Abstract

This paper reports on an investigation of the chemical stability of the common laser-induced fluorescence (LIF) tracers acetone, diethylketone, and toluene. Stability is analyzed using linear Raman spectroscopy inside a heated pressure cell with optical access, which is used for the LIF calibration of these tracers. The measurements examine the influence of temperature, pressure, and residence time on tracer oxidation, which occurs without a rise in temperature or pressure inside the cell, highlighting the need for optical detection. A comparison between the three different tracers shows large differences, with diethylketone having the lowest and toluene by far the highest stability. An analysis of the sensitivity of the measurement shows that the detection limit of the oxidized tracer is well below 3% molar fraction, which is typical for LIF applications in combustion devices such as internal combustion (IC) engines. Furthermore, the effect on the LIF signal intensity is examined in an isothermal turbulent mixing study.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717–723 (2000).
    [CrossRef]
  2. C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75–121 (2005).
    [CrossRef]
  3. J. D. Koch, “Fuel tracer photophysics for qualitative planar laser-induced fluorescence,” Ph.D. Dissertation (Stanford University, 2005).
  4. T. Fujikawa, K. Fukui, Y. Hattori, and K. Akihama, “2-D temperature measurements of unburned gas mixture in an engine by two-line excitation LIF technique,” SAE Technical Papers Series 2006-01-3336 (2006).
  5. M. Löffler, F. Beyrau, and A. Leipertz, “Acetone laser-induced fluorescence behavior for the simultaneous quantification of temperature and residual gas distribution in fired spark-ignition engines,” Appl. Opt. 49, 37–49 (2009).
  6. D. A. Rothamer, J. A. Snyder, R. K. Hanson, R. R. Steeper, and R. P. Fitzgerald, “Simultaneous imaging of exhaust gas residuals and temperature during HCCI combustion,” Proc. Combust. Inst. 32, 2869–2876 (2009).
    [CrossRef]
  7. C. Strozzi, J. Soton, A. Mura, and M. Bellenoue, “Characterization of a two-dimensional temperature field within a rapid compression machine using a toluene planar laser-induced fluorescence imaging technique,” Meas. Sci. Technol. 20, 125403 (2009).
    [CrossRef]
  8. B. H. Cheung and R. K. Hanson, “CW laser-induced fluorescence of toluene for time-resolved imaging of gaseous flows,” Appl. Phys. B 98, 581–591 (2010).
    [CrossRef]
  9. J. Trost, L. Zigan, and A. Leipertz, “Quantitative vapor temperature imaging in DISI-sprays at elevated pressures and temperatures using two-line excitation laser-induced fluorescence,” Proc. Combust. Inst. 34, 3645–3652 (2013).
    [CrossRef]
  10. J. Egermann, T. Seeger, and A. Leipertz, “Application of 266-nm and 355-nm Nd: YAG laser radiation for the investigation of fuel-rich sooting hydrocarbon flames by Raman scattering,” Appl. Opt. 43, 5564–5574 (2004).
    [CrossRef]
  11. D. Most and A. Leipertz, “Simultaneous two-dimensional flow velocity and gas temperature measurements using a combined particle image velocimetry and filtered Rayleigh scattering technique,” Appl. Opt. 40, 5379–5387 (2001).
    [CrossRef]
  12. A. Braeuer, F. Beyrau, and A. Leipertz, “Laser-induced fluorescence of ketones at elevated temperatures for pressures up to 20 bars by using a 248 nm excitation laser wavelength: experiments and model improvements,” Appl. Opt. 45, 4982–4989 (2006).
    [CrossRef]
  13. C. N. Hinshelwood and W. K. Hutchinson, “A homogeneous unimolecular reactions-the thermal decomposition of acetone in the gaseous state,” Proc. R. Soc. Lond. Series A 111, 245–257 (1926).
    [CrossRef]
  14. F. O. Rice and R. E. Vollrath, “The thermal decomposition of acetone in the gaseous state,” Proc. Natl. Acad. Sci. 15, 702–705 (1929).
    [CrossRef]
  15. J. R. E. Smith and C. N. Hinshelwood, “The thermal decomposition of acetone,” Proc. R. Soc. Lond. Series A 183, 33–37 (1944).
    [CrossRef]
  16. J. Ernst, K. Spindler, and H. G. Wagner, “Investigations on thermal-decomposition of acetaldehyde and acetone,” Ber. Bunsenges. Phys. Chem. 80, 645–650 (1976).
  17. M. C. Thurber, F. Grisch, and R. K. Hanson, “Temperature imaging with single- and dual- wavelength acetone planar laser-induced fluorescence,” Opt. Lett. 22, 251–253 (1997).
    [CrossRef]
  18. M. C. Thurber, “Acetone laser-induced fluorescence for temperature and multiparameter imaging in gaseous flows,” Ph.D. Thesis (Stanford University, 1999).
  19. F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, and J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249–253 (1996).
    [CrossRef]
  20. F. Ossler and M. Aldén, “Measurements of picosecond laser induced fluorescence from gas phase 3-pentanone an acetone: implications to combustion diagnostics,” Appl. Phys. B 64, 493–502 (1997).
    [CrossRef]
  21. V. Modica, C. Morin, and P. Guibert, “3-Pentanone LIF at elevated temperatures and pressures: measurements and modeling,” Appl. Phys. B 87, 193–204 (2007).
    [CrossRef]
  22. N. Wermuth and V. Sick, “Absorption and fluorescence data of acetone, 3-pentanone, biacetyl and toluene at engine-specific combinations of temperature and pressure,” SAE Technical Papers Series 2005-01-2090 (2005).
  23. W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, and C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545–1553 (2005).
    [CrossRef]
  24. K. Sato and Y. Hidaka, “Shock-tube and modeling study of acetone pyrolysis and oxidation,” Combust. Flame 122, 291–311 (2000).
    [CrossRef]
  25. V. Decottignies, L. Gasnot, and J. F. Pauwels, “A comprehensive chemical mechanism for the oxidation of methylethylketone in flame conditions,” Combust. Flame 130, 225–240 (2002).
    [CrossRef]
  26. M. U. Alzueta, Z. Serinyel, J. M. Simme, and H. J. Curran, “Oxidation of acetone and its interaction with nitric oxide,” Energy Fuels 24, 1511–1520 (2010).
  27. V. Sick and C. K. Westbrook, “Diagnostic implications of the reactivity of fluorescence tracers,” Proc. Combust. Inst. 32, 913–920 (2009).
    [CrossRef]
  28. S. C. Eichmann, J. Trost, T. Seeger, L. Zigan, and A. Leipertz, “Application of linear Raman spectroscopy for the determination of acetone decomposition,” Opt. Express 19, 11052–11058 (2011).
    [CrossRef]
  29. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon&Breach, 1996).
  30. B. Schrader, Infrared and Raman Spectroscopy (Wiley-VCH, 1995).
  31. B. Peterson, E. Baum, B. Böhm, V. Sick, and A. Dreizler, “High-speed PIV and LIF imaging of temperature stratification in an internal combustion engine,” Proc. Combust. Inst. 34, 3653–3660 (2013).
    [CrossRef]
  32. A. Lozano, B. Yip, and R. K. Hanson, “Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence,” Exp. Fluids 13, 369–376 (1992).
    [CrossRef]
  33. W. Hirsch and E. Brandes, Zündtemperaturen binärer Gemische bei erhöhten Ausgangsdrücken (Physikalisch-Technische Bundesanstalt, 2005).
  34. G. Zabetakis, Flammability Characteristics of Combustible Gases and Vapors (US Dept of the Interior, Bureau of Mines, 1965).
  35. T. Fujikawa, Y. Hattori, and K. Akihama, “Quantitative 2-D fuel distribution measurements in an SI engine using laser-induced fluorescence with suitable combination of fluorescence tracer and excitation wavelength,” SAE Technical Papers Series 972944 (1997).
  36. H. Steen, Handbook of Explosion Prevention and Protection (Wiley-VHC, 2004).

2013 (2)

J. Trost, L. Zigan, and A. Leipertz, “Quantitative vapor temperature imaging in DISI-sprays at elevated pressures and temperatures using two-line excitation laser-induced fluorescence,” Proc. Combust. Inst. 34, 3645–3652 (2013).
[CrossRef]

B. Peterson, E. Baum, B. Böhm, V. Sick, and A. Dreizler, “High-speed PIV and LIF imaging of temperature stratification in an internal combustion engine,” Proc. Combust. Inst. 34, 3653–3660 (2013).
[CrossRef]

2011 (1)

2010 (2)

M. U. Alzueta, Z. Serinyel, J. M. Simme, and H. J. Curran, “Oxidation of acetone and its interaction with nitric oxide,” Energy Fuels 24, 1511–1520 (2010).

B. H. Cheung and R. K. Hanson, “CW laser-induced fluorescence of toluene for time-resolved imaging of gaseous flows,” Appl. Phys. B 98, 581–591 (2010).
[CrossRef]

2009 (4)

M. Löffler, F. Beyrau, and A. Leipertz, “Acetone laser-induced fluorescence behavior for the simultaneous quantification of temperature and residual gas distribution in fired spark-ignition engines,” Appl. Opt. 49, 37–49 (2009).

D. A. Rothamer, J. A. Snyder, R. K. Hanson, R. R. Steeper, and R. P. Fitzgerald, “Simultaneous imaging of exhaust gas residuals and temperature during HCCI combustion,” Proc. Combust. Inst. 32, 2869–2876 (2009).
[CrossRef]

C. Strozzi, J. Soton, A. Mura, and M. Bellenoue, “Characterization of a two-dimensional temperature field within a rapid compression machine using a toluene planar laser-induced fluorescence imaging technique,” Meas. Sci. Technol. 20, 125403 (2009).
[CrossRef]

V. Sick and C. K. Westbrook, “Diagnostic implications of the reactivity of fluorescence tracers,” Proc. Combust. Inst. 32, 913–920 (2009).
[CrossRef]

2007 (1)

V. Modica, C. Morin, and P. Guibert, “3-Pentanone LIF at elevated temperatures and pressures: measurements and modeling,” Appl. Phys. B 87, 193–204 (2007).
[CrossRef]

2006 (1)

2005 (2)

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75–121 (2005).
[CrossRef]

W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, and C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545–1553 (2005).
[CrossRef]

2004 (1)

2002 (1)

V. Decottignies, L. Gasnot, and J. F. Pauwels, “A comprehensive chemical mechanism for the oxidation of methylethylketone in flame conditions,” Combust. Flame 130, 225–240 (2002).
[CrossRef]

2001 (1)

2000 (2)

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717–723 (2000).
[CrossRef]

K. Sato and Y. Hidaka, “Shock-tube and modeling study of acetone pyrolysis and oxidation,” Combust. Flame 122, 291–311 (2000).
[CrossRef]

1997 (2)

M. C. Thurber, F. Grisch, and R. K. Hanson, “Temperature imaging with single- and dual- wavelength acetone planar laser-induced fluorescence,” Opt. Lett. 22, 251–253 (1997).
[CrossRef]

F. Ossler and M. Aldén, “Measurements of picosecond laser induced fluorescence from gas phase 3-pentanone an acetone: implications to combustion diagnostics,” Appl. Phys. B 64, 493–502 (1997).
[CrossRef]

1996 (1)

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, and J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249–253 (1996).
[CrossRef]

1992 (1)

A. Lozano, B. Yip, and R. K. Hanson, “Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence,” Exp. Fluids 13, 369–376 (1992).
[CrossRef]

1976 (1)

J. Ernst, K. Spindler, and H. G. Wagner, “Investigations on thermal-decomposition of acetaldehyde and acetone,” Ber. Bunsenges. Phys. Chem. 80, 645–650 (1976).

1944 (1)

J. R. E. Smith and C. N. Hinshelwood, “The thermal decomposition of acetone,” Proc. R. Soc. Lond. Series A 183, 33–37 (1944).
[CrossRef]

1929 (1)

F. O. Rice and R. E. Vollrath, “The thermal decomposition of acetone in the gaseous state,” Proc. Natl. Acad. Sci. 15, 702–705 (1929).
[CrossRef]

1926 (1)

C. N. Hinshelwood and W. K. Hutchinson, “A homogeneous unimolecular reactions-the thermal decomposition of acetone in the gaseous state,” Proc. R. Soc. Lond. Series A 111, 245–257 (1926).
[CrossRef]

Akihama, K.

T. Fujikawa, K. Fukui, Y. Hattori, and K. Akihama, “2-D temperature measurements of unburned gas mixture in an engine by two-line excitation LIF technique,” SAE Technical Papers Series 2006-01-3336 (2006).

T. Fujikawa, Y. Hattori, and K. Akihama, “Quantitative 2-D fuel distribution measurements in an SI engine using laser-induced fluorescence with suitable combination of fluorescence tracer and excitation wavelength,” SAE Technical Papers Series 972944 (1997).

Aldén, M.

F. Ossler and M. Aldén, “Measurements of picosecond laser induced fluorescence from gas phase 3-pentanone an acetone: implications to combustion diagnostics,” Appl. Phys. B 64, 493–502 (1997).
[CrossRef]

Alzueta, M. U.

M. U. Alzueta, Z. Serinyel, J. M. Simme, and H. J. Curran, “Oxidation of acetone and its interaction with nitric oxide,” Energy Fuels 24, 1511–1520 (2010).

Baum, E.

B. Peterson, E. Baum, B. Böhm, V. Sick, and A. Dreizler, “High-speed PIV and LIF imaging of temperature stratification in an internal combustion engine,” Proc. Combust. Inst. 34, 3653–3660 (2013).
[CrossRef]

Bellenoue, M.

C. Strozzi, J. Soton, A. Mura, and M. Bellenoue, “Characterization of a two-dimensional temperature field within a rapid compression machine using a toluene planar laser-induced fluorescence imaging technique,” Meas. Sci. Technol. 20, 125403 (2009).
[CrossRef]

Beyrau, F.

Böhm, B.

B. Peterson, E. Baum, B. Böhm, V. Sick, and A. Dreizler, “High-speed PIV and LIF imaging of temperature stratification in an internal combustion engine,” Proc. Combust. Inst. 34, 3653–3660 (2013).
[CrossRef]

Braeuer, A.

Brandes, E.

W. Hirsch and E. Brandes, Zündtemperaturen binärer Gemische bei erhöhten Ausgangsdrücken (Physikalisch-Technische Bundesanstalt, 2005).

Cheung, B. H.

B. H. Cheung and R. K. Hanson, “CW laser-induced fluorescence of toluene for time-resolved imaging of gaseous flows,” Appl. Phys. B 98, 581–591 (2010).
[CrossRef]

Curran, H. J.

M. U. Alzueta, Z. Serinyel, J. M. Simme, and H. J. Curran, “Oxidation of acetone and its interaction with nitric oxide,” Energy Fuels 24, 1511–1520 (2010).

Decottignies, V.

V. Decottignies, L. Gasnot, and J. F. Pauwels, “A comprehensive chemical mechanism for the oxidation of methylethylketone in flame conditions,” Combust. Flame 130, 225–240 (2002).
[CrossRef]

Dreizler, A.

B. Peterson, E. Baum, B. Böhm, V. Sick, and A. Dreizler, “High-speed PIV and LIF imaging of temperature stratification in an internal combustion engine,” Proc. Combust. Inst. 34, 3653–3660 (2013).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon&Breach, 1996).

Egermann, J.

Eichmann, S. C.

Einecke, S.

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717–723 (2000).
[CrossRef]

Ernst, J.

J. Ernst, K. Spindler, and H. G. Wagner, “Investigations on thermal-decomposition of acetaldehyde and acetone,” Ber. Bunsenges. Phys. Chem. 80, 645–650 (1976).

Fitzgerald, R. P.

D. A. Rothamer, J. A. Snyder, R. K. Hanson, R. R. Steeper, and R. P. Fitzgerald, “Simultaneous imaging of exhaust gas residuals and temperature during HCCI combustion,” Proc. Combust. Inst. 32, 2869–2876 (2009).
[CrossRef]

Fujikawa, T.

T. Fujikawa, K. Fukui, Y. Hattori, and K. Akihama, “2-D temperature measurements of unburned gas mixture in an engine by two-line excitation LIF technique,” SAE Technical Papers Series 2006-01-3336 (2006).

T. Fujikawa, Y. Hattori, and K. Akihama, “Quantitative 2-D fuel distribution measurements in an SI engine using laser-induced fluorescence with suitable combination of fluorescence tracer and excitation wavelength,” SAE Technical Papers Series 972944 (1997).

Fukui, K.

T. Fujikawa, K. Fukui, Y. Hattori, and K. Akihama, “2-D temperature measurements of unburned gas mixture in an engine by two-line excitation LIF technique,” SAE Technical Papers Series 2006-01-3336 (2006).

Gasnot, L.

V. Decottignies, L. Gasnot, and J. F. Pauwels, “A comprehensive chemical mechanism for the oxidation of methylethylketone in flame conditions,” Combust. Flame 130, 225–240 (2002).
[CrossRef]

Grisch, F.

Grossmann, F.

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, and J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249–253 (1996).
[CrossRef]

Guibert, P.

V. Modica, C. Morin, and P. Guibert, “3-Pentanone LIF at elevated temperatures and pressures: measurements and modeling,” Appl. Phys. B 87, 193–204 (2007).
[CrossRef]

Hanson, R. K.

B. H. Cheung and R. K. Hanson, “CW laser-induced fluorescence of toluene for time-resolved imaging of gaseous flows,” Appl. Phys. B 98, 581–591 (2010).
[CrossRef]

D. A. Rothamer, J. A. Snyder, R. K. Hanson, R. R. Steeper, and R. P. Fitzgerald, “Simultaneous imaging of exhaust gas residuals and temperature during HCCI combustion,” Proc. Combust. Inst. 32, 2869–2876 (2009).
[CrossRef]

W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, and C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545–1553 (2005).
[CrossRef]

M. C. Thurber, F. Grisch, and R. K. Hanson, “Temperature imaging with single- and dual- wavelength acetone planar laser-induced fluorescence,” Opt. Lett. 22, 251–253 (1997).
[CrossRef]

A. Lozano, B. Yip, and R. K. Hanson, “Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence,” Exp. Fluids 13, 369–376 (1992).
[CrossRef]

Hattori, Y.

T. Fujikawa, Y. Hattori, and K. Akihama, “Quantitative 2-D fuel distribution measurements in an SI engine using laser-induced fluorescence with suitable combination of fluorescence tracer and excitation wavelength,” SAE Technical Papers Series 972944 (1997).

T. Fujikawa, K. Fukui, Y. Hattori, and K. Akihama, “2-D temperature measurements of unburned gas mixture in an engine by two-line excitation LIF technique,” SAE Technical Papers Series 2006-01-3336 (2006).

Hidaka, Y.

K. Sato and Y. Hidaka, “Shock-tube and modeling study of acetone pyrolysis and oxidation,” Combust. Flame 122, 291–311 (2000).
[CrossRef]

Hinshelwood, C. N.

J. R. E. Smith and C. N. Hinshelwood, “The thermal decomposition of acetone,” Proc. R. Soc. Lond. Series A 183, 33–37 (1944).
[CrossRef]

C. N. Hinshelwood and W. K. Hutchinson, “A homogeneous unimolecular reactions-the thermal decomposition of acetone in the gaseous state,” Proc. R. Soc. Lond. Series A 111, 245–257 (1926).
[CrossRef]

Hirsch, W.

W. Hirsch and E. Brandes, Zündtemperaturen binärer Gemische bei erhöhten Ausgangsdrücken (Physikalisch-Technische Bundesanstalt, 2005).

Hutchinson, W. K.

C. N. Hinshelwood and W. K. Hutchinson, “A homogeneous unimolecular reactions-the thermal decomposition of acetone in the gaseous state,” Proc. R. Soc. Lond. Series A 111, 245–257 (1926).
[CrossRef]

Koban, W.

W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, and C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545–1553 (2005).
[CrossRef]

Koch, J. D.

W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, and C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545–1553 (2005).
[CrossRef]

J. D. Koch, “Fuel tracer photophysics for qualitative planar laser-induced fluorescence,” Ph.D. Dissertation (Stanford University, 2005).

Leipertz, A.

Löffler, M.

Lozano, A.

A. Lozano, B. Yip, and R. K. Hanson, “Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence,” Exp. Fluids 13, 369–376 (1992).
[CrossRef]

Modica, V.

V. Modica, C. Morin, and P. Guibert, “3-Pentanone LIF at elevated temperatures and pressures: measurements and modeling,” Appl. Phys. B 87, 193–204 (2007).
[CrossRef]

Monkhouse, P. B.

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, and J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249–253 (1996).
[CrossRef]

Morin, C.

V. Modica, C. Morin, and P. Guibert, “3-Pentanone LIF at elevated temperatures and pressures: measurements and modeling,” Appl. Phys. B 87, 193–204 (2007).
[CrossRef]

Most, D.

Mura, A.

C. Strozzi, J. Soton, A. Mura, and M. Bellenoue, “Characterization of a two-dimensional temperature field within a rapid compression machine using a toluene planar laser-induced fluorescence imaging technique,” Meas. Sci. Technol. 20, 125403 (2009).
[CrossRef]

Ossler, F.

F. Ossler and M. Aldén, “Measurements of picosecond laser induced fluorescence from gas phase 3-pentanone an acetone: implications to combustion diagnostics,” Appl. Phys. B 64, 493–502 (1997).
[CrossRef]

Pauwels, J. F.

V. Decottignies, L. Gasnot, and J. F. Pauwels, “A comprehensive chemical mechanism for the oxidation of methylethylketone in flame conditions,” Combust. Flame 130, 225–240 (2002).
[CrossRef]

Peterson, B.

B. Peterson, E. Baum, B. Böhm, V. Sick, and A. Dreizler, “High-speed PIV and LIF imaging of temperature stratification in an internal combustion engine,” Proc. Combust. Inst. 34, 3653–3660 (2013).
[CrossRef]

Rice, F. O.

F. O. Rice and R. E. Vollrath, “The thermal decomposition of acetone in the gaseous state,” Proc. Natl. Acad. Sci. 15, 702–705 (1929).
[CrossRef]

Ridder, M.

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, and J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249–253 (1996).
[CrossRef]

Rothamer, D. A.

D. A. Rothamer, J. A. Snyder, R. K. Hanson, R. R. Steeper, and R. P. Fitzgerald, “Simultaneous imaging of exhaust gas residuals and temperature during HCCI combustion,” Proc. Combust. Inst. 32, 2869–2876 (2009).
[CrossRef]

Sato, K.

K. Sato and Y. Hidaka, “Shock-tube and modeling study of acetone pyrolysis and oxidation,” Combust. Flame 122, 291–311 (2000).
[CrossRef]

Schrader, B.

B. Schrader, Infrared and Raman Spectroscopy (Wiley-VCH, 1995).

Schulz, C.

W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, and C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545–1553 (2005).
[CrossRef]

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75–121 (2005).
[CrossRef]

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717–723 (2000).
[CrossRef]

Seeger, T.

Serinyel, Z.

M. U. Alzueta, Z. Serinyel, J. M. Simme, and H. J. Curran, “Oxidation of acetone and its interaction with nitric oxide,” Energy Fuels 24, 1511–1520 (2010).

Sick, V.

B. Peterson, E. Baum, B. Böhm, V. Sick, and A. Dreizler, “High-speed PIV and LIF imaging of temperature stratification in an internal combustion engine,” Proc. Combust. Inst. 34, 3653–3660 (2013).
[CrossRef]

V. Sick and C. K. Westbrook, “Diagnostic implications of the reactivity of fluorescence tracers,” Proc. Combust. Inst. 32, 913–920 (2009).
[CrossRef]

W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, and C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545–1553 (2005).
[CrossRef]

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75–121 (2005).
[CrossRef]

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717–723 (2000).
[CrossRef]

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, and J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249–253 (1996).
[CrossRef]

N. Wermuth and V. Sick, “Absorption and fluorescence data of acetone, 3-pentanone, biacetyl and toluene at engine-specific combinations of temperature and pressure,” SAE Technical Papers Series 2005-01-2090 (2005).

Simme, J. M.

M. U. Alzueta, Z. Serinyel, J. M. Simme, and H. J. Curran, “Oxidation of acetone and its interaction with nitric oxide,” Energy Fuels 24, 1511–1520 (2010).

Smith, J. R. E.

J. R. E. Smith and C. N. Hinshelwood, “The thermal decomposition of acetone,” Proc. R. Soc. Lond. Series A 183, 33–37 (1944).
[CrossRef]

Snyder, J. A.

D. A. Rothamer, J. A. Snyder, R. K. Hanson, R. R. Steeper, and R. P. Fitzgerald, “Simultaneous imaging of exhaust gas residuals and temperature during HCCI combustion,” Proc. Combust. Inst. 32, 2869–2876 (2009).
[CrossRef]

Soton, J.

C. Strozzi, J. Soton, A. Mura, and M. Bellenoue, “Characterization of a two-dimensional temperature field within a rapid compression machine using a toluene planar laser-induced fluorescence imaging technique,” Meas. Sci. Technol. 20, 125403 (2009).
[CrossRef]

Spindler, K.

J. Ernst, K. Spindler, and H. G. Wagner, “Investigations on thermal-decomposition of acetaldehyde and acetone,” Ber. Bunsenges. Phys. Chem. 80, 645–650 (1976).

Steen, H.

H. Steen, Handbook of Explosion Prevention and Protection (Wiley-VHC, 2004).

Steeper, R. R.

D. A. Rothamer, J. A. Snyder, R. K. Hanson, R. R. Steeper, and R. P. Fitzgerald, “Simultaneous imaging of exhaust gas residuals and temperature during HCCI combustion,” Proc. Combust. Inst. 32, 2869–2876 (2009).
[CrossRef]

Strozzi, C.

C. Strozzi, J. Soton, A. Mura, and M. Bellenoue, “Characterization of a two-dimensional temperature field within a rapid compression machine using a toluene planar laser-induced fluorescence imaging technique,” Meas. Sci. Technol. 20, 125403 (2009).
[CrossRef]

Thurber, M. C.

M. C. Thurber, F. Grisch, and R. K. Hanson, “Temperature imaging with single- and dual- wavelength acetone planar laser-induced fluorescence,” Opt. Lett. 22, 251–253 (1997).
[CrossRef]

M. C. Thurber, “Acetone laser-induced fluorescence for temperature and multiparameter imaging in gaseous flows,” Ph.D. Thesis (Stanford University, 1999).

Trost, J.

J. Trost, L. Zigan, and A. Leipertz, “Quantitative vapor temperature imaging in DISI-sprays at elevated pressures and temperatures using two-line excitation laser-induced fluorescence,” Proc. Combust. Inst. 34, 3645–3652 (2013).
[CrossRef]

S. C. Eichmann, J. Trost, T. Seeger, L. Zigan, and A. Leipertz, “Application of linear Raman spectroscopy for the determination of acetone decomposition,” Opt. Express 19, 11052–11058 (2011).
[CrossRef]

Vollrath, R. E.

F. O. Rice and R. E. Vollrath, “The thermal decomposition of acetone in the gaseous state,” Proc. Natl. Acad. Sci. 15, 702–705 (1929).
[CrossRef]

Wagner, H. G.

J. Ernst, K. Spindler, and H. G. Wagner, “Investigations on thermal-decomposition of acetaldehyde and acetone,” Ber. Bunsenges. Phys. Chem. 80, 645–650 (1976).

Wermuth, N.

W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, and C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545–1553 (2005).
[CrossRef]

N. Wermuth and V. Sick, “Absorption and fluorescence data of acetone, 3-pentanone, biacetyl and toluene at engine-specific combinations of temperature and pressure,” SAE Technical Papers Series 2005-01-2090 (2005).

Westbrook, C. K.

V. Sick and C. K. Westbrook, “Diagnostic implications of the reactivity of fluorescence tracers,” Proc. Combust. Inst. 32, 913–920 (2009).
[CrossRef]

Wolfrum, J.

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, and J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249–253 (1996).
[CrossRef]

Yip, B.

A. Lozano, B. Yip, and R. K. Hanson, “Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence,” Exp. Fluids 13, 369–376 (1992).
[CrossRef]

Zabetakis, G.

G. Zabetakis, Flammability Characteristics of Combustible Gases and Vapors (US Dept of the Interior, Bureau of Mines, 1965).

Zigan, L.

J. Trost, L. Zigan, and A. Leipertz, “Quantitative vapor temperature imaging in DISI-sprays at elevated pressures and temperatures using two-line excitation laser-induced fluorescence,” Proc. Combust. Inst. 34, 3645–3652 (2013).
[CrossRef]

S. C. Eichmann, J. Trost, T. Seeger, L. Zigan, and A. Leipertz, “Application of linear Raman spectroscopy for the determination of acetone decomposition,” Opt. Express 19, 11052–11058 (2011).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. B (5)

B. H. Cheung and R. K. Hanson, “CW laser-induced fluorescence of toluene for time-resolved imaging of gaseous flows,” Appl. Phys. B 98, 581–591 (2010).
[CrossRef]

S. Einecke, C. Schulz, and V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717–723 (2000).
[CrossRef]

F. Grossmann, P. B. Monkhouse, M. Ridder, V. Sick, and J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249–253 (1996).
[CrossRef]

F. Ossler and M. Aldén, “Measurements of picosecond laser induced fluorescence from gas phase 3-pentanone an acetone: implications to combustion diagnostics,” Appl. Phys. B 64, 493–502 (1997).
[CrossRef]

V. Modica, C. Morin, and P. Guibert, “3-Pentanone LIF at elevated temperatures and pressures: measurements and modeling,” Appl. Phys. B 87, 193–204 (2007).
[CrossRef]

Ber. Bunsenges. Phys. Chem. (1)

J. Ernst, K. Spindler, and H. G. Wagner, “Investigations on thermal-decomposition of acetaldehyde and acetone,” Ber. Bunsenges. Phys. Chem. 80, 645–650 (1976).

Combust. Flame (2)

K. Sato and Y. Hidaka, “Shock-tube and modeling study of acetone pyrolysis and oxidation,” Combust. Flame 122, 291–311 (2000).
[CrossRef]

V. Decottignies, L. Gasnot, and J. F. Pauwels, “A comprehensive chemical mechanism for the oxidation of methylethylketone in flame conditions,” Combust. Flame 130, 225–240 (2002).
[CrossRef]

Energy Fuels (1)

M. U. Alzueta, Z. Serinyel, J. M. Simme, and H. J. Curran, “Oxidation of acetone and its interaction with nitric oxide,” Energy Fuels 24, 1511–1520 (2010).

Exp. Fluids (1)

A. Lozano, B. Yip, and R. K. Hanson, “Acetone: a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence,” Exp. Fluids 13, 369–376 (1992).
[CrossRef]

Meas. Sci. Technol. (1)

C. Strozzi, J. Soton, A. Mura, and M. Bellenoue, “Characterization of a two-dimensional temperature field within a rapid compression machine using a toluene planar laser-induced fluorescence imaging technique,” Meas. Sci. Technol. 20, 125403 (2009).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. Combust. Inst. (5)

J. Trost, L. Zigan, and A. Leipertz, “Quantitative vapor temperature imaging in DISI-sprays at elevated pressures and temperatures using two-line excitation laser-induced fluorescence,” Proc. Combust. Inst. 34, 3645–3652 (2013).
[CrossRef]

D. A. Rothamer, J. A. Snyder, R. K. Hanson, R. R. Steeper, and R. P. Fitzgerald, “Simultaneous imaging of exhaust gas residuals and temperature during HCCI combustion,” Proc. Combust. Inst. 32, 2869–2876 (2009).
[CrossRef]

W. Koban, J. D. Koch, V. Sick, N. Wermuth, R. K. Hanson, and C. Schulz, “Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions,” Proc. Combust. Inst. 30, 1545–1553 (2005).
[CrossRef]

V. Sick and C. K. Westbrook, “Diagnostic implications of the reactivity of fluorescence tracers,” Proc. Combust. Inst. 32, 913–920 (2009).
[CrossRef]

B. Peterson, E. Baum, B. Böhm, V. Sick, and A. Dreizler, “High-speed PIV and LIF imaging of temperature stratification in an internal combustion engine,” Proc. Combust. Inst. 34, 3653–3660 (2013).
[CrossRef]

Proc. Natl. Acad. Sci. (1)

