Abstract

We demonstrate an amplitude-based bending/displacement sensor that uses a plastic photonic bandgap Bragg fiber with one end coated with a silver layer. The reflection intensity of the Bragg fiber is characterized in response to different displacements (or bending curvatures). We note that the Bragg reflector of the fiber acts as an efficient mode stripper for the wavelengths near the edge of the fiber bandgap, which makes the sensor extremely sensitive to bending or displacements at these wavelengths. Besides, by comparison of the Bragg fiber sensor to a sensor based on a standard multimode fiber with similar outer diameter and length, we find that the Bragg fiber sensor is more sensitive to bending due to the presence of a mode stripper in the form of a multilayer reflector. Experimental results show that the minimum detection limit of the Bragg fiber sensor can be as small as 3 μm for displacement sensing.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Interferometric fiber-optic bending/nano-displacement sensor using plastic dual-core fiber

H. Qu, G. F. Yan, and M. Skorobogatiy
Opt. Lett. 39(16) 4835-4838 (2014)

Twin core photonic crystal fiber for in-line Mach-Zehnder interferometric sensing applications

Bongkyun Kim, Tae-Hoon Kim, Long Cui, and Youngjoo Chung
Opt. Express 17(18) 15502-15507 (2009)

Photonic bandgap fiber-based Surface Plasmon Resonance sensors

Bertrand Gauvreau, Alireza Hassani, Majid Fassi Fehri, Andrei Kabashin, and Maksim Skorobogatiy
Opt. Express 15(18) 11413-11426 (2007)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription