Abstract

We demonstrate an amplitude-based bending/displacement sensor that uses a plastic photonic bandgap Bragg fiber with one end coated with a silver layer. The reflection intensity of the Bragg fiber is characterized in response to different displacements (or bending curvatures). We note that the Bragg reflector of the fiber acts as an efficient mode stripper for the wavelengths near the edge of the fiber bandgap, which makes the sensor extremely sensitive to bending or displacements at these wavelengths. Besides, by comparison of the Bragg fiber sensor to a sensor based on a standard multimode fiber with similar outer diameter and length, we find that the Bragg fiber sensor is more sensitive to bending due to the presence of a mode stripper in the form of a multilayer reflector. Experimental results show that the minimum detection limit of the Bragg fiber sensor can be as small as 3 μm for displacement sensing.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. http://www.sensorica.co/home/projects/mosquito/philippe-s-project/announcements---philippe-poject/themosquitomeasuresmusclecontraction .
  2. S. Mitachi, D. Shiroishi, and M. Nakagawa, “Development of a sleep apnea syndrome sensor using optical fibers,” in Proceedings of the 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2007), pp. 294–295.
  3. A. Kulkarni, J. Na, Y. Kim, and T. Kim, “The plastic optical fiber cantilever beam as a force sensor,” Microw. Opt. Technol. Lett. 51, 1020–1023 (2009).
    [CrossRef]
  4. L. Yuan, J. Yang, and Z. Liu, “A compact fiber-optic flow velocity sensor based on a twin-core fiber Michelson interferometer,” IEEE Sens. J. 8, 1114–1117 (2008).
    [CrossRef]
  5. P. Liu and Q. Chen, “Fiber Bragg grating cantilever sensor system for liquid flow monitoring with temperature compensation,” Proc. SPIE 7753, 77538L (2011).
  6. P.-Y. Ju, C.-H. Tsai, L.-M. Fu, and C.-H. Lin, “Microfluidic flow meter and viscometer utilizing flow-induced vibration on an optical fiber cantilever,” in Proceedings of the 16th International Solid-State Sensors, Actuators and Microsystems Conference, Beijing, China (IEEE, 2011), pp. 1428–1431.
  7. M. Morante, A. Cobo, J. M. Lopez-Higue, and M. Lopez-Amo, “New approach using a bare fiber optic cantilever beam as a low-frequency acceleration measuring element,” Opt. Eng. 35, 1700–1706 (1996).
    [CrossRef]
  8. M. H. Khorasani, C. Menon, M. V. Sarunic, M. Gharehbaghi, and Y. Li, “Towards a miniaturized embeddable sensor for multi-DOF robotic system,” in Proceedings of the 2nd IEEE/RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Scottsdale, Arizona (IEEE, 2008), pp. 664–669.
  9. D.-Z. Tan, Q.-M. Wang, R.-H. Song, X. Vao, and Y.-H. Gu, “Optical fiber based slide tactile sensor for underwater robots,” J. Marine Sci. Appl. 7, 122–126 (2008).
    [CrossRef]
  10. Y. Fu, H. Di, and R. Liu, “Light intensity modulation fiber-optic sensor for curvature measurement,” Opt. Laser Technol. 42, 594–599 (2010).
    [CrossRef]
  11. K. S. C. Kuang, W. J. Cantwell, and P. J. Scully, “An evaluation of a novel plastic optical fiber sensor for axial strain and bend measurements,” Meas. Sci. Technol. 13, 1523–1534 (2002).
    [CrossRef]
  12. X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G. D. Peng, “Highly sensitive bend sensor based on Bragg grating in eccentric core fiber,” IEEE Photon. Technol. Lett. 22, 850–852 (2010).
    [CrossRef]
  13. Y.-S. Yu, Z.-Y. Zhao, Z.-C. Zhuo, W. Zheng, Y. Qian, and Y.-S. Zhu, “Bend sensor using an embedded etched fiber Bragg grating,” Microw. Opt. Technol. Lett. 43, 414–417 (2004).
    [CrossRef]
  14. Y.-G. Han, “Directional bending sensor with temperature insensitivity using a sampled chirped fiber Bragg grating,” J. Appl. Phys. 105, 063103 (2009).
    [CrossRef]
  15. H. J. Patrick and S. T. Vohra, “Long period fiber grating for structural bend sensing,” Electron. Lett. 34, 1773–1775 (1998).
    [CrossRef]
  16. S. W. James and R. P. Tatam, “Optical fiber long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003).
    [CrossRef]
  17. Y. Gong, T. Zhao, J. Rao, and Y. Wu, “All-fiber curvature sensor based on multimode interference,” IEEE Photon. Technol. Lett. 23, 679–681 (2011).
    [CrossRef]
  18. M. Deng, C.-P. Tang, T. Zhu, and Y.-J. Rao, “Highly sensitive bend sensor based on Mach–Zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284, 2849–2853 (2011).
    [CrossRef]
  19. D. Chen, F. Xu, G. Hu, L. Chen, and B. Peng, “Fiber bending sensor based on a two mode fiber,” Microw. Opt. Technol. Lett. 54, 1047–1049 (2012).
    [CrossRef]
  20. D. M. Hernandez, A. Martinez-Rio, I. Torres-Gomez, and G. Salceda-Delgado, “Compact optical fiber curvature sensor based on concatenating two tapers,” Opt. Lett. 36, 4380–4382 (2011).
    [CrossRef]
  21. W. Shi, Y. L. Lee, B. Yu, Y. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on in-line fiber Mach–Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283, 2097–2101 (2010).
    [CrossRef]
  22. R. M. Silva, M. S. Ferreira, J. Kobelke, K. Schuster, and O. Frazao, “Simultaneous measurement of curvature and strain using a suspended multicore fiber,” Opt. Lett. 36, 3939–3941 (2011).
    [CrossRef]
  23. J. Yang, L. Yuan, X. Zu, Y. Zhang, and B. Liu, “Twin-core fiber white light interferometric bending sensor,” Proc. SPIE 7004, 70040Y (2008).
    [CrossRef]
  24. http://www.sensorica.co/home/projects/mosquito .
  25. A. Dupuis, N. Guo, B. Gauvreau, A. Hassani, E. Pone, F. Boismenu, and M. Skorobogatiy, “Guiding in the visible with “colorful” solid-core Bragg fibers,” Opt. Lett. 32, 2882–2884 (2007).
    [CrossRef]
  26. H. Qu, B. Ung, N. Guo, and M. Skorobogatiy, “Photonic bandgap fiber bundle spectrometer,” Appl. Opt. 49, 4791–4800 (2010).
    [CrossRef]
  27. http://www.sensorica.co/home/projects/optical-fiber-coating/announcements---fiber-coating/wetsilvercoatingcanbeautomated .
  28. M. Skorobogatiy, “Microstructured and photonic bandgap fibers for applications in the resonant bio- and chemical sensors,” J. Sens. 2009, 524237 (2009).
    [CrossRef]
  29. S. Karuse and Z.-H. Lu, “Refractive index-temperature measurements on anionically polymerized polystyrene,” J. Polym. Sci. 19, 1925–1928 (1981).
    [CrossRef]
  30. H. Lin, D. E. Day, K. D. Weaver, and J. O. Stoffer, “Temperature and wavelength dependent transmission of optically transparent glass fiber poly(methyl methacrylate) composites,” J. Mater. Sci. 29, 5193–5198 (1994).
    [CrossRef]
  31. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weiseberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large core OmniGuide fibers,” Opt. Express 9, 748–779 (2001).
    [CrossRef]
  32. http://www.spyroplastics.com/products/pdf/spyrex_typical_properties.pdf .
  33. W. D. Callister and D. G. Rethwisch, Fundamentals of Materials Science and Engineering: An Integrated Approach, 3rd ed. (Wiley, 2008), pp. 708–709.

2012 (1)

D. Chen, F. Xu, G. Hu, L. Chen, and B. Peng, “Fiber bending sensor based on a two mode fiber,” Microw. Opt. Technol. Lett. 54, 1047–1049 (2012).
[CrossRef]

2011 (5)

Y. Gong, T. Zhao, J. Rao, and Y. Wu, “All-fiber curvature sensor based on multimode interference,” IEEE Photon. Technol. Lett. 23, 679–681 (2011).
[CrossRef]

M. Deng, C.-P. Tang, T. Zhu, and Y.-J. Rao, “Highly sensitive bend sensor based on Mach–Zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284, 2849–2853 (2011).
[CrossRef]

P. Liu and Q. Chen, “Fiber Bragg grating cantilever sensor system for liquid flow monitoring with temperature compensation,” Proc. SPIE 7753, 77538L (2011).

R. M. Silva, M. S. Ferreira, J. Kobelke, K. Schuster, and O. Frazao, “Simultaneous measurement of curvature and strain using a suspended multicore fiber,” Opt. Lett. 36, 3939–3941 (2011).
[CrossRef]

D. M. Hernandez, A. Martinez-Rio, I. Torres-Gomez, and G. Salceda-Delgado, “Compact optical fiber curvature sensor based on concatenating two tapers,” Opt. Lett. 36, 4380–4382 (2011).
[CrossRef]

2010 (4)

H. Qu, B. Ung, N. Guo, and M. Skorobogatiy, “Photonic bandgap fiber bundle spectrometer,” Appl. Opt. 49, 4791–4800 (2010).
[CrossRef]

Y. Fu, H. Di, and R. Liu, “Light intensity modulation fiber-optic sensor for curvature measurement,” Opt. Laser Technol. 42, 594–599 (2010).
[CrossRef]

X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G. D. Peng, “Highly sensitive bend sensor based on Bragg grating in eccentric core fiber,” IEEE Photon. Technol. Lett. 22, 850–852 (2010).
[CrossRef]

W. Shi, Y. L. Lee, B. Yu, Y. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on in-line fiber Mach–Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283, 2097–2101 (2010).
[CrossRef]

2009 (3)

Y.-G. Han, “Directional bending sensor with temperature insensitivity using a sampled chirped fiber Bragg grating,” J. Appl. Phys. 105, 063103 (2009).
[CrossRef]

A. Kulkarni, J. Na, Y. Kim, and T. Kim, “The plastic optical fiber cantilever beam as a force sensor,” Microw. Opt. Technol. Lett. 51, 1020–1023 (2009).
[CrossRef]

M. Skorobogatiy, “Microstructured and photonic bandgap fibers for applications in the resonant bio- and chemical sensors,” J. Sens. 2009, 524237 (2009).
[CrossRef]

2008 (3)

L. Yuan, J. Yang, and Z. Liu, “A compact fiber-optic flow velocity sensor based on a twin-core fiber Michelson interferometer,” IEEE Sens. J. 8, 1114–1117 (2008).
[CrossRef]

D.-Z. Tan, Q.-M. Wang, R.-H. Song, X. Vao, and Y.-H. Gu, “Optical fiber based slide tactile sensor for underwater robots,” J. Marine Sci. Appl. 7, 122–126 (2008).
[CrossRef]

J. Yang, L. Yuan, X. Zu, Y. Zhang, and B. Liu, “Twin-core fiber white light interferometric bending sensor,” Proc. SPIE 7004, 70040Y (2008).
[CrossRef]

2007 (1)

2004 (1)

Y.-S. Yu, Z.-Y. Zhao, Z.-C. Zhuo, W. Zheng, Y. Qian, and Y.-S. Zhu, “Bend sensor using an embedded etched fiber Bragg grating,” Microw. Opt. Technol. Lett. 43, 414–417 (2004).
[CrossRef]

2003 (1)

S. W. James and R. P. Tatam, “Optical fiber long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003).
[CrossRef]

2002 (1)

K. S. C. Kuang, W. J. Cantwell, and P. J. Scully, “An evaluation of a novel plastic optical fiber sensor for axial strain and bend measurements,” Meas. Sci. Technol. 13, 1523–1534 (2002).
[CrossRef]

2001 (1)

1998 (1)

H. J. Patrick and S. T. Vohra, “Long period fiber grating for structural bend sensing,” Electron. Lett. 34, 1773–1775 (1998).
[CrossRef]

1996 (1)

M. Morante, A. Cobo, J. M. Lopez-Higue, and M. Lopez-Amo, “New approach using a bare fiber optic cantilever beam as a low-frequency acceleration measuring element,” Opt. Eng. 35, 1700–1706 (1996).
[CrossRef]

1994 (1)

H. Lin, D. E. Day, K. D. Weaver, and J. O. Stoffer, “Temperature and wavelength dependent transmission of optically transparent glass fiber poly(methyl methacrylate) composites,” J. Mater. Sci. 29, 5193–5198 (1994).
[CrossRef]

1981 (1)

S. Karuse and Z.-H. Lu, “Refractive index-temperature measurements on anionically polymerized polystyrene,” J. Polym. Sci. 19, 1925–1928 (1981).
[CrossRef]

Ahn, T. J.

W. Shi, Y. L. Lee, B. Yu, Y. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on in-line fiber Mach–Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283, 2097–2101 (2010).
[CrossRef]

Boismenu, F.

Callister, W. D.

W. D. Callister and D. G. Rethwisch, Fundamentals of Materials Science and Engineering: An Integrated Approach, 3rd ed. (Wiley, 2008), pp. 708–709.

Cantwell, W. J.

K. S. C. Kuang, W. J. Cantwell, and P. J. Scully, “An evaluation of a novel plastic optical fiber sensor for axial strain and bend measurements,” Meas. Sci. Technol. 13, 1523–1534 (2002).
[CrossRef]

Chen, D.

D. Chen, F. Xu, G. Hu, L. Chen, and B. Peng, “Fiber bending sensor based on a two mode fiber,” Microw. Opt. Technol. Lett. 54, 1047–1049 (2012).
[CrossRef]

Chen, L.

D. Chen, F. Xu, G. Hu, L. Chen, and B. Peng, “Fiber bending sensor based on a two mode fiber,” Microw. Opt. Technol. Lett. 54, 1047–1049 (2012).
[CrossRef]

Chen, Q.

P. Liu and Q. Chen, “Fiber Bragg grating cantilever sensor system for liquid flow monitoring with temperature compensation,” Proc. SPIE 7753, 77538L (2011).

Chen, X.

X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G. D. Peng, “Highly sensitive bend sensor based on Bragg grating in eccentric core fiber,” IEEE Photon. Technol. Lett. 22, 850–852 (2010).
[CrossRef]

Cobo, A.

M. Morante, A. Cobo, J. M. Lopez-Higue, and M. Lopez-Amo, “New approach using a bare fiber optic cantilever beam as a low-frequency acceleration measuring element,” Opt. Eng. 35, 1700–1706 (1996).
[CrossRef]

Day, D. E.

H. Lin, D. E. Day, K. D. Weaver, and J. O. Stoffer, “Temperature and wavelength dependent transmission of optically transparent glass fiber poly(methyl methacrylate) composites,” J. Mater. Sci. 29, 5193–5198 (1994).
[CrossRef]

Deng, M.

M. Deng, C.-P. Tang, T. Zhu, and Y.-J. Rao, “Highly sensitive bend sensor based on Mach–Zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284, 2849–2853 (2011).
[CrossRef]

Di, H.

Y. Fu, H. Di, and R. Liu, “Light intensity modulation fiber-optic sensor for curvature measurement,” Opt. Laser Technol. 42, 594–599 (2010).
[CrossRef]

Dupuis, A.

Engeness, T. D.

Ferreira, M. S.

Fink, Y.

Frazao, O.

Fu, L.-M.

P.-Y. Ju, C.-H. Tsai, L.-M. Fu, and C.-H. Lin, “Microfluidic flow meter and viscometer utilizing flow-induced vibration on an optical fiber cantilever,” in Proceedings of the 16th International Solid-State Sensors, Actuators and Microsystems Conference, Beijing, China (IEEE, 2011), pp. 1428–1431.

Fu, Y.

Y. Fu, H. Di, and R. Liu, “Light intensity modulation fiber-optic sensor for curvature measurement,” Opt. Laser Technol. 42, 594–599 (2010).
[CrossRef]

Gauvreau, B.

Gharehbaghi, M.

M. H. Khorasani, C. Menon, M. V. Sarunic, M. Gharehbaghi, and Y. Li, “Towards a miniaturized embeddable sensor for multi-DOF robotic system,” in Proceedings of the 2nd IEEE/RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Scottsdale, Arizona (IEEE, 2008), pp. 664–669.

Gong, Y.

Y. Gong, T. Zhao, J. Rao, and Y. Wu, “All-fiber curvature sensor based on multimode interference,” IEEE Photon. Technol. Lett. 23, 679–681 (2011).
[CrossRef]

Gu, Y.-H.

D.-Z. Tan, Q.-M. Wang, R.-H. Song, X. Vao, and Y.-H. Gu, “Optical fiber based slide tactile sensor for underwater robots,” J. Marine Sci. Appl. 7, 122–126 (2008).
[CrossRef]

Guo, N.

Han, Y.-G.

Y.-G. Han, “Directional bending sensor with temperature insensitivity using a sampled chirped fiber Bragg grating,” J. Appl. Phys. 105, 063103 (2009).
[CrossRef]

Hassani, A.

Hernandez, D. M.

Hu, G.

D. Chen, F. Xu, G. Hu, L. Chen, and B. Peng, “Fiber bending sensor based on a two mode fiber,” Microw. Opt. Technol. Lett. 54, 1047–1049 (2012).
[CrossRef]

Ibanescu, M.

Jacobs, S. A.

James, S. W.

S. W. James and R. P. Tatam, “Optical fiber long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003).
[CrossRef]

Joannopoulos, J. D.

Johnson, S. G.

Ju, P.-Y.

P.-Y. Ju, C.-H. Tsai, L.-M. Fu, and C.-H. Lin, “Microfluidic flow meter and viscometer utilizing flow-induced vibration on an optical fiber cantilever,” in Proceedings of the 16th International Solid-State Sensors, Actuators and Microsystems Conference, Beijing, China (IEEE, 2011), pp. 1428–1431.

Kalli, K.

X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G. D. Peng, “Highly sensitive bend sensor based on Bragg grating in eccentric core fiber,” IEEE Photon. Technol. Lett. 22, 850–852 (2010).
[CrossRef]

Karuse, S.

S. Karuse and Z.-H. Lu, “Refractive index-temperature measurements on anionically polymerized polystyrene,” J. Polym. Sci. 19, 1925–1928 (1981).
[CrossRef]

Khorasani, M. H.

M. H. Khorasani, C. Menon, M. V. Sarunic, M. Gharehbaghi, and Y. Li, “Towards a miniaturized embeddable sensor for multi-DOF robotic system,” in Proceedings of the 2nd IEEE/RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Scottsdale, Arizona (IEEE, 2008), pp. 664–669.

Kim, T.

A. Kulkarni, J. Na, Y. Kim, and T. Kim, “The plastic optical fiber cantilever beam as a force sensor,” Microw. Opt. Technol. Lett. 51, 1020–1023 (2009).
[CrossRef]

Kim, Y.

A. Kulkarni, J. Na, Y. Kim, and T. Kim, “The plastic optical fiber cantilever beam as a force sensor,” Microw. Opt. Technol. Lett. 51, 1020–1023 (2009).
[CrossRef]

Kobelke, J.

Kuang, K. S. C.

K. S. C. Kuang, W. J. Cantwell, and P. J. Scully, “An evaluation of a novel plastic optical fiber sensor for axial strain and bend measurements,” Meas. Sci. Technol. 13, 1523–1534 (2002).
[CrossRef]

Kulkarni, A.

A. Kulkarni, J. Na, Y. Kim, and T. Kim, “The plastic optical fiber cantilever beam as a force sensor,” Microw. Opt. Technol. Lett. 51, 1020–1023 (2009).
[CrossRef]

Lee, Y. L.

W. Shi, Y. L. Lee, B. Yu, Y. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on in-line fiber Mach–Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283, 2097–2101 (2010).
[CrossRef]

Li, Y.

M. H. Khorasani, C. Menon, M. V. Sarunic, M. Gharehbaghi, and Y. Li, “Towards a miniaturized embeddable sensor for multi-DOF robotic system,” in Proceedings of the 2nd IEEE/RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Scottsdale, Arizona (IEEE, 2008), pp. 664–669.

Lin, C.-H.

P.-Y. Ju, C.-H. Tsai, L.-M. Fu, and C.-H. Lin, “Microfluidic flow meter and viscometer utilizing flow-induced vibration on an optical fiber cantilever,” in Proceedings of the 16th International Solid-State Sensors, Actuators and Microsystems Conference, Beijing, China (IEEE, 2011), pp. 1428–1431.

Lin, H.

H. Lin, D. E. Day, K. D. Weaver, and J. O. Stoffer, “Temperature and wavelength dependent transmission of optically transparent glass fiber poly(methyl methacrylate) composites,” J. Mater. Sci. 29, 5193–5198 (1994).
[CrossRef]

Liu, B.

J. Yang, L. Yuan, X. Zu, Y. Zhang, and B. Liu, “Twin-core fiber white light interferometric bending sensor,” Proc. SPIE 7004, 70040Y (2008).
[CrossRef]

Liu, P.

P. Liu and Q. Chen, “Fiber Bragg grating cantilever sensor system for liquid flow monitoring with temperature compensation,” Proc. SPIE 7753, 77538L (2011).

Liu, R.

Y. Fu, H. Di, and R. Liu, “Light intensity modulation fiber-optic sensor for curvature measurement,” Opt. Laser Technol. 42, 594–599 (2010).
[CrossRef]

Liu, Z.

L. Yuan, J. Yang, and Z. Liu, “A compact fiber-optic flow velocity sensor based on a twin-core fiber Michelson interferometer,” IEEE Sens. J. 8, 1114–1117 (2008).
[CrossRef]

Lopez-Amo, M.

M. Morante, A. Cobo, J. M. Lopez-Higue, and M. Lopez-Amo, “New approach using a bare fiber optic cantilever beam as a low-frequency acceleration measuring element,” Opt. Eng. 35, 1700–1706 (1996).
[CrossRef]

Lopez-Higue, J. M.

M. Morante, A. Cobo, J. M. Lopez-Higue, and M. Lopez-Amo, “New approach using a bare fiber optic cantilever beam as a low-frequency acceleration measuring element,” Opt. Eng. 35, 1700–1706 (1996).
[CrossRef]

Lu, Z.-H.

S. Karuse and Z.-H. Lu, “Refractive index-temperature measurements on anionically polymerized polystyrene,” J. Polym. Sci. 19, 1925–1928 (1981).
[CrossRef]

Martinez-Rio, A.

Menon, C.

M. H. Khorasani, C. Menon, M. V. Sarunic, M. Gharehbaghi, and Y. Li, “Towards a miniaturized embeddable sensor for multi-DOF robotic system,” in Proceedings of the 2nd IEEE/RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Scottsdale, Arizona (IEEE, 2008), pp. 664–669.

Mitachi, S.

S. Mitachi, D. Shiroishi, and M. Nakagawa, “Development of a sleep apnea syndrome sensor using optical fibers,” in Proceedings of the 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2007), pp. 294–295.

Morante, M.

M. Morante, A. Cobo, J. M. Lopez-Higue, and M. Lopez-Amo, “New approach using a bare fiber optic cantilever beam as a low-frequency acceleration measuring element,” Opt. Eng. 35, 1700–1706 (1996).
[CrossRef]

Na, J.

A. Kulkarni, J. Na, Y. Kim, and T. Kim, “The plastic optical fiber cantilever beam as a force sensor,” Microw. Opt. Technol. Lett. 51, 1020–1023 (2009).
[CrossRef]

Nakagawa, M.

S. Mitachi, D. Shiroishi, and M. Nakagawa, “Development of a sleep apnea syndrome sensor using optical fibers,” in Proceedings of the 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2007), pp. 294–295.

Noh, Y.

W. Shi, Y. L. Lee, B. Yu, Y. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on in-line fiber Mach–Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283, 2097–2101 (2010).
[CrossRef]

Patrick, H. J.

H. J. Patrick and S. T. Vohra, “Long period fiber grating for structural bend sensing,” Electron. Lett. 34, 1773–1775 (1998).
[CrossRef]

Peng, B.

D. Chen, F. Xu, G. Hu, L. Chen, and B. Peng, “Fiber bending sensor based on a two mode fiber,” Microw. Opt. Technol. Lett. 54, 1047–1049 (2012).
[CrossRef]

Peng, G. D.

X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G. D. Peng, “Highly sensitive bend sensor based on Bragg grating in eccentric core fiber,” IEEE Photon. Technol. Lett. 22, 850–852 (2010).
[CrossRef]

Pone, E.

Qian, Y.

Y.-S. Yu, Z.-Y. Zhao, Z.-C. Zhuo, W. Zheng, Y. Qian, and Y.-S. Zhu, “Bend sensor using an embedded etched fiber Bragg grating,” Microw. Opt. Technol. Lett. 43, 414–417 (2004).
[CrossRef]

Qu, H.

Rao, J.

Y. Gong, T. Zhao, J. Rao, and Y. Wu, “All-fiber curvature sensor based on multimode interference,” IEEE Photon. Technol. Lett. 23, 679–681 (2011).
[CrossRef]

Rao, Y.-J.

M. Deng, C.-P. Tang, T. Zhu, and Y.-J. Rao, “Highly sensitive bend sensor based on Mach–Zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284, 2849–2853 (2011).
[CrossRef]

Rethwisch, D. G.

W. D. Callister and D. G. Rethwisch, Fundamentals of Materials Science and Engineering: An Integrated Approach, 3rd ed. (Wiley, 2008), pp. 708–709.

Salceda-Delgado, G.

Sarunic, M. V.