F. O. Rice and R. E. Vollrath, “The thermal decomposition of acetone in the gaseous state,” Proc. Natl. Acad. Sci. 15, 702–705 (1929).
[CrossRef]

Proc. R. Soc. Lond. Series A (2)

J. R. E. Smith and C. N. Hinshelwood, “The thermal decomposition of acetone,” Proc. R. Soc. Lond. Series A 183, 33–37 (1944).
[CrossRef]

C. N. Hinshelwood and W. K. Hutchinson, “A homogeneous unimolecular reactions-the thermal decomposition of acetone in the gaseous state,” Proc. R. Soc. Lond. Series A 111, 245–257 (1926).
[CrossRef]

Prog. Energy Combust. Sci. (1)

C. Schulz and V. Sick, “Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems,” Prog. Energy Combust. Sci. 31, 75–121 (2005).
[CrossRef]

Other (10)

J. D. Koch, “Fuel tracer photophysics for qualitative planar laser-induced fluorescence,” Ph.D. Dissertation (Stanford University, 2005).

T. Fujikawa, K. Fukui, Y. Hattori, and K. Akihama, “2-D temperature measurements of unburned gas mixture in an engine by two-line excitation LIF technique,” SAE Technical Papers Series 2006-01-3336 (2006).

M. C. Thurber, “Acetone laser-induced fluorescence for temperature and multiparameter imaging in gaseous flows,” Ph.D. Thesis (Stanford University, 1999).

N. Wermuth and V. Sick, “Absorption and fluorescence data of acetone, 3-pentanone, biacetyl and toluene at engine-specific combinations of temperature and pressure,” SAE Technical Papers Series 2005-01-2090 (2005).

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Gordon&Breach, 1996).

B. Schrader, Infrared and Raman Spectroscopy (Wiley-VCH, 1995).

W. Hirsch and E. Brandes, Zündtemperaturen binärer Gemische bei erhöhten Ausgangsdrücken (Physikalisch-Technische Bundesanstalt, 2005).

G. Zabetakis, Flammability Characteristics of Combustible Gases and Vapors (US Dept of the Interior, Bureau of Mines, 1965).

T. Fujikawa, Y. Hattori, and K. Akihama, “Quantitative 2-D fuel distribution measurements in an SI engine using laser-induced fluorescence with suitable combination of fluorescence tracer and excitation wavelength,” SAE Technical Papers Series 972944 (1997).

H. Steen, Handbook of Explosion Prevention and Protection (Wiley-VHC, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Raman spectroscopy setup to analyze the gas composition and fluorescence tracer stability. (a) Front view and (b) top view.

Fig. 2.
Fig. 2.

Spectra of acetone at 573 K, 5 s residence time, and different pressures. The residence time of the flow in the calibration cell was set constant (5 s) for different pressures. Partial tracer decomposition occurs for 2 MPa, no decomposition was detected at 1 MPa.

Fig. 3.
Fig. 3.

Spectra of acetone at 623 K, 1 MPa, and different residence times. With shorter residence time the decomposition can be avoided.

Fig. 4.
Fig. 4.

Comparison of the spectra of acetone and diethylketone at 573 K, 1 MPa, and 5 s residence time. Acetone shows no reaction whereas diethylketone does.

Fig. 5.
Fig. 5.

Spectra of toluene at 673 K and 2 MPa for different residence times. The broadband spectrum at 10 s residence time proves decomposition and reaction of the tracer toluene.

Fig. 6.
Fig. 6.

Homogeneous calibration images of diethylketone in air with 266 nm excitation at 473 K and 2 MPa for (a) 5 s and (b) 10 s residence time. The fluorescence signal in (b) is lower due to partial tracer reaction (ROI: region of interest).

Fig. 7.
Fig. 7.

LIF calibration of diethylketone in the flow cell at different temperatures and residence times with 266 nm excitation; Raman measurement shows partial tracer consumption for “473 K, air, 10 s.”

Fig. 8.
Fig. 8.

Measurement of diethylketone concentration in a turbulent inhomogeneous flow at 473 K and 2 MPa. Shown are the results (a) with correct calibration, (b) with defective calibration due to partial tracer consumption, and (c) the difference between the results.

Tables (2)

Tables Icon

Table 1. Raman Transitions of Decomposition Relevant Molecules

Tables Icon

Table 2. Tested Residence Time in the Flow Cell and Limits to Prevent Tracer Dissociation of Diethylketone (C5H10O), Acetone (C3H6O), and Toluene (C7H8) for Different Temperatures and Pressures (in Secondsa)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

CH3COCH3(+M)CH3CO+CH3(+M).
ν˜R=ν˜0±Δν˜R.
IR=k·I0·n·L·σΩ·Ω,
C3H6O+4O23CO2+3H2O.

Metrics