Abstract

This paper presents the results obtained when holographic gratings were stored with a spatial frequency of 954 and 2663lines/mm in transmission geometry and 4600lines/mm in reflection geometry in a polyvinyl alcohol/acrylamide-based material. Photopolymers are materials that give good results at low frequencies, but their diffraction efficiency (DE) decreases at high frequencies. A chain transfer agent, 4,4-azobis (4-cyanopentanoic acid) (ACPA) was incorporated in the material composition to improve spatial resolution. Furthermore, a curing process was applied to the stored gratings in order to maintain the DE stable over time. The DE and shrinkage for symmetric holographic transmission and reflection gratings were measured to evaluate their quality and quantify the improvement produced by ACPA.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Fernández, M. Ortuño, S. Gallego, C. García, A. Beléndez, and I. Pascual, “Comparison of peristrophic multiplexing and a combination of angular and peristrophic holographic multiplexing in a thick PVA/acrylamide photopolymer for data storage,” Appl. Opt. 46, 5368–5373 (2007).
    [CrossRef]
  2. E. Fernández, M. Ortuño, S. Gallego, A. Márquez, C. García, A. Beléndez, and I. Pascual, “Multiplexed holographic data page storage on a PVA/acrylamide photopolymer memory,” Appl. Opt. 47, 4448–4456 (2008).
    [CrossRef]
  3. L. Dhar, K. Curtis, and T. Facke, “Holo graphic data storage: coming of age,” Nat. Photonics 2, 403–405 (2008).
    [CrossRef]
  4. D. Graham-Rowe, “The drive for holography,” Nat. Photonics 1, 197–200 (2007).
    [CrossRef]
  5. K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).
  6. V. A. Barachevskii, “Photopolymerizable recording media for three-dimensional holographic optical memory,” High Energy Chem. 40, 131–141 (2006).
    [CrossRef]
  7. R. C. Fontanilla-Urdaneta, M. P. Hernandez-Garay, A. Olivares-Perez, G. Paez-Trujillo, and I. Fuentes-Tapia, “Diffraction efficiency study of holographic gratings in dichromated poly(vinyl alcohol) NiCl2 center dot 6H(2)O doped—art. no. 691206,” Prac. Hologr. XXII: Mater. Appl. 6912, 91206 (2008).
  8. S. H. Lin, P. L. Chen, Y. N. Hsiao, and W. T. Whang, “Fabrication and characterization of poly(methyl methacrylate) photopolymer doped with 9,10-phenanthrenequinone (PQ) based derivatives for volume holographic data storage,” Opt. Commun. 281, 559–566 (2008).
    [CrossRef]
  9. I. Naydenova, S. Martin, R. Jallapuram, R. Howard, and V. Toal, “Investigations of the diffusion processes in self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900–2905 (2004).
    [CrossRef]
  10. S. Martin, I. Naydenova, V. Toal, R. Jallapuram, and R. Howard, “Two way diffusion model for the recording mechanism in a self developing dry acrylamide photopolymer,” Proc. SPIE 6252, 37–44 (2006).
    [CrossRef]
  11. J. Guo, M. R. Gleeson, S. Liu, and J. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: II. Experimental results,” J. Opt. 13, 095602 (2011).
    [CrossRef]
  12. R. Fuentes, E. Fernandez, C. Garcia, A. Belendez, and I. Pascual, “Study of influence of ACPA in holographic reflection gratings recorded in PVA/AA based photopolymer,” Proc. SPIE 7717, 77170Q (2010).
    [CrossRef]
  13. I. Naydenova, R. Jallapuram, V. Toal, and S. Martin, “A visual indication of environmental humidity using a color changing hologram recorded in a self-developing photopolymer,” Appl. Phys. Lett. 92, 031109 (2008).
    [CrossRef]
  14. I. Naydenova, R. Jallapuram, V. Toal, and S. Martin, “Characterisation of the humidity and temperature responses of a reflection hologram recorded in acrylamide-based photopolymer,” Sens. Actuators B 139, 35–38 (2009).
    [CrossRef]
  15. M. Ortuno, E. Fernandez, R. Fuentes, S. Gallego, I. Pascual, and A. Belendez, “Improving the performance of PVA/AA photopolymers for holographic recording,” Opt. Mater. 35, 668–673 (2013).
    [CrossRef]
  16. E. Fernandez, A. Marquez, S. Gallego, R. Fuentes, C. García, and I. Pascual, “Hybrid ternary modulation applied to multiplexing holograms in photopolymers for data page storage,” J. Lightwave Technol. 28, 776–783 (2010).
    [CrossRef]
  17. M. Ortuño, A. Marquez, E. Fernández, S. Gallego, A. Belendez, and I. Pascual, “Hologram multiplexing in acrylamide hydrophilic photopolymers,” Opt. Commun. 281, 1354–1357 (2008).
    [CrossRef]
  18. M. Weiser, F. Bruder, T. Facke, D. Honel, D. Jurbergs, and T. Rolle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp. 296, 133–137 (2010).
    [CrossRef]
  19. S. Gallego, C. Neipp, M. Ortuño, A. Beléndez, and I. Pascual, “Stabilization of volume gratings recorded in polyvinyl alcohol-acrylamide photopolymers with diffraction efficiencies higher than 90%,” J. Mod. Opt. 51, 491–503 (2004).
    [CrossRef]
  20. J. A. Jenney, “Holographic recording with photopolymers,” J. Opt. Soc. Am. 60, 1155–1161 (1970).
    [CrossRef]
  21. R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).
  22. J. T. Gallo and C. M. Verber, “Model for the effects of material shrinkage on volume holograms,” Appl. Opt. 33, 6797–6804 (1994).
    [CrossRef]
  23. L. Criante, K. Beev, D. E. Lucchetta, and F. Simoni, “Spectral analysis of shrinkage in holographic materials suitable for optical storage applications,” Proc. SPIE 6252, 62520G (2006).
    [CrossRef]
  24. R. Fuentes, E. Fernandez, C. Garcia, A. Belendez, and I. Pascual, “Study of reflection gratings recorded in polyvinyl alcohol/acrylamide-based photopolymer,” Appl. Opt. 48, 6553–6557 (2009).
    [CrossRef]

2013 (1)

M. Ortuno, E. Fernandez, R. Fuentes, S. Gallego, I. Pascual, and A. Belendez, “Improving the performance of PVA/AA photopolymers for holographic recording,” Opt. Mater. 35, 668–673 (2013).
[CrossRef]

2011 (1)

J. Guo, M. R. Gleeson, S. Liu, and J. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: II. Experimental results,” J. Opt. 13, 095602 (2011).
[CrossRef]

2010 (3)

R. Fuentes, E. Fernandez, C. Garcia, A. Belendez, and I. Pascual, “Study of influence of ACPA in holographic reflection gratings recorded in PVA/AA based photopolymer,” Proc. SPIE 7717, 77170Q (2010).
[CrossRef]

E. Fernandez, A. Marquez, S. Gallego, R. Fuentes, C. García, and I. Pascual, “Hybrid ternary modulation applied to multiplexing holograms in photopolymers for data page storage,” J. Lightwave Technol. 28, 776–783 (2010).
[CrossRef]

M. Weiser, F. Bruder, T. Facke, D. Honel, D. Jurbergs, and T. Rolle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp. 296, 133–137 (2010).
[CrossRef]

2009 (2)

I. Naydenova, R. Jallapuram, V. Toal, and S. Martin, “Characterisation of the humidity and temperature responses of a reflection hologram recorded in acrylamide-based photopolymer,” Sens. Actuators B 139, 35–38 (2009).
[CrossRef]

R. Fuentes, E. Fernandez, C. Garcia, A. Belendez, and I. Pascual, “Study of reflection gratings recorded in polyvinyl alcohol/acrylamide-based photopolymer,” Appl. Opt. 48, 6553–6557 (2009).
[CrossRef]

2008 (6)

M. Ortuño, A. Marquez, E. Fernández, S. Gallego, A. Belendez, and I. Pascual, “Hologram multiplexing in acrylamide hydrophilic photopolymers,” Opt. Commun. 281, 1354–1357 (2008).
[CrossRef]

I. Naydenova, R. Jallapuram, V. Toal, and S. Martin, “A visual indication of environmental humidity using a color changing hologram recorded in a self-developing photopolymer,” Appl. Phys. Lett. 92, 031109 (2008).
[CrossRef]

E. Fernández, M. Ortuño, S. Gallego, A. Márquez, C. García, A. Beléndez, and I. Pascual, “Multiplexed holographic data page storage on a PVA/acrylamide photopolymer memory,” Appl. Opt. 47, 4448–4456 (2008).
[CrossRef]

L. Dhar, K. Curtis, and T. Facke, “Holo graphic data storage: coming of age,” Nat. Photonics 2, 403–405 (2008).
[CrossRef]

R. C. Fontanilla-Urdaneta, M. P. Hernandez-Garay, A. Olivares-Perez, G. Paez-Trujillo, and I. Fuentes-Tapia, “Diffraction efficiency study of holographic gratings in dichromated poly(vinyl alcohol) NiCl2 center dot 6H(2)O doped—art. no. 691206,” Prac. Hologr. XXII: Mater. Appl. 6912, 91206 (2008).

S. H. Lin, P. L. Chen, Y. N. Hsiao, and W. T. Whang, “Fabrication and characterization of poly(methyl methacrylate) photopolymer doped with 9,10-phenanthrenequinone (PQ) based derivatives for volume holographic data storage,” Opt. Commun. 281, 559–566 (2008).
[CrossRef]

2007 (2)

2006 (3)

V. A. Barachevskii, “Photopolymerizable recording media for three-dimensional holographic optical memory,” High Energy Chem. 40, 131–141 (2006).
[CrossRef]

S. Martin, I. Naydenova, V. Toal, R. Jallapuram, and R. Howard, “Two way diffusion model for the recording mechanism in a self developing dry acrylamide photopolymer,” Proc. SPIE 6252, 37–44 (2006).
[CrossRef]

L. Criante, K. Beev, D. E. Lucchetta, and F. Simoni, “Spectral analysis of shrinkage in holographic materials suitable for optical storage applications,” Proc. SPIE 6252, 62520G (2006).
[CrossRef]

2004 (2)

I. Naydenova, S. Martin, R. Jallapuram, R. Howard, and V. Toal, “Investigations of the diffusion processes in self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900–2905 (2004).
[CrossRef]

S. Gallego, C. Neipp, M. Ortuño, A. Beléndez, and I. Pascual, “Stabilization of volume gratings recorded in polyvinyl alcohol-acrylamide photopolymers with diffraction efficiencies higher than 90%,” J. Mod. Opt. 51, 491–503 (2004).
[CrossRef]

1994 (1)

1970 (1)

Ayres, M.

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).

Barachevskii, V. A.

V. A. Barachevskii, “Photopolymerizable recording media for three-dimensional holographic optical memory,” High Energy Chem. 40, 131–141 (2006).
[CrossRef]

Beev, K.

L. Criante, K. Beev, D. E. Lucchetta, and F. Simoni, “Spectral analysis of shrinkage in holographic materials suitable for optical storage applications,” Proc. SPIE 6252, 62520G (2006).
[CrossRef]

Belendez, A.

M. Ortuno, E. Fernandez, R. Fuentes, S. Gallego, I. Pascual, and A. Belendez, “Improving the performance of PVA/AA photopolymers for holographic recording,” Opt. Mater. 35, 668–673 (2013).
[CrossRef]

R. Fuentes, E. Fernandez, C. Garcia, A. Belendez, and I. Pascual, “Study of influence of ACPA in holographic reflection gratings recorded in PVA/AA based photopolymer,” Proc. SPIE 7717, 77170Q (2010).
[CrossRef]

R. Fuentes, E. Fernandez, C. Garcia, A. Belendez, and I. Pascual, “Study of reflection gratings recorded in polyvinyl alcohol/acrylamide-based photopolymer,” Appl. Opt. 48, 6553–6557 (2009).
[CrossRef]

M. Ortuño, A. Marquez, E. Fernández, S. Gallego, A. Belendez, and I. Pascual, “Hologram multiplexing in acrylamide hydrophilic photopolymers,” Opt. Commun. 281, 1354–1357 (2008).
[CrossRef]

Beléndez, A.

Bruder, F.

M. Weiser, F. Bruder, T. Facke, D. Honel, D. Jurbergs, and T. Rolle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp. 296, 133–137 (2010).
[CrossRef]

Burckhardt, C. B.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

Chen, P. L.

S. H. Lin, P. L. Chen, Y. N. Hsiao, and W. T. Whang, “Fabrication and characterization of poly(methyl methacrylate) photopolymer doped with 9,10-phenanthrenequinone (PQ) based derivatives for volume holographic data storage,” Opt. Commun. 281, 559–566 (2008).
[CrossRef]

Collier, R. J.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

Criante, L.

L. Criante, K. Beev, D. E. Lucchetta, and F. Simoni, “Spectral analysis of shrinkage in holographic materials suitable for optical storage applications,” Proc. SPIE 6252, 62520G (2006).
[CrossRef]

Curtis, K.

L. Dhar, K. Curtis, and T. Facke, “Holo graphic data storage: coming of age,” Nat. Photonics 2, 403–405 (2008).
[CrossRef]

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).

Dhar, L.

L. Dhar, K. Curtis, and T. Facke, “Holo graphic data storage: coming of age,” Nat. Photonics 2, 403–405 (2008).
[CrossRef]

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).

Facke, T.

M. Weiser, F. Bruder, T. Facke, D. Honel, D. Jurbergs, and T. Rolle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp. 296, 133–137 (2010).
[CrossRef]

L. Dhar, K. Curtis, and T. Facke, “Holo graphic data storage: coming of age,” Nat. Photonics 2, 403–405 (2008).
[CrossRef]

Fernandez, E.

M. Ortuno, E. Fernandez, R. Fuentes, S. Gallego, I. Pascual, and A. Belendez, “Improving the performance of PVA/AA photopolymers for holographic recording,” Opt. Mater. 35, 668–673 (2013).
[CrossRef]

E. Fernandez, A. Marquez, S. Gallego, R. Fuentes, C. García, and I. Pascual, “Hybrid ternary modulation applied to multiplexing holograms in photopolymers for data page storage,” J. Lightwave Technol. 28, 776–783 (2010).
[CrossRef]

R. Fuentes, E. Fernandez, C. Garcia, A. Belendez, and I. Pascual, “Study of influence of ACPA in holographic reflection gratings recorded in PVA/AA based photopolymer,” Proc. SPIE 7717, 77170Q (2010).
[CrossRef]

R. Fuentes, E. Fernandez, C. Garcia, A. Belendez, and I. Pascual, “Study of reflection gratings recorded in polyvinyl alcohol/acrylamide-based photopolymer,” Appl. Opt. 48, 6553–6557 (2009).
[CrossRef]

Fernández, E.

Fontanilla-Urdaneta, R. C.

R. C. Fontanilla-Urdaneta, M. P. Hernandez-Garay, A. Olivares-Perez, G. Paez-Trujillo, and I. Fuentes-Tapia, “Diffraction efficiency study of holographic gratings in dichromated poly(vinyl alcohol) NiCl2 center dot 6H(2)O doped—art. no. 691206,” Prac. Hologr. XXII: Mater. Appl. 6912, 91206 (2008).

Fuentes, R.

M. Ortuno, E. Fernandez, R. Fuentes, S. Gallego, I. Pascual, and A. Belendez, “Improving the performance of PVA/AA photopolymers for holographic recording,” Opt. Mater. 35, 668–673 (2013).
[CrossRef]

E. Fernandez, A. Marquez, S. Gallego, R. Fuentes, C. García, and I. Pascual, “Hybrid ternary modulation applied to multiplexing holograms in photopolymers for data page storage,” J. Lightwave Technol. 28, 776–783 (2010).
[CrossRef]

R. Fuentes, E. Fernandez, C. Garcia, A. Belendez, and I. Pascual, “Study of influence of ACPA in holographic reflection gratings recorded in PVA/AA based photopolymer,” Proc. SPIE 7717, 77170Q (2010).
[CrossRef]

R. Fuentes, E. Fernandez, C. Garcia, A. Belendez, and I. Pascual, “Study of reflection gratings recorded in polyvinyl alcohol/acrylamide-based photopolymer,” Appl. Opt. 48, 6553–6557 (2009).
[CrossRef]

Fuentes-Tapia, I.

R. C. Fontanilla-Urdaneta, M. P. Hernandez-Garay, A. Olivares-Perez, G. Paez-Trujillo, and I. Fuentes-Tapia, “Diffraction efficiency study of holographic gratings in dichromated poly(vinyl alcohol) NiCl2 center dot 6H(2)O doped—art. no. 691206,” Prac. Hologr. XXII: Mater. Appl. 6912, 91206 (2008).

Gallego, S.

M. Ortuno, E. Fernandez, R. Fuentes, S. Gallego, I. Pascual, and A. Belendez, “Improving the performance of PVA/AA photopolymers for holographic recording,” Opt. Mater. 35, 668–673 (2013).
[CrossRef]

E. Fernandez, A. Marquez, S. Gallego, R. Fuentes, C. García, and I. Pascual, “Hybrid ternary modulation applied to multiplexing holograms in photopolymers for data page storage,” J. Lightwave Technol. 28, 776–783 (2010).
[CrossRef]

E. Fernández, M. Ortuño, S. Gallego, A. Márquez, C. García, A. Beléndez, and I. Pascual, “Multiplexed holographic data page storage on a PVA/acrylamide photopolymer memory,” Appl. Opt. 47, 4448–4456 (2008).
[CrossRef]

M. Ortuño, A. Marquez, E. Fernández, S. Gallego, A. Belendez, and I. Pascual, “Hologram multiplexing in acrylamide hydrophilic photopolymers,” Opt. Commun. 281, 1354–1357 (2008).
[CrossRef]

E. Fernández, M. Ortuño, S. Gallego, C. García, A. Beléndez, and I. Pascual, “Comparison of peristrophic multiplexing and a combination of angular and peristrophic holographic multiplexing in a thick PVA/acrylamide photopolymer for data storage,” Appl. Opt. 46, 5368–5373 (2007).
[CrossRef]

S. Gallego, C. Neipp, M. Ortuño, A. Beléndez, and I. Pascual, “Stabilization of volume gratings recorded in polyvinyl alcohol-acrylamide photopolymers with diffraction efficiencies higher than 90%,” J. Mod. Opt. 51, 491–503 (2004).
[CrossRef]

Gallo, J. T.

Garcia, C.

R. Fuentes, E. Fernandez, C. Garcia, A. Belendez, and I. Pascual, “Study of influence of ACPA in holographic reflection gratings recorded in PVA/AA based photopolymer,” Proc. SPIE 7717, 77170Q (2010).
[CrossRef]

R. Fuentes, E. Fernandez, C. Garcia, A. Belendez, and I. Pascual, “Study of reflection gratings recorded in polyvinyl alcohol/acrylamide-based photopolymer,” Appl. Opt. 48, 6553–6557 (2009).
[CrossRef]

García, C.

Gleeson, M. R.

J. Guo, M. R. Gleeson, S. Liu, and J. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: II. Experimental results,” J. Opt. 13, 095602 (2011).
[CrossRef]

Graham-Rowe, D.

D. Graham-Rowe, “The drive for holography,” Nat. Photonics 1, 197–200 (2007).
[CrossRef]

Guo, J.

J. Guo, M. R. Gleeson, S. Liu, and J. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: II. Experimental results,” J. Opt. 13, 095602 (2011).
[CrossRef]

Hernandez-Garay, M. P.

R. C. Fontanilla-Urdaneta, M. P. Hernandez-Garay, A. Olivares-Perez, G. Paez-Trujillo, and I. Fuentes-Tapia, “Diffraction efficiency study of holographic gratings in dichromated poly(vinyl alcohol) NiCl2 center dot 6H(2)O doped—art. no. 691206,” Prac. Hologr. XXII: Mater. Appl. 6912, 91206 (2008).

Hill, A.

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).

Honel, D.

M. Weiser, F. Bruder, T. Facke, D. Honel, D. Jurbergs, and T. Rolle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp. 296, 133–137 (2010).
[CrossRef]

Howard, R.

S. Martin, I. Naydenova, V. Toal, R. Jallapuram, and R. Howard, “Two way diffusion model for the recording mechanism in a self developing dry acrylamide photopolymer,” Proc. SPIE 6252, 37–44 (2006).
[CrossRef]

I. Naydenova, S. Martin, R. Jallapuram, R. Howard, and V. Toal, “Investigations of the diffusion processes in self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900–2905 (2004).
[CrossRef]

Hsiao, Y. N.

S. H. Lin, P. L. Chen, Y. N. Hsiao, and W. T. Whang, “Fabrication and characterization of poly(methyl methacrylate) photopolymer doped with 9,10-phenanthrenequinone (PQ) based derivatives for volume holographic data storage,” Opt. Commun. 281, 559–566 (2008).
[CrossRef]

Jallapuram, R.

I. Naydenova, R. Jallapuram, V. Toal, and S. Martin, “Characterisation of the humidity and temperature responses of a reflection hologram recorded in acrylamide-based photopolymer,” Sens. Actuators B 139, 35–38 (2009).
[CrossRef]

I. Naydenova, R. Jallapuram, V. Toal, and S. Martin, “A visual indication of environmental humidity using a color changing hologram recorded in a self-developing photopolymer,” Appl. Phys. Lett. 92, 031109 (2008).
[CrossRef]

S. Martin, I. Naydenova, V. Toal, R. Jallapuram, and R. Howard, “Two way diffusion model for the recording mechanism in a self developing dry acrylamide photopolymer,” Proc. SPIE 6252, 37–44 (2006).
[CrossRef]

I. Naydenova, S. Martin, R. Jallapuram, R. Howard, and V. Toal, “Investigations of the diffusion processes in self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900–2905 (2004).
[CrossRef]

Jenney, J. A.

Jurbergs, D.

M. Weiser, F. Bruder, T. Facke, D. Honel, D. Jurbergs, and T. Rolle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp. 296, 133–137 (2010).
[CrossRef]

Lin, L. H.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

Lin, S. H.

S. H. Lin, P. L. Chen, Y. N. Hsiao, and W. T. Whang, “Fabrication and characterization of poly(methyl methacrylate) photopolymer doped with 9,10-phenanthrenequinone (PQ) based derivatives for volume holographic data storage,” Opt. Commun. 281, 559–566 (2008).
[CrossRef]

Liu, S.

J. Guo, M. R. Gleeson, S. Liu, and J. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: II. Experimental results,” J. Opt. 13, 095602 (2011).
[CrossRef]

Lucchetta, D. E.

L. Criante, K. Beev, D. E. Lucchetta, and F. Simoni, “Spectral analysis of shrinkage in holographic materials suitable for optical storage applications,” Proc. SPIE 6252, 62520G (2006).
[CrossRef]

Marquez, A.

E. Fernandez, A. Marquez, S. Gallego, R. Fuentes, C. García, and I. Pascual, “Hybrid ternary modulation applied to multiplexing holograms in photopolymers for data page storage,” J. Lightwave Technol. 28, 776–783 (2010).
[CrossRef]

M. Ortuño, A. Marquez, E. Fernández, S. Gallego, A. Belendez, and I. Pascual, “Hologram multiplexing in acrylamide hydrophilic photopolymers,” Opt. Commun. 281, 1354–1357 (2008).
[CrossRef]

Márquez, A.

Martin, S.

I. Naydenova, R. Jallapuram, V. Toal, and S. Martin, “Characterisation of the humidity and temperature responses of a reflection hologram recorded in acrylamide-based photopolymer,” Sens. Actuators B 139, 35–38 (2009).
[CrossRef]

I. Naydenova, R. Jallapuram, V. Toal, and S. Martin, “A visual indication of environmental humidity using a color changing hologram recorded in a self-developing photopolymer,” Appl. Phys. Lett. 92, 031109 (2008).
[CrossRef]

S. Martin, I. Naydenova, V. Toal, R. Jallapuram, and R. Howard, “Two way diffusion model for the recording mechanism in a self developing dry acrylamide photopolymer,” Proc. SPIE 6252, 37–44 (2006).
[CrossRef]

I. Naydenova, S. Martin, R. Jallapuram, R. Howard, and V. Toal, “Investigations of the diffusion processes in self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900–2905 (2004).
[CrossRef]

Naydenova, I.

I. Naydenova, R. Jallapuram, V. Toal, and S. Martin, “Characterisation of the humidity and temperature responses of a reflection hologram recorded in acrylamide-based photopolymer,” Sens. Actuators B 139, 35–38 (2009).
[CrossRef]

I. Naydenova, R. Jallapuram, V. Toal, and S. Martin, “A visual indication of environmental humidity using a color changing hologram recorded in a self-developing photopolymer,” Appl. Phys. Lett. 92, 031109 (2008).
[CrossRef]

S. Martin, I. Naydenova, V. Toal, R. Jallapuram, and R. Howard, “Two way diffusion model for the recording mechanism in a self developing dry acrylamide photopolymer,” Proc. SPIE 6252, 37–44 (2006).
[CrossRef]

I. Naydenova, S. Martin, R. Jallapuram, R. Howard, and V. Toal, “Investigations of the diffusion processes in self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900–2905 (2004).
[CrossRef]

Neipp, C.

S. Gallego, C. Neipp, M. Ortuño, A. Beléndez, and I. Pascual, “Stabilization of volume gratings recorded in polyvinyl alcohol-acrylamide photopolymers with diffraction efficiencies higher than 90%,” J. Mod. Opt. 51, 491–503 (2004).
[CrossRef]

Olivares-Perez, A.

R. C. Fontanilla-Urdaneta, M. P. Hernandez-Garay, A. Olivares-Perez, G. Paez-Trujillo, and I. Fuentes-Tapia, “Diffraction efficiency study of holographic gratings in dichromated poly(vinyl alcohol) NiCl2 center dot 6H(2)O doped—art. no. 691206,” Prac. Hologr. XXII: Mater. Appl. 6912, 91206 (2008).

Ortuno, M.

M. Ortuno, E. Fernandez, R. Fuentes, S. Gallego, I. Pascual, and A. Belendez, “Improving the performance of PVA/AA photopolymers for holographic recording,” Opt. Mater. 35, 668–673 (2013).
[CrossRef]

Ortuño, M.

M. Ortuño, A. Marquez, E. Fernández, S. Gallego, A. Belendez, and I. Pascual, “Hologram multiplexing in acrylamide hydrophilic photopolymers,” Opt. Commun. 281, 1354–1357 (2008).
[CrossRef]

E. Fernández, M. Ortuño, S. Gallego, A. Márquez, C. García, A. Beléndez, and I. Pascual, “Multiplexed holographic data page storage on a PVA/acrylamide photopolymer memory,” Appl. Opt. 47, 4448–4456 (2008).
[CrossRef]

E. Fernández, M. Ortuño, S. Gallego, C. García, A. Beléndez, and I. Pascual, “Comparison of peristrophic multiplexing and a combination of angular and peristrophic holographic multiplexing in a thick PVA/acrylamide photopolymer for data storage,” Appl. Opt. 46, 5368–5373 (2007).
[CrossRef]

S. Gallego, C. Neipp, M. Ortuño, A. Beléndez, and I. Pascual, “Stabilization of volume gratings recorded in polyvinyl alcohol-acrylamide photopolymers with diffraction efficiencies higher than 90%,” J. Mod. Opt. 51, 491–503 (2004).
[CrossRef]

Paez-Trujillo, G.

R. C. Fontanilla-Urdaneta, M. P. Hernandez-Garay, A. Olivares-Perez, G. Paez-Trujillo, and I. Fuentes-Tapia, “Diffraction efficiency study of holographic gratings in dichromated poly(vinyl alcohol) NiCl2 center dot 6H(2)O doped—art. no. 691206,” Prac. Hologr. XXII: Mater. Appl. 6912, 91206 (2008).

Pascual, I.

M. Ortuno, E. Fernandez, R. Fuentes, S. Gallego, I. Pascual, and A. Belendez, “Improving the performance of PVA/AA photopolymers for holographic recording,” Opt. Mater. 35, 668–673 (2013).
[CrossRef]

E. Fernandez, A. Marquez, S. Gallego, R. Fuentes, C. García, and I. Pascual, “Hybrid ternary modulation applied to multiplexing holograms in photopolymers for data page storage,” J. Lightwave Technol. 28, 776–783 (2010).
[CrossRef]

R. Fuentes, E. Fernandez, C. Garcia, A. Belendez, and I. Pascual, “Study of influence of ACPA in holographic reflection gratings recorded in PVA/AA based photopolymer,” Proc. SPIE 7717, 77170Q (2010).
[CrossRef]

R. Fuentes, E. Fernandez, C. Garcia, A. Belendez, and I. Pascual, “Study of reflection gratings recorded in polyvinyl alcohol/acrylamide-based photopolymer,” Appl. Opt. 48, 6553–6557 (2009).
[CrossRef]

M. Ortuño, A. Marquez, E. Fernández, S. Gallego, A. Belendez, and I. Pascual, “Hologram multiplexing in acrylamide hydrophilic photopolymers,” Opt. Commun. 281, 1354–1357 (2008).
[CrossRef]

E. Fernández, M. Ortuño, S. Gallego, A. Márquez, C. García, A. Beléndez, and I. Pascual, “Multiplexed holographic data page storage on a PVA/acrylamide photopolymer memory,” Appl. Opt. 47, 4448–4456 (2008).
[CrossRef]

E. Fernández, M. Ortuño, S. Gallego, C. García, A. Beléndez, and I. Pascual, “Comparison of peristrophic multiplexing and a combination of angular and peristrophic holographic multiplexing in a thick PVA/acrylamide photopolymer for data storage,” Appl. Opt. 46, 5368–5373 (2007).
[CrossRef]

S. Gallego, C. Neipp, M. Ortuño, A. Beléndez, and I. Pascual, “Stabilization of volume gratings recorded in polyvinyl alcohol-acrylamide photopolymers with diffraction efficiencies higher than 90%,” J. Mod. Opt. 51, 491–503 (2004).
[CrossRef]

Rolle, T.

M. Weiser, F. Bruder, T. Facke, D. Honel, D. Jurbergs, and T. Rolle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp. 296, 133–137 (2010).
[CrossRef]

Sheridan, J.

J. Guo, M. R. Gleeson, S. Liu, and J. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: II. Experimental results,” J. Opt. 13, 095602 (2011).
[CrossRef]

Simoni, F.

L. Criante, K. Beev, D. E. Lucchetta, and F. Simoni, “Spectral analysis of shrinkage in holographic materials suitable for optical storage applications,” Proc. SPIE 6252, 62520G (2006).
[CrossRef]

Toal, V.

I. Naydenova, R. Jallapuram, V. Toal, and S. Martin, “Characterisation of the humidity and temperature responses of a reflection hologram recorded in acrylamide-based photopolymer,” Sens. Actuators B 139, 35–38 (2009).
[CrossRef]

I. Naydenova, R. Jallapuram, V. Toal, and S. Martin, “A visual indication of environmental humidity using a color changing hologram recorded in a self-developing photopolymer,” Appl. Phys. Lett. 92, 031109 (2008).
[CrossRef]

S. Martin, I. Naydenova, V. Toal, R. Jallapuram, and R. Howard, “Two way diffusion model for the recording mechanism in a self developing dry acrylamide photopolymer,” Proc. SPIE 6252, 37–44 (2006).
[CrossRef]

I. Naydenova, S. Martin, R. Jallapuram, R. Howard, and V. Toal, “Investigations of the diffusion processes in self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900–2905 (2004).
[CrossRef]

Verber, C. M.

Weiser, M.

M. Weiser, F. Bruder, T. Facke, D. Honel, D. Jurbergs, and T. Rolle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp. 296, 133–137 (2010).
[CrossRef]

Whang, W. T.

S. H. Lin, P. L. Chen, Y. N. Hsiao, and W. T. Whang, “Fabrication and characterization of poly(methyl methacrylate) photopolymer doped with 9,10-phenanthrenequinone (PQ) based derivatives for volume holographic data storage,” Opt. Commun. 281, 559–566 (2008).
[CrossRef]

Wilson, W.

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).

Appl. Opt. (5)

Appl. Phys. Lett. (1)

I. Naydenova, R. Jallapuram, V. Toal, and S. Martin, “A visual indication of environmental humidity using a color changing hologram recorded in a self-developing photopolymer,” Appl. Phys. Lett. 92, 031109 (2008).
[CrossRef]

High Energy Chem. (1)

V. A. Barachevskii, “Photopolymerizable recording media for three-dimensional holographic optical memory,” High Energy Chem. 40, 131–141 (2006).
[CrossRef]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

S. Gallego, C. Neipp, M. Ortuño, A. Beléndez, and I. Pascual, “Stabilization of volume gratings recorded in polyvinyl alcohol-acrylamide photopolymers with diffraction efficiencies higher than 90%,” J. Mod. Opt. 51, 491–503 (2004).
[CrossRef]

J. Opt. (1)

J. Guo, M. R. Gleeson, S. Liu, and J. Sheridan, “Non-local spatial frequency response of photopolymer materials containing chain transfer agents: II. Experimental results,” J. Opt. 13, 095602 (2011).
[CrossRef]

J. Opt. Soc. Am. (1)

Macromol. Symp. (1)

M. Weiser, F. Bruder, T. Facke, D. Honel, D. Jurbergs, and T. Rolle, “Self-processing, diffusion-based photopolymers for holographic applications,” Macromol. Symp. 296, 133–137 (2010).
[CrossRef]

Nat. Photonics (2)

L. Dhar, K. Curtis, and T. Facke, “Holo graphic data storage: coming of age,” Nat. Photonics 2, 403–405 (2008).
[CrossRef]

D. Graham-Rowe, “The drive for holography,” Nat. Photonics 1, 197–200 (2007).
[CrossRef]

Opt. Commun. (2)

M. Ortuño, A. Marquez, E. Fernández, S. Gallego, A. Belendez, and I. Pascual, “Hologram multiplexing in acrylamide hydrophilic photopolymers,” Opt. Commun. 281, 1354–1357 (2008).
[CrossRef]

S. H. Lin, P. L. Chen, Y. N. Hsiao, and W. T. Whang, “Fabrication and characterization of poly(methyl methacrylate) photopolymer doped with 9,10-phenanthrenequinone (PQ) based derivatives for volume holographic data storage,” Opt. Commun. 281, 559–566 (2008).
[CrossRef]

Opt. Mater. (1)

M. Ortuno, E. Fernandez, R. Fuentes, S. Gallego, I. Pascual, and A. Belendez, “Improving the performance of PVA/AA photopolymers for holographic recording,” Opt. Mater. 35, 668–673 (2013).
[CrossRef]

Prac. Hologr. XXII: Mater. Appl. (1)

R. C. Fontanilla-Urdaneta, M. P. Hernandez-Garay, A. Olivares-Perez, G. Paez-Trujillo, and I. Fuentes-Tapia, “Diffraction efficiency study of holographic gratings in dichromated poly(vinyl alcohol) NiCl2 center dot 6H(2)O doped—art. no. 691206,” Prac. Hologr. XXII: Mater. Appl. 6912, 91206 (2008).

Proc. SPIE (3)

S. Martin, I. Naydenova, V. Toal, R. Jallapuram, and R. Howard, “Two way diffusion model for the recording mechanism in a self developing dry acrylamide photopolymer,” Proc. SPIE 6252, 37–44 (2006).
[CrossRef]

R. Fuentes, E. Fernandez, C. Garcia, A. Belendez, and I. Pascual, “Study of influence of ACPA in holographic reflection gratings recorded in PVA/AA based photopolymer,” Proc. SPIE 7717, 77170Q (2010).
[CrossRef]

L. Criante, K. Beev, D. E. Lucchetta, and F. Simoni, “Spectral analysis of shrinkage in holographic materials suitable for optical storage applications,” Proc. SPIE 6252, 62520G (2006).
[CrossRef]

Sens. Actuators B (1)

I. Naydenova, R. Jallapuram, V. Toal, and S. Martin, “Characterisation of the humidity and temperature responses of a reflection hologram recorded in acrylamide-based photopolymer,” Sens. Actuators B 139, 35–38 (2009).
[CrossRef]

Other (2)

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Transmission spectrum of the unexposed photopolymer plate: composition 1 with black circles and composition 2 with red squares.

Fig. 2.
Fig. 2.

Experimental setup for transmission gratings. Mi, mirrors; BS, beam splitter; Li, lenses; SFi, microscope objective lens and pinhole; Di, diaphragms; R, radiometer.

Fig. 3.
Fig. 3.

Experimental setup for reflection gratings. BS, beam splitter; Mi, mirror; Li, lens; Di, diaphragm; SFi, microscope objective lens and pinhole.

Fig. 4.
Fig. 4.

DE versus angle of a transmission grating with a spatial frequency of 954lines/mm recorded in a photopolymer without ACPA.

Fig. 5.
Fig. 5.

DE versus angle of a transmission grating with a spatial frequency of 954lines/mm recorded in a photopolymer with ACPA.

Fig. 6.
Fig. 6.

DE versus angle of a transmission grating with a spatial frequency of 2663lines/mm recorded in a photopolymer without ACPA.

Fig. 7.
Fig. 7.

DE versus angle of a transmission grating with a spatial frequency of 2663lines/mm recorded in a photopolymer with ACPA.

Fig. 8.
Fig. 8.

Transmittance as a function of wavelength for a reflection grating with a spatial frequency of 4600lines/mm recorded in a photopolymer without ACPA.

Fig. 9.
Fig. 9.

Transmittance as a function of wavelength for a reflection grating with a spatial frequency of 4613lines/mm recorded in a plate with ACPA.

Tables (1)

Tables Icon

Table 1. Concentrations of the Photopolymer Compositions

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

sinθ=λ2Λ,
Λ=λ2n2sin2θ.
ϕ=ϕ+Δϕ=tan1[tanϕ(1Sopt)],
Sopt=ΛthΛexpΛth.
Sopt=sin(θ+Δθ)sin(θ)sin(θ+Δθ).
Sopt=Δθtan(θ).
Sopt=λthλexpλth,
DE=TpTpgTp,

Metrics