Abstract

Laser-induced breakdown spectroscopy quality can be improved by using a nanosecond Nd:YAG laser pulse to excite soil samples. To investigate how flat-mirror reflection affects the radiation characteristics of laser-induced plasma, emission spectra of sample elements were recorded using a grating spectrometer and photoelectric detection system. Placing a planar mirror vertically on the sample surface (10 mm mirror to plasma–center axis distance) for flat-mirror reflection increased spectral line intensities of Mg, Al, Fe, and Ba by 93.06%, 159.63%, 93.43%, and 94.61%, respectively. Signal-to-noise ratio increased by 17.56%, 40.21%, 31.29%, and 30%. The radiation enhancement mechanism was clarified using measured plasma parameters.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Galmed, A. K. Kassem, H. Von Bergmann, and M. A. Harith, “A study of using femtosecond LIBS in analyzing metallic thin film–semiconductor interface,” Appl. Phys. B 102, 197–204 (2011).
    [CrossRef]
  2. G. P. Gupta, B. M. Suri, and A. Verma, “Quantitative elemental analysis of nickel alloys using calibration-based laser-induced breakdown spectroscopy,” J. Alloys Compd. 509, 3740 (2011).
    [CrossRef]
  3. J. M. Tuvker, M. D. Dyar, and M. W. Schaefer, “Optimization of laser-induced breakdown spectroscopy for rapid geochemical analysis,” Chem. Geol. 277, 137–148 (2010).
    [CrossRef]
  4. M. D. Dyar, J. M. Tucker, and S. Humphries, “Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples,” Spectrochim. Acta Part B 66, 39–56 (2011).
    [CrossRef]
  5. S. Hamzaoui, R. Khleifia, and N. Jaïdane, “Quantitative analysis of pathological nails using laser-induced breakdown spectroscopy (LIBS) technique,” Lasers Med. Sci. 26, 79–83 (2011).
    [CrossRef]
  6. A. El-Hussein, A. K. Kassem, and H. Ismail, “Exploiting LIBS as a spectrochemical analytical technique in diagnosis of some types of human malignancies,” Talanta 82, 495–501 (2010).
    [CrossRef]
  7. S. Pandhija, N. K. Rai, A. K. Rai, and S. N. Thakur, “Contaminant concentration in environmental samples using LIBS and CF-LIBS,” Appl. Phys. B 98231–241 (2010).
    [CrossRef]
  8. A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25, 837–838 (2010).
    [CrossRef]
  9. K. L. Liu, Y. S. Wang, and J. P. Zhang, “Progress in atomic spectrochemical analysis and its application,” Spectrosc. Spectral Anal. 30, 2248–2252 (2010).
  10. K. F. Ermalitskaia, Y. S. Voropay, and A. P. Zajogin, “Dual-pulse laser-induced breakdown spectrometry of bronze alloys and coatings,” J. Appl. Spectrosc. 77, 153–159 (2010).
    [CrossRef]
  11. Q. Zhang, W. Xiong, and Y. Q. Chen, “Rapid measurement of trace mercury in aqueous solutions with optical-electrical dual pulse LIBS technique,” Spectrosc. Spectral Anal. 31, 521–524 (2011).
  12. L. B. Guo, W. Hu, and B. Y. Zhang, “Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement,” Opt. Express 19, 14067–14075 (2011).
    [CrossRef]
  13. X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91, 081501 (2007).
    [CrossRef]
  14. X. R. Xuan, Plasma Emission Spectral Analysis (Chemical Industry, 2010).
  15. NIST Atomic Spectra Database, http://physics.nist.gov , Kurucz output Atomic Spectral Line database from R. L Kurucz’s CD-ROM 23.
  16. N. M. Shaikh, S. Hafeez, and M. A. Kalyar, “Spectroscopic characterization of laser ablation brass plasma,” J. Appl. Phys. 104, 103108 (2008).
    [CrossRef]
  17. C. Aragon and J. A. Agulera, “Characterization of laser-induced plasmas by optical emission spectroscopy review of experiments and methods,” Spectrochim. Acta Part B 63, 893–916 (2008).
    [CrossRef]

2011 (6)

M. D. Dyar, J. M. Tucker, and S. Humphries, “Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples,” Spectrochim. Acta Part B 66, 39–56 (2011).
[CrossRef]

S. Hamzaoui, R. Khleifia, and N. Jaïdane, “Quantitative analysis of pathological nails using laser-induced breakdown spectroscopy (LIBS) technique,” Lasers Med. Sci. 26, 79–83 (2011).
[CrossRef]

A. H. Galmed, A. K. Kassem, H. Von Bergmann, and M. A. Harith, “A study of using femtosecond LIBS in analyzing metallic thin film–semiconductor interface,” Appl. Phys. B 102, 197–204 (2011).
[CrossRef]

G. P. Gupta, B. M. Suri, and A. Verma, “Quantitative elemental analysis of nickel alloys using calibration-based laser-induced breakdown spectroscopy,” J. Alloys Compd. 509, 3740 (2011).
[CrossRef]

Q. Zhang, W. Xiong, and Y. Q. Chen, “Rapid measurement of trace mercury in aqueous solutions with optical-electrical dual pulse LIBS technique,” Spectrosc. Spectral Anal. 31, 521–524 (2011).

L. B. Guo, W. Hu, and B. Y. Zhang, “Enhancement of optical emission from laser-induced plasmas by combined spatial and magnetic confinement,” Opt. Express 19, 14067–14075 (2011).
[CrossRef]

2010 (6)

J. M. Tuvker, M. D. Dyar, and M. W. Schaefer, “Optimization of laser-induced breakdown spectroscopy for rapid geochemical analysis,” Chem. Geol. 277, 137–148 (2010).
[CrossRef]

A. El-Hussein, A. K. Kassem, and H. Ismail, “Exploiting LIBS as a spectrochemical analytical technique in diagnosis of some types of human malignancies,” Talanta 82, 495–501 (2010).
[CrossRef]

S. Pandhija, N. K. Rai, A. K. Rai, and S. N. Thakur, “Contaminant concentration in environmental samples using LIBS and CF-LIBS,” Appl. Phys. B 98231–241 (2010).
[CrossRef]

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25, 837–838 (2010).
[CrossRef]

K. L. Liu, Y. S. Wang, and J. P. Zhang, “Progress in atomic spectrochemical analysis and its application,” Spectrosc. Spectral Anal. 30, 2248–2252 (2010).

K. F. Ermalitskaia, Y. S. Voropay, and A. P. Zajogin, “Dual-pulse laser-induced breakdown spectrometry of bronze alloys and coatings,” J. Appl. Spectrosc. 77, 153–159 (2010).
[CrossRef]

2008 (2)

N. M. Shaikh, S. Hafeez, and M. A. Kalyar, “Spectroscopic characterization of laser ablation brass plasma,” J. Appl. Phys. 104, 103108 (2008).
[CrossRef]

C. Aragon and J. A. Agulera, “Characterization of laser-induced plasmas by optical emission spectroscopy review of experiments and methods,” Spectrochim. Acta Part B 63, 893–916 (2008).
[CrossRef]

2007 (1)

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91, 081501 (2007).
[CrossRef]

Agulera, J. A.

C. Aragon and J. A. Agulera, “Characterization of laser-induced plasmas by optical emission spectroscopy review of experiments and methods,” Spectrochim. Acta Part B 63, 893–916 (2008).
[CrossRef]

Aragon, C.

C. Aragon and J. A. Agulera, “Characterization of laser-induced plasmas by optical emission spectroscopy review of experiments and methods,” Spectrochim. Acta Part B 63, 893–916 (2008).
[CrossRef]

Chen, Y. Q.

Q. Zhang, W. Xiong, and Y. Q. Chen, “Rapid measurement of trace mercury in aqueous solutions with optical-electrical dual pulse LIBS technique,” Spectrosc. Spectral Anal. 31, 521–524 (2011).

Colao, F.

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25, 837–838 (2010).
[CrossRef]

Dyar, M. D.

M. D. Dyar, J. M. Tucker, and S. Humphries, “Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples,” Spectrochim. Acta Part B 66, 39–56 (2011).
[CrossRef]

J. M. Tuvker, M. D. Dyar, and M. W. Schaefer, “Optimization of laser-induced breakdown spectroscopy for rapid geochemical analysis,” Chem. Geol. 277, 137–148 (2010).
[CrossRef]

El-Hussein, A.

A. El-Hussein, A. K. Kassem, and H. Ismail, “Exploiting LIBS as a spectrochemical analytical technique in diagnosis of some types of human malignancies,” Talanta 82, 495–501 (2010).
[CrossRef]

Ermalitskaia, K. F.

K. F. Ermalitskaia, Y. S. Voropay, and A. P. Zajogin, “Dual-pulse laser-induced breakdown spectrometry of bronze alloys and coatings,” J. Appl. Spectrosc. 77, 153–159 (2010).
[CrossRef]

Fantoni, R.

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25, 837–838 (2010).
[CrossRef]

Galmed, A. H.

A. H. Galmed, A. K. Kassem, H. Von Bergmann, and M. A. Harith, “A study of using femtosecond LIBS in analyzing metallic thin film–semiconductor interface,” Appl. Phys. B 102, 197–204 (2011).
[CrossRef]

Guo, L. B.

Gupta, G. P.

G. P. Gupta, B. M. Suri, and A. Verma, “Quantitative elemental analysis of nickel alloys using calibration-based laser-induced breakdown spectroscopy,” J. Alloys Compd. 509, 3740 (2011).
[CrossRef]

Hafeez, S.

N. M. Shaikh, S. Hafeez, and M. A. Kalyar, “Spectroscopic characterization of laser ablation brass plasma,” J. Appl. Phys. 104, 103108 (2008).
[CrossRef]

Hamzaoui, S.

S. Hamzaoui, R. Khleifia, and N. Jaïdane, “Quantitative analysis of pathological nails using laser-induced breakdown spectroscopy (LIBS) technique,” Lasers Med. Sci. 26, 79–83 (2011).
[CrossRef]

Harith, M. A.

A. H. Galmed, A. K. Kassem, H. Von Bergmann, and M. A. Harith, “A study of using femtosecond LIBS in analyzing metallic thin film–semiconductor interface,” Appl. Phys. B 102, 197–204 (2011).
[CrossRef]

Hu, W.

Humphries, S.

M. D. Dyar, J. M. Tucker, and S. Humphries, “Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples,” Spectrochim. Acta Part B 66, 39–56 (2011).
[CrossRef]

Ismail, H.

A. El-Hussein, A. K. Kassem, and H. Ismail, “Exploiting LIBS as a spectrochemical analytical technique in diagnosis of some types of human malignancies,” Talanta 82, 495–501 (2010).
[CrossRef]

Jaïdane, N.

S. Hamzaoui, R. Khleifia, and N. Jaïdane, “Quantitative analysis of pathological nails using laser-induced breakdown spectroscopy (LIBS) technique,” Lasers Med. Sci. 26, 79–83 (2011).
[CrossRef]

Kalyar, M. A.

N. M. Shaikh, S. Hafeez, and M. A. Kalyar, “Spectroscopic characterization of laser ablation brass plasma,” J. Appl. Phys. 104, 103108 (2008).
[CrossRef]

Kassem, A. K.

A. H. Galmed, A. K. Kassem, H. Von Bergmann, and M. A. Harith, “A study of using femtosecond LIBS in analyzing metallic thin film–semiconductor interface,” Appl. Phys. B 102, 197–204 (2011).
[CrossRef]

A. El-Hussein, A. K. Kassem, and H. Ismail, “Exploiting LIBS as a spectrochemical analytical technique in diagnosis of some types of human malignancies,” Talanta 82, 495–501 (2010).
[CrossRef]

Khleifia, R.

S. Hamzaoui, R. Khleifia, and N. Jaïdane, “Quantitative analysis of pathological nails using laser-induced breakdown spectroscopy (LIBS) technique,” Lasers Med. Sci. 26, 79–83 (2011).
[CrossRef]

Ling, H.

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91, 081501 (2007).
[CrossRef]

Liu, K. L.

K. L. Liu, Y. S. Wang, and J. P. Zhang, “Progress in atomic spectrochemical analysis and its application,” Spectrosc. Spectral Anal. 30, 2248–2252 (2010).

Lu, Y. F.

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91, 081501 (2007).
[CrossRef]

Pandhija, S.

S. Pandhija, N. K. Rai, A. K. Rai, and S. N. Thakur, “Contaminant concentration in environmental samples using LIBS and CF-LIBS,” Appl. Phys. B 98231–241 (2010).
[CrossRef]

Popov, A. M.

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25, 837–838 (2010).
[CrossRef]

Rai, A. K.

S. Pandhija, N. K. Rai, A. K. Rai, and S. N. Thakur, “Contaminant concentration in environmental samples using LIBS and CF-LIBS,” Appl. Phys. B 98231–241 (2010).
[CrossRef]

Rai, N. K.

S. Pandhija, N. K. Rai, A. K. Rai, and S. N. Thakur, “Contaminant concentration in environmental samples using LIBS and CF-LIBS,” Appl. Phys. B 98231–241 (2010).
[CrossRef]

Schaefer, M. W.

J. M. Tuvker, M. D. Dyar, and M. W. Schaefer, “Optimization of laser-induced breakdown spectroscopy for rapid geochemical analysis,” Chem. Geol. 277, 137–148 (2010).
[CrossRef]

Shaikh, N. M.

N. M. Shaikh, S. Hafeez, and M. A. Kalyar, “Spectroscopic characterization of laser ablation brass plasma,” J. Appl. Phys. 104, 103108 (2008).
[CrossRef]

Shen, X. K.

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91, 081501 (2007).
[CrossRef]

Sun, J.

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91, 081501 (2007).
[CrossRef]

Suri, B. M.

G. P. Gupta, B. M. Suri, and A. Verma, “Quantitative elemental analysis of nickel alloys using calibration-based laser-induced breakdown spectroscopy,” J. Alloys Compd. 509, 3740 (2011).
[CrossRef]

Thakur, S. N.

S. Pandhija, N. K. Rai, A. K. Rai, and S. N. Thakur, “Contaminant concentration in environmental samples using LIBS and CF-LIBS,” Appl. Phys. B 98231–241 (2010).
[CrossRef]

Tucker, J. M.

M. D. Dyar, J. M. Tucker, and S. Humphries, “Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples,” Spectrochim. Acta Part B 66, 39–56 (2011).
[CrossRef]

Tuvker, J. M.

J. M. Tuvker, M. D. Dyar, and M. W. Schaefer, “Optimization of laser-induced breakdown spectroscopy for rapid geochemical analysis,” Chem. Geol. 277, 137–148 (2010).
[CrossRef]

Verma, A.

G. P. Gupta, B. M. Suri, and A. Verma, “Quantitative elemental analysis of nickel alloys using calibration-based laser-induced breakdown spectroscopy,” J. Alloys Compd. 509, 3740 (2011).
[CrossRef]

Von Bergmann, H.

A. H. Galmed, A. K. Kassem, H. Von Bergmann, and M. A. Harith, “A study of using femtosecond LIBS in analyzing metallic thin film–semiconductor interface,” Appl. Phys. B 102, 197–204 (2011).
[CrossRef]

Voropay, Y. S.

K. F. Ermalitskaia, Y. S. Voropay, and A. P. Zajogin, “Dual-pulse laser-induced breakdown spectrometry of bronze alloys and coatings,” J. Appl. Spectrosc. 77, 153–159 (2010).
[CrossRef]

Wang, Y. S.

K. L. Liu, Y. S. Wang, and J. P. Zhang, “Progress in atomic spectrochemical analysis and its application,” Spectrosc. Spectral Anal. 30, 2248–2252 (2010).

Xiong, W.

Q. Zhang, W. Xiong, and Y. Q. Chen, “Rapid measurement of trace mercury in aqueous solutions with optical-electrical dual pulse LIBS technique,” Spectrosc. Spectral Anal. 31, 521–524 (2011).

Xuan, X. R.

X. R. Xuan, Plasma Emission Spectral Analysis (Chemical Industry, 2010).

Zajogin, A. P.

K. F. Ermalitskaia, Y. S. Voropay, and A. P. Zajogin, “Dual-pulse laser-induced breakdown spectrometry of bronze alloys and coatings,” J. Appl. Spectrosc. 77, 153–159 (2010).
[CrossRef]

Zhang, B. Y.

Zhang, J. P.

K. L. Liu, Y. S. Wang, and J. P. Zhang, “Progress in atomic spectrochemical analysis and its application,” Spectrosc. Spectral Anal. 30, 2248–2252 (2010).

Zhang, Q.

Q. Zhang, W. Xiong, and Y. Q. Chen, “Rapid measurement of trace mercury in aqueous solutions with optical-electrical dual pulse LIBS technique,” Spectrosc. Spectral Anal. 31, 521–524 (2011).

Appl. Phys. B (2)

A. H. Galmed, A. K. Kassem, H. Von Bergmann, and M. A. Harith, “A study of using femtosecond LIBS in analyzing metallic thin film–semiconductor interface,” Appl. Phys. B 102, 197–204 (2011).
[CrossRef]

S. Pandhija, N. K. Rai, A. K. Rai, and S. N. Thakur, “Contaminant concentration in environmental samples using LIBS and CF-LIBS,” Appl. Phys. B 98231–241 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

X. K. Shen, J. Sun, H. Ling, and Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91, 081501 (2007).
[CrossRef]

Chem. Geol. (1)

J. M. Tuvker, M. D. Dyar, and M. W. Schaefer, “Optimization of laser-induced breakdown spectroscopy for rapid geochemical analysis,” Chem. Geol. 277, 137–148 (2010).
[CrossRef]

J. Alloys Compd. (1)

G. P. Gupta, B. M. Suri, and A. Verma, “Quantitative elemental analysis of nickel alloys using calibration-based laser-induced breakdown spectroscopy,” J. Alloys Compd. 509, 3740 (2011).
[CrossRef]

J. Anal. At. Spectrom. (1)

A. M. Popov, F. Colao, and R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25, 837–838 (2010).
[CrossRef]

J. Appl. Phys. (1)

N. M. Shaikh, S. Hafeez, and M. A. Kalyar, “Spectroscopic characterization of laser ablation brass plasma,” J. Appl. Phys. 104, 103108 (2008).
[CrossRef]

J. Appl. Spectrosc. (1)

K. F. Ermalitskaia, Y. S. Voropay, and A. P. Zajogin, “Dual-pulse laser-induced breakdown spectrometry of bronze alloys and coatings,” J. Appl. Spectrosc. 77, 153–159 (2010).
[CrossRef]

Lasers Med. Sci. (1)

S. Hamzaoui, R. Khleifia, and N. Jaïdane, “Quantitative analysis of pathological nails using laser-induced breakdown spectroscopy (LIBS) technique,” Lasers Med. Sci. 26, 79–83 (2011).
[CrossRef]

Opt. Express (1)

Spectrochim. Acta Part B (2)

C. Aragon and J. A. Agulera, “Characterization of laser-induced plasmas by optical emission spectroscopy review of experiments and methods,” Spectrochim. Acta Part B 63, 893–916 (2008).
[CrossRef]

M. D. Dyar, J. M. Tucker, and S. Humphries, “Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples,” Spectrochim. Acta Part B 66, 39–56 (2011).
[CrossRef]

Spectrosc. Spectral Anal. (2)

K. L. Liu, Y. S. Wang, and J. P. Zhang, “Progress in atomic spectrochemical analysis and its application,” Spectrosc. Spectral Anal. 30, 2248–2252 (2010).

Q. Zhang, W. Xiong, and Y. Q. Chen, “Rapid measurement of trace mercury in aqueous solutions with optical-electrical dual pulse LIBS technique,” Spectrosc. Spectral Anal. 31, 521–524 (2011).

Talanta (1)

A. El-Hussein, A. K. Kassem, and H. Ismail, “Exploiting LIBS as a spectrochemical analytical technique in diagnosis of some types of human malignancies,” Talanta 82, 495–501 (2010).
[CrossRef]

Other (2)

X. R. Xuan, Plasma Emission Spectral Analysis (Chemical Industry, 2010).

NIST Atomic Spectra Database, http://physics.nist.gov , Kurucz output Atomic Spectral Line database from R. L Kurucz’s CD-ROM 23.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of the experimental setup.

Fig. 2.
Fig. 2.

(a) Variation of the spectral intensity and (b) signal-to-noise ratio versus the distance between the planar mirror and the plasma center axis. NO indicates that there is no mirror.

Fig. 3.
Fig. 3.

(a) Spectral line intensity and (b) signal-to-background ratio under different conditions.

Fig. 4.
Fig. 4.

Photos of the laser-induced plasma (a) without and (b) with a planar mirror (the distance between the mirror and the plasma center axis is 10 mm).

Fig. 5.
Fig. 5.

Variation of the electron temperature versus the distance between the planar mirror and the plasma center axis. NO indicates that there is no mirror.

Fig. 6.
Fig. 6.

Variation of the electron density versus the distance between the planar mirror and the plasma axis. NO indicates that there is no mirror.

Tables (1)

Tables Icon

Table 1. Spectroscopic Parameters of the Emission Lines for the Fe Atom

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I=N0gpg0exp(Ep/kT)Ahv.
lg(IλgA)=5040EpTe+C,
lg(Iλ3gf)=0.625EpTe+C.
Δλ1/2=2ωNe1016,
Ne1.6×1012ΔE3T1/2

Metrics