M. H. Khorasani, C. Menon, M. V. Sarunic, M. Gharehbaghi, and Y. Li, “Towards a miniaturized embeddable sensor for multi-DOF robotic system,” in Proceedings of the 2nd IEEE/RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Scottsdale, Arizona (IEEE, 2008), pp. 664–669.

Schuster, K.

Scully, P. J.

K. S. C. Kuang, W. J. Cantwell, and P. J. Scully, “An evaluation of a novel plastic optical fiber sensor for axial strain and bend measurements,” Meas. Sci. Technol. 13, 1523–1534 (2002).
[CrossRef]

Shi, W.

W. Shi, Y. L. Lee, B. Yu, Y. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on in-line fiber Mach–Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283, 2097–2101 (2010).
[CrossRef]

Shiroishi, D.

S. Mitachi, D. Shiroishi, and M. Nakagawa, “Development of a sleep apnea syndrome sensor using optical fibers,” in Proceedings of the 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2007), pp. 294–295.

Silva, R. M.

Skorobogatiy, M.

Soljacic, M.

Song, R.-H.

D.-Z. Tan, Q.-M. Wang, R.-H. Song, X. Vao, and Y.-H. Gu, “Optical fiber based slide tactile sensor for underwater robots,” J. Marine Sci. Appl. 7, 122–126 (2008).
[CrossRef]

Stoffer, J. O.

H. Lin, D. E. Day, K. D. Weaver, and J. O. Stoffer, “Temperature and wavelength dependent transmission of optically transparent glass fiber poly(methyl methacrylate) composites,” J. Mater. Sci. 29, 5193–5198 (1994).
[CrossRef]

Tan, D.-Z.

D.-Z. Tan, Q.-M. Wang, R.-H. Song, X. Vao, and Y.-H. Gu, “Optical fiber based slide tactile sensor for underwater robots,” J. Marine Sci. Appl. 7, 122–126 (2008).
[CrossRef]

Tang, C.-P.

M. Deng, C.-P. Tang, T. Zhu, and Y.-J. Rao, “Highly sensitive bend sensor based on Mach–Zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284, 2849–2853 (2011).
[CrossRef]

Tatam, R. P.

S. W. James and R. P. Tatam, “Optical fiber long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003).
[CrossRef]

Torres-Gomez, I.

Tsai, C.-H.

P.-Y. Ju, C.-H. Tsai, L.-M. Fu, and C.-H. Lin, “Microfluidic flow meter and viscometer utilizing flow-induced vibration on an optical fiber cantilever,” in Proceedings of the 16th International Solid-State Sensors, Actuators and Microsystems Conference, Beijing, China (IEEE, 2011), pp. 1428–1431.

Ung, B.

Vao, X.

D.-Z. Tan, Q.-M. Wang, R.-H. Song, X. Vao, and Y.-H. Gu, “Optical fiber based slide tactile sensor for underwater robots,” J. Marine Sci. Appl. 7, 122–126 (2008).
[CrossRef]

Vohra, S. T.

H. J. Patrick and S. T. Vohra, “Long period fiber grating for structural bend sensing,” Electron. Lett. 34, 1773–1775 (1998).
[CrossRef]

Wang, Q.-M.

D.-Z. Tan, Q.-M. Wang, R.-H. Song, X. Vao, and Y.-H. Gu, “Optical fiber based slide tactile sensor for underwater robots,” J. Marine Sci. Appl. 7, 122–126 (2008).
[CrossRef]

Weaver, K. D.

H. Lin, D. E. Day, K. D. Weaver, and J. O. Stoffer, “Temperature and wavelength dependent transmission of optically transparent glass fiber poly(methyl methacrylate) composites,” J. Mater. Sci. 29, 5193–5198 (1994).
[CrossRef]

Webb, D. J.

X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G. D. Peng, “Highly sensitive bend sensor based on Bragg grating in eccentric core fiber,” IEEE Photon. Technol. Lett. 22, 850–852 (2010).
[CrossRef]

Weiseberg, O.

Wu, Y.

Y. Gong, T. Zhao, J. Rao, and Y. Wu, “All-fiber curvature sensor based on multimode interference,” IEEE Photon. Technol. Lett. 23, 679–681 (2011).
[CrossRef]

Xu, F.

D. Chen, F. Xu, G. Hu, L. Chen, and B. Peng, “Fiber bending sensor based on a two mode fiber,” Microw. Opt. Technol. Lett. 54, 1047–1049 (2012).
[CrossRef]

Yang, J.

L. Yuan, J. Yang, and Z. Liu, “A compact fiber-optic flow velocity sensor based on a twin-core fiber Michelson interferometer,” IEEE Sens. J. 8, 1114–1117 (2008).
[CrossRef]

J. Yang, L. Yuan, X. Zu, Y. Zhang, and B. Liu, “Twin-core fiber white light interferometric bending sensor,” Proc. SPIE 7004, 70040Y (2008).
[CrossRef]

Yu, B.

W. Shi, Y. L. Lee, B. Yu, Y. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on in-line fiber Mach–Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283, 2097–2101 (2010).
[CrossRef]

Yu, Y.-S.

Y.-S. Yu, Z.-Y. Zhao, Z.-C. Zhuo, W. Zheng, Y. Qian, and Y.-S. Zhu, “Bend sensor using an embedded etched fiber Bragg grating,” Microw. Opt. Technol. Lett. 43, 414–417 (2004).
[CrossRef]

Yuan, L.

J. Yang, L. Yuan, X. Zu, Y. Zhang, and B. Liu, “Twin-core fiber white light interferometric bending sensor,” Proc. SPIE 7004, 70040Y (2008).
[CrossRef]

L. Yuan, J. Yang, and Z. Liu, “A compact fiber-optic flow velocity sensor based on a twin-core fiber Michelson interferometer,” IEEE Sens. J. 8, 1114–1117 (2008).
[CrossRef]

Zhang, C.

X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G. D. Peng, “Highly sensitive bend sensor based on Bragg grating in eccentric core fiber,” IEEE Photon. Technol. Lett. 22, 850–852 (2010).
[CrossRef]

Zhang, Y.

J. Yang, L. Yuan, X. Zu, Y. Zhang, and B. Liu, “Twin-core fiber white light interferometric bending sensor,” Proc. SPIE 7004, 70040Y (2008).
[CrossRef]

Zhao, T.

Y. Gong, T. Zhao, J. Rao, and Y. Wu, “All-fiber curvature sensor based on multimode interference,” IEEE Photon. Technol. Lett. 23, 679–681 (2011).
[CrossRef]

Zhao, Z.-Y.

Y.-S. Yu, Z.-Y. Zhao, Z.-C. Zhuo, W. Zheng, Y. Qian, and Y.-S. Zhu, “Bend sensor using an embedded etched fiber Bragg grating,” Microw. Opt. Technol. Lett. 43, 414–417 (2004).
[CrossRef]

Zheng, W.

Y.-S. Yu, Z.-Y. Zhao, Z.-C. Zhuo, W. Zheng, Y. Qian, and Y.-S. Zhu, “Bend sensor using an embedded etched fiber Bragg grating,” Microw. Opt. Technol. Lett. 43, 414–417 (2004).
[CrossRef]

Zhu, T.

M. Deng, C.-P. Tang, T. Zhu, and Y.-J. Rao, “Highly sensitive bend sensor based on Mach–Zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284, 2849–2853 (2011).
[CrossRef]

Zhu, Y.-S.

Y.-S. Yu, Z.-Y. Zhao, Z.-C. Zhuo, W. Zheng, Y. Qian, and Y.-S. Zhu, “Bend sensor using an embedded etched fiber Bragg grating,” Microw. Opt. Technol. Lett. 43, 414–417 (2004).
[CrossRef]

Zhuo, Z.-C.

Y.-S. Yu, Z.-Y. Zhao, Z.-C. Zhuo, W. Zheng, Y. Qian, and Y.-S. Zhu, “Bend sensor using an embedded etched fiber Bragg grating,” Microw. Opt. Technol. Lett. 43, 414–417 (2004).
[CrossRef]

Zu, X.

J. Yang, L. Yuan, X. Zu, Y. Zhang, and B. Liu, “Twin-core fiber white light interferometric bending sensor,” Proc. SPIE 7004, 70040Y (2008).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (1)

H. J. Patrick and S. T. Vohra, “Long period fiber grating for structural bend sensing,” Electron. Lett. 34, 1773–1775 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Y. Gong, T. Zhao, J. Rao, and Y. Wu, “All-fiber curvature sensor based on multimode interference,” IEEE Photon. Technol. Lett. 23, 679–681 (2011).
[CrossRef]

X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G. D. Peng, “Highly sensitive bend sensor based on Bragg grating in eccentric core fiber,” IEEE Photon. Technol. Lett. 22, 850–852 (2010).
[CrossRef]

IEEE Sens. J. (1)

L. Yuan, J. Yang, and Z. Liu, “A compact fiber-optic flow velocity sensor based on a twin-core fiber Michelson interferometer,” IEEE Sens. J. 8, 1114–1117 (2008).
[CrossRef]

J. Appl. Phys. (1)

Y.-G. Han, “Directional bending sensor with temperature insensitivity using a sampled chirped fiber Bragg grating,” J. Appl. Phys. 105, 063103 (2009).
[CrossRef]

J. Marine Sci. Appl. (1)

D.-Z. Tan, Q.-M. Wang, R.-H. Song, X. Vao, and Y.-H. Gu, “Optical fiber based slide tactile sensor for underwater robots,” J. Marine Sci. Appl. 7, 122–126 (2008).
[CrossRef]

J. Mater. Sci. (1)

H. Lin, D. E. Day, K. D. Weaver, and J. O. Stoffer, “Temperature and wavelength dependent transmission of optically transparent glass fiber poly(methyl methacrylate) composites,” J. Mater. Sci. 29, 5193–5198 (1994).
[CrossRef]

J. Polym. Sci. (1)

S. Karuse and Z.-H. Lu, “Refractive index-temperature measurements on anionically polymerized polystyrene,” J. Polym. Sci. 19, 1925–1928 (1981).
[CrossRef]

J. Sens. (1)

M. Skorobogatiy, “Microstructured and photonic bandgap fibers for applications in the resonant bio- and chemical sensors,” J. Sens. 2009, 524237 (2009).
[CrossRef]

Meas. Sci. Technol. (2)

K. S. C. Kuang, W. J. Cantwell, and P. J. Scully, “An evaluation of a novel plastic optical fiber sensor for axial strain and bend measurements,” Meas. Sci. Technol. 13, 1523–1534 (2002).
[CrossRef]

S. W. James and R. P. Tatam, “Optical fiber long-period grating sensors: characteristics and application,” Meas. Sci. Technol. 14, R49–R61 (2003).
[CrossRef]

Microw. Opt. Technol. Lett. (3)

A. Kulkarni, J. Na, Y. Kim, and T. Kim, “The plastic optical fiber cantilever beam as a force sensor,” Microw. Opt. Technol. Lett. 51, 1020–1023 (2009).
[CrossRef]

Y.-S. Yu, Z.-Y. Zhao, Z.-C. Zhuo, W. Zheng, Y. Qian, and Y.-S. Zhu, “Bend sensor using an embedded etched fiber Bragg grating,” Microw. Opt. Technol. Lett. 43, 414–417 (2004).
[CrossRef]

D. Chen, F. Xu, G. Hu, L. Chen, and B. Peng, “Fiber bending sensor based on a two mode fiber,” Microw. Opt. Technol. Lett. 54, 1047–1049 (2012).
[CrossRef]

Opt. Commun. (2)

W. Shi, Y. L. Lee, B. Yu, Y. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on in-line fiber Mach–Zehnder interferometer in solid core large mode area photonic crystal fiber,” Opt. Commun. 283, 2097–2101 (2010).
[CrossRef]

M. Deng, C.-P. Tang, T. Zhu, and Y.-J. Rao, “Highly sensitive bend sensor based on Mach–Zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284, 2849–2853 (2011).
[CrossRef]

Opt. Eng. (1)

M. Morante, A. Cobo, J. M. Lopez-Higue, and M. Lopez-Amo, “New approach using a bare fiber optic cantilever beam as a low-frequency acceleration measuring element,” Opt. Eng. 35, 1700–1706 (1996).
[CrossRef]

Opt. Express (1)

Opt. Laser Technol. (1)

Y. Fu, H. Di, and R. Liu, “Light intensity modulation fiber-optic sensor for curvature measurement,” Opt. Laser Technol. 42, 594–599 (2010).
[CrossRef]

Opt. Lett. (3)

Proc. SPIE (2)

J. Yang, L. Yuan, X. Zu, Y. Zhang, and B. Liu, “Twin-core fiber white light interferometric bending sensor,” Proc. SPIE 7004, 70040Y (2008).
[CrossRef]

P. Liu and Q. Chen, “Fiber Bragg grating cantilever sensor system for liquid flow monitoring with temperature compensation,” Proc. SPIE 7753, 77538L (2011).

Other (8)

P.-Y. Ju, C.-H. Tsai, L.-M. Fu, and C.-H. Lin, “Microfluidic flow meter and viscometer utilizing flow-induced vibration on an optical fiber cantilever,” in Proceedings of the 16th International Solid-State Sensors, Actuators and Microsystems Conference, Beijing, China (IEEE, 2011), pp. 1428–1431.

http://www.sensorica.co/home/projects/mosquito/philippe-s-project/announcements---philippe-poject/themosquitomeasuresmusclecontraction .

S. Mitachi, D. Shiroishi, and M. Nakagawa, “Development of a sleep apnea syndrome sensor using optical fibers,” in Proceedings of the 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2007), pp. 294–295.

M. H. Khorasani, C. Menon, M. V. Sarunic, M. Gharehbaghi, and Y. Li, “Towards a miniaturized embeddable sensor for multi-DOF robotic system,” in Proceedings of the 2nd IEEE/RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Scottsdale, Arizona (IEEE, 2008), pp. 664–669.

http://www.sensorica.co/home/projects/mosquito .

http://www.sensorica.co/home/projects/optical-fiber-coating/announcements---fiber-coating/wetsilvercoatingcanbeautomated .

http://www.spyroplastics.com/products/pdf/spyrex_typical_properties.pdf .

W. D. Callister and D. G. Rethwisch, Fundamentals of Materials Science and Engineering: An Integrated Approach, 3rd ed. (Wiley, 2008), pp. 708–709.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Cross section of a typical solid-core Bragg fiber. (b) Schematic of the Bragg fiber bending sensor.

Fig. 2.
Fig. 2.

(a) Fitting of the Bragg fiber shape with a circular arc. (b) Curvature of the Bragg fiber as a function of the displacements of the nanopositioning stage. The errors are estimated from the results of several alternative fittings.

Fig. 3.
Fig. 3.

Reflection spectra of (a) Bragg fiber and (b) regular multimode fiber for various values of the fiber curvature. The displacements of each fiber and the corresponding curvatures of the fitting arc are shown in the inset of (a).

Fig. 4.
Fig. 4.

Relative reflected intensity difference ΔI/I for a Bragg fiber sensor subjected to (a) 50 μm and (b) 200 μm displacements of the fiber tip. (c) Relative change in the total reflected intensity δ of the Bragg fiber as a function of the fiber tip displacement.

Fig. 5.
Fig. 5.

(a) Simulated transmission spectra of the fundamental HE11 mode of the Bragg fiber used in experiments at 25°C and 70°C. (b) Spectral position of the bandgap center at various operation temperatures.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δ(d)=λ[(I(λ,0)I(λ,d)]/λI(λ,0),

Metrics