Abstract

Experimental tests are presented to investigate the stress effect on terahertz (THz) waves with a THz time-domain spectroscopy system. Through the Jones matrix method, an experimental principle is derived according to the experimental system. Experimental results indicate the linear relationship between a polytetrafluoroethylene refractive index and applied stress. The result can be applied to the active modulation of a refractive index or phase of a THz wave.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
    [CrossRef]
  2. C. Stoik, M. Bohn, and J. Blackshire, “Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy,” Opt. Express 16, 17039–17051 (2008).
    [CrossRef]
  3. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
    [CrossRef]
  4. F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89, 221911 (2006).
    [CrossRef]
  5. M. Reid and R. Fedosejevs, “Terahertz birefringence and attenuation properties of wood and paper,” Appl. Opt. 45, 2766–2772 (2006).
    [CrossRef]
  6. C. Chen, T. Tsai, C. Pan, and R. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83, 4497–4499 (2003).
    [CrossRef]
  7. Y. Kim, J. Ahn, B. Kim, and D. Yee, “Terahertz birefringence in zinc oxide,” Jpn. J. Appl. Phys. 50, 030203 (2011).
    [CrossRef]
  8. P. Planken, H. Nienhuys, H. Bakker, and T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” J. Opt. Soc. Am. B 18, 313–317 (2001).
    [CrossRef]
  9. L. Zhang, H. Zhong, C. Deng, C. Zhang, and Y. Zhao, “Polarization sensitive terahertz time-domain spectroscopy for birefringent materials,” Appl. Phys. Lett. 94, 211106 (2009).
    [CrossRef]
  10. S. Ebara, Y. Hirota, M. Tani, and M. Hangyo, “Highly sensitive birefringence measurement in THz frequency region and its application to stress measurement,” in Joint 32nd International Conference on Infrared and Millimeter Waves, and 15th International Conference on Terahertz Electronics, Cardiff, UK, September 2–9, 2007, pp. 666–667.
  11. C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jordens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49, E48–E57 (2010).
    [CrossRef]
  12. V. Wallace, E. MacPherson, J. Zeitler, and C. Reid, “Three-dimensional imaging of optically opaque materials using nonionizing terahertz radiation,” J. Opt. Soc. Am. A 25, 3120–3133 (2008).
    [CrossRef]
  13. C. Zandonella, “Terahertz imaging: T-ray specs,” Nature 424, 721–722 (2003).
    [CrossRef]
  14. J. Dally and W. Riley, Experimental Stress Analysis (McGraw-Hill, 1978).

2011 (1)

Y. Kim, J. Ahn, B. Kim, and D. Yee, “Terahertz birefringence in zinc oxide,” Jpn. J. Appl. Phys. 50, 030203 (2011).
[CrossRef]

2010 (1)

2009 (1)

L. Zhang, H. Zhong, C. Deng, C. Zhang, and Y. Zhao, “Polarization sensitive terahertz time-domain spectroscopy for birefringent materials,” Appl. Phys. Lett. 94, 211106 (2009).
[CrossRef]

2008 (2)

2007 (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[CrossRef]

2006 (2)

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89, 221911 (2006).
[CrossRef]

M. Reid and R. Fedosejevs, “Terahertz birefringence and attenuation properties of wood and paper,” Appl. Opt. 45, 2766–2772 (2006).
[CrossRef]

2003 (2)

C. Chen, T. Tsai, C. Pan, and R. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83, 4497–4499 (2003).
[CrossRef]

C. Zandonella, “Terahertz imaging: T-ray specs,” Nature 424, 721–722 (2003).
[CrossRef]

2002 (1)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

2001 (1)

Ahn, J.

Y. Kim, J. Ahn, B. Kim, and D. Yee, “Terahertz birefringence in zinc oxide,” Jpn. J. Appl. Phys. 50, 030203 (2011).
[CrossRef]

Bakker, H.

Blackshire, J.

Bohn, M.

Chen, C.

