Abstract

Directly transporting sunlight for use in indoor lighting applications is an efficient way to utilize solar energy. This study proposes a tree-structured light guiding system (TLGS) to collect sunlight and transport it for indoor illumination. The use of asymmetric light couplers in a TLGS increases the amount of accumulated sunlight. An analytic ray tracing model of the asymmetric coupler is proposed to present the angle and height distributions of the propagated rays. The cutoff angles were derived, and this cutoff condition was used to determine which rays are able to travel through the coupling region. In simulations, the couplers with coupling angles (θcoup) of 30° and 50° were conducted, and the large θcoup coupler provided high coupling efficiency (0.450). The orthogonal incidence method was adopted to increase coupling efficiency (0.646), and subsequently the amount of accumulated sunlight. The amount of accumulated sunlight in a TLGS was increased by 44%.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Modified optical fiber daylighting system with sunlight transportation in free space

Ngoc-Hai Vu, Thanh-Tuan Pham, and Seoyong Shin
Opt. Express 24(26) A1528-A1545 (2016)

Ray-leakage-free sawtooth-shaped planar lightguide solar concentrators

Hong-Yu Wu and Shu-Chun Chu
Opt. Express 21(17) 20073-20089 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (19)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (21)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription