.
Fig. 6.

2D resolution improvement by LOSH for mirror-like objects: (a) and (c) the conventional low-resolution images provided by the experimental layout without applying LOSH, (b) the superresolved image after applying LOSH, (d) a magnification of the red central square in (b) to clearly show the resolution improvement, and (e) and (f) the conventional and the expanded synthetic apertures before and after applying LOSH, respectively.

Fig. 7.
Fig. 7.

Picture of the ROI of the 1D diffuse reflective object showing some dimensions of the object’s details as well as a magnified area (red rectangle) for visualization of the electrical interconnection cables.

Fig. 8.
Fig. 8.

(a) Recovered image of the input object obtained from a single hologram (Media 2) and (b) image obtained after applying fully incoherent mode of LOSH (only 70 recovered single images are considered).

Fig. 9.
Fig. 9.

FOV enlargement for reflective diffuse objects using 1D LOSH. The images correspond with the first, central, and last frames of Media 2. The white ellipses in the first and last images highlight the absence of ceramic connections in the object.

Fig. 10.
Fig. 10.

1D resolution improvement by LOSH for reflective diffuse objects: (a) the conventional low-resolution image and (b)–(d) different types of digital processing showing superresolution and SNR enhancement.

Fig. 11.
Fig. 11.

From (a) to (d), magnified areas marked with the white squares in the different images presented at Fig. 10 for the same numeration, respectively. Graphics from (e) to (h) correspond with plots along the dashed white line in images (a) to (d), respectively.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

U(x1,y1)=O(x1,y1)S(x1,y1).
U(x2,y2)=Cexp[jk2D(x22+y22)]F˜(u,v),
F˜(u,v)=FT{U(x1,y1)exp[jk2D(x12+y12)]},
R(x2,y2)=R0exp[jk2D(x22+y22)]exp(j2πax2λD)exp(j2πby2λD).
b=a3L/2.
ξM=λD2P+bL2,
[w1,w2]=[H/2KλD,H/2KλD].
[w1,w2]=[(ξH/2)2+(ηH/2)2KλD,(ξ+H/2)2+(η+H/2)2KλD].
[w1,w2]=[H/2KλD,3H/2KλD].
ξ=ξN2ξN2η=ηN2ηN2O(x3ξ,y3η)S(x3ξ,y3η)rect(x3ξL)rect(y3ηL).

Metrics