C. Chen, T. Tsai, C. Pan, and R. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83, 4497–4499 (2003).
[CrossRef]

Dally, J.

J. Dally and W. Riley, Experimental Stress Analysis (McGraw-Hill, 1978).

Deng, C.

L. Zhang, H. Zhong, C. Deng, C. Zhang, and Y. Zhao, “Polarization sensitive terahertz time-domain spectroscopy for birefringent materials,” Appl. Phys. Lett. 94, 211106 (2009).
[CrossRef]

Ebara, S.

S. Ebara, Y. Hirota, M. Tani, and M. Hangyo, “Highly sensitive birefringence measurement in THz frequency region and its application to stress measurement,” in Joint 32nd International Conference on Infrared and Millimeter Waves, and 15th International Conference on Terahertz Electronics, Cardiff, UK, September 2–9, 2007, pp. 666–667.

Ewert, U.

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89, 221911 (2006).
[CrossRef]

Fedosejevs, R.

Ferguson, B.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

Hangyo, M.

S. Ebara, Y. Hirota, M. Tani, and M. Hangyo, “Highly sensitive birefringence measurement in THz frequency region and its application to stress measurement,” in Joint 32nd International Conference on Infrared and Millimeter Waves, and 15th International Conference on Terahertz Electronics, Cardiff, UK, September 2–9, 2007, pp. 666–667.

Hasek, T.

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89, 221911 (2006).
[CrossRef]

Hirota, Y.

S. Ebara, Y. Hirota, M. Tani, and M. Hangyo, “Highly sensitive birefringence measurement in THz frequency region and its application to stress measurement,” in Joint 32nd International Conference on Infrared and Millimeter Waves, and 15th International Conference on Terahertz Electronics, Cardiff, UK, September 2–9, 2007, pp. 666–667.

Hochrein, T.

Jansen, C.

Jordens, C.

Kim, B.

Y. Kim, J. Ahn, B. Kim, and D. Yee, “Terahertz birefringence in zinc oxide,” Jpn. J. Appl. Phys. 50, 030203 (2011).
[CrossRef]

Kim, Y.

Y. Kim, J. Ahn, B. Kim, and D. Yee, “Terahertz birefringence in zinc oxide,” Jpn. J. Appl. Phys. 50, 030203 (2011).
[CrossRef]

Koch, M.

Krumbholz, N.

MacPherson, E.

Nienhuys, H.

Pan, C.

C. Chen, T. Tsai, C. Pan, and R. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83, 4497–4499 (2003).
[CrossRef]

Pan, R.

C. Chen, T. Tsai, C. Pan, and R. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83, 4497–4499 (2003).
[CrossRef]

Peters, O.

Planken, P.

Reid, C.

Reid, M.

Richter, H.

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89, 221911 (2006).
[CrossRef]

Riley, W.

J. Dally and W. Riley, Experimental Stress Analysis (McGraw-Hill, 1978).

Rutz, F.

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89, 221911 (2006).
[CrossRef]

Salhi, M.

Scheller, M.

Stoik, C.

Tani, M.

S. Ebara, Y. Hirota, M. Tani, and M. Hangyo, “Highly sensitive birefringence measurement in THz frequency region and its application to stress measurement,” in Joint 32nd International Conference on Infrared and Millimeter Waves, and 15th International Conference on Terahertz Electronics, Cardiff, UK, September 2–9, 2007, pp. 666–667.

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[CrossRef]

Tsai, T.

C. Chen, T. Tsai, C. Pan, and R. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83, 4497–4499 (2003).
[CrossRef]

Vieweg, N.

Wallace, V.

Wenckebach, T.

Wietzke, S.

Yee, D.

Y. Kim, J. Ahn, B. Kim, and D. Yee, “Terahertz birefringence in zinc oxide,” Jpn. J. Appl. Phys. 50, 030203 (2011).
[CrossRef]

Zandonella, C.

C. Zandonella, “Terahertz imaging: T-ray specs,” Nature 424, 721–722 (2003).
[CrossRef]

Zeitler, J.

Zhang, C.

L. Zhang, H. Zhong, C. Deng, C. Zhang, and Y. Zhao, “Polarization sensitive terahertz time-domain spectroscopy for birefringent materials,” Appl. Phys. Lett. 94, 211106 (2009).
[CrossRef]

Zhang, L.

L. Zhang, H. Zhong, C. Deng, C. Zhang, and Y. Zhao, “Polarization sensitive terahertz time-domain spectroscopy for birefringent materials,” Appl. Phys. Lett. 94, 211106 (2009).
[CrossRef]

Zhang, X. C.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

Zhao, Y.

L. Zhang, H. Zhong, C. Deng, C. Zhang, and Y. Zhao, “Polarization sensitive terahertz time-domain spectroscopy for birefringent materials,” Appl. Phys. Lett. 94, 211106 (2009).
[CrossRef]

Zhong, H.

L. Zhang, H. Zhong, C. Deng, C. Zhang, and Y. Zhao, “Polarization sensitive terahertz time-domain spectroscopy for birefringent materials,” Appl. Phys. Lett. 94, 211106 (2009).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett. 89, 221911 (2006).
[CrossRef]

C. Chen, T. Tsai, C. Pan, and R. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83, 4497–4499 (2003).
[CrossRef]

L. Zhang, H. Zhong, C. Deng, C. Zhang, and Y. Zhao, “Polarization sensitive terahertz time-domain spectroscopy for birefringent materials,” Appl. Phys. Lett. 94, 211106 (2009).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

Y. Kim, J. Ahn, B. Kim, and D. Yee, “Terahertz birefringence in zinc oxide,” Jpn. J. Appl. Phys. 50, 030203 (2011).
[CrossRef]

Nat. Mater. (1)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[CrossRef]

Nature (1)

C. Zandonella, “Terahertz imaging: T-ray specs,” Nature 424, 721–722 (2003).
[CrossRef]

Opt. Express (1)

Other (2)

J. Dally and W. Riley, Experimental Stress Analysis (McGraw-Hill, 1978).

S. Ebara, Y. Hirota, M. Tani, and M. Hangyo, “Highly sensitive birefringence measurement in THz frequency region and its application to stress measurement,” in Joint 32nd International Conference on Infrared and Millimeter Waves, and 15th International Conference on Terahertz Electronics, Cardiff, UK, September 2–9, 2007, pp. 666–667.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of the experimental setup.

Fig. 2.
Fig. 2.

Mechanical loading device.

Fig. 3.
Fig. 3.

Schematic diagram of effect on the transmitted radiations of the refractive index increase and the thickness decrease.

Fig. 4.
Fig. 4.

Amplitude-frequency spectrum of the radiation of the free specimen.

Fig. 5.
Fig. 5.

Phase difference between the transmitted radiations of the loaded specimens and of the free specimen.

Fig. 6.
Fig. 6.

Values of ΔN under different stress states.

Tables (1)

Tables Icon

Table 1. Refractive Index-Stress Coefficients of Experiments

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

Er=[AxeiδxAyeiδy].
E1=P0·Jθ·P0·Er,
P0=[1000],
Jθ=[cosθsinθsinθcosθ]·[eiδ100eiδ2]·[cosθsinθsinθcosθ].
E1=[AxR2+I2eiαeiδx0],
R=cos2θcosδ1+sin2θcosδ2,
I=cos2θsinδ1+sin2θsinδ2,
tanα=IR.
R=cosδ1,
I=sinδ1,
tanα=IR=sinδ1cosδ1=tanδ1.
E1=[AxR2+I2ei(δ1+δx)0].
E2=[AxR2+I2ei(δ1+δx)0].
ΔN=c(δ1δ1)2πfd=cΔδs2πfd,
Δd=d·μ·σE,
Δδd=2πfN0Δdc,
Δδ=Δδs+Δδd.
ΔN=c2πd·Δδf+N0μσE.

Metrics