Abstract

The stability of negative electron affinity Ga0.37Al0.63As photocathodes in an ultrahigh vacuum system has been investigated. The degraded photocurrents of the Cs/O activated Ga0.37Al0.63As photocathodes under illumination with different intensity are recorded in real time, and the quantum efficiencies are measured after the degradation. The degraded quantum efficiencies of the photocathode under no illumination are measured at regular intervals. Multiple activations are performed on the Ga0.37Al0.63As photocathode, after that the quantum efficiencies and the degraded photocurrents are measured. The results indicate that the lifetime of the Ga0.37Al0.63As photocathode increases as the intensity of illumination decreases, and is longer than that of the GaAs photocathode in the case of no illumination. Besides, the Ga0.37Al0.63As photocathode performed after the second activation would obtain optimal stability.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Liu, F. Machuca, P. Pianetta, W. E. Spicer, and R. F. W. Pease, “Electron scattering study within the depletion region of the GaN(0001) and the GaAs(100) surface,” Appl. Phys. Lett. 85, 1541–1543 (2004).
    [CrossRef]
  2. Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, and Y. J. Xiong, “Variation of spectral response for exponential-doped transmission-mode GaAs photocathodes in the preparation process,” Appl. Opt. 49, 3935–3940 (2010).
    [CrossRef]
  3. J. J. Zou and B. K. Chang, “Gradient-doping negative electron affinity GaAs photocathodes,” Opt. Eng. 45, 054001 (2006).
    [CrossRef]
  4. T. Rao, A. Burrill, X. Y. Chang, J. Smedley, T. Nishitani, C. Hernandez Garcia, M. Poelker, E. Seddon, F. E. Hannon, C. K. Sinclair, J. Lewellen, and D. Feldmang, “Photocathodes for the energy recovery linacs,” Nucl. Instrum. Methods Phys. Res. A 557, 124–130 (2006).
    [CrossRef]
  5. N. Yamamoto, M. Yamamoto, M. Kuwahara, R. Sakai, T. Morino, K. Tamagaki, A. Mano, A. Utsu, S. Okumi, T. Nakanishi, M. Kuriki, C. Bo, T. Ujihara, and Y. Takeda, “Thermal emittance measurements for electron beams produced from bulk and superlattice negative electron affinity photocathodes,” J. Appl. Phys. 102, 024904 (2007).
    [CrossRef]
  6. X. L. Chen, Y. J. Zhang, B. K. Chang, J. Zhao, M. C. Jin, G. H. Hao, and Y. Xu, “Research on quantum efficiency of reflection-mode GaAs photocathode with thin emission layer,” Opt. Commun. 287, 35–39 (2013).
    [CrossRef]
  7. R. U. Martinelli and M. Ettenberg, “Electron transport and emission characteristics of negative electron affinity AlxGal-x As alloys (0∼x∼0.3),” J. Appl. Phys. 45, 3896–3898 (1974).
    [CrossRef]
  8. X. L. Chen, J. Zhao, B. K. Chang, M. C. Jin, G. H. Hao, and Y. Xu, “Blue–green reflection-mode GaAlAs photocathodes,” Proc. SPIE 8555, 85550R (2012).
    [CrossRef]
  9. T. Nishitani, M. Tabuchi, Y. Takeda, Y. Suzuki, K. Motoki, and T. Meguro, “High-brightness spin-polarized electron source using semiconductor photocathodes,” Jpn. J. Appl. Phys. 48, 06FF02 (2009).
    [CrossRef]
  10. D. Durek, F. Frommberger, T. Reichelt, and M. Westermann, “Degradation of a gallium–arsenide photoemitting NEA surface by water vapour,” Appl. Surf. Sci. 143, 319–322 (1999).
    [CrossRef]
  11. M. Kuriki, C. Shonaka, H. Iijima, D. Kubo, H. Okamoto, H. Higaki, K. Ito, M. Yamamoto, T. Konomi, S. Okumi, M. Kuwahara, and T. Nakanishi, “Dark-lifetime degradation of GaAs photocathode at higher temperature,” Nucl. Instrum. Methods Phys. Res. A 637, S87–S90 (2011).
    [CrossRef]
  12. J. J. Zou, B. K. Chang, Z. Yang, J. L. Qiao, and Y. P. Zeng, “Stability and photoemission characteristics for GaAs photocathodes in a demountable vacuum system,” Appl. Phys. Lett. 92, 172102 (2008).
    [CrossRef]
  13. F. Machuca, Z. Liu, Y. Sun, P. Pianetta, W. E. Spicer, and R. F. W. Pease, “Oxygen species in Cs/O activated gallium nitride (GaN) negative electron affinity photocathodes,” J. Vac. Sci. Technol. B 21, 1863–1869 (2003).
    [CrossRef]
  14. R. Calabres, V. Guidi, P. Lenisa, B. Maciga, G. Ciullo, G. Della, G. P. Egeni, G. Lamanna, V. Rigato, V. Rudello, B. Yang, S. Zandolin, and L. Tecchio, “Surface analysis of a GaAs electron source using Rutherford backscattering spectroscopy,” Appl. Phys. Lett. 65, 301–302 (1994).
    [CrossRef]
  15. R. Calabres, G. Ciullo, V. Guidi, G. Lamanna, P. Lenisa, B. Maciga, L. Tecchio, and B. Yang, “Long-lifetime high-intensity GaAs photosource,” Rev. Sci. Instrum. 65, 343–348 (1994).
    [CrossRef]
  16. N. Chanlek, “Quantum efficiency lifetime studies using the photocathode preparation experimental facility developed for the Alice accelerator,” Ph.D. thesis (Manchester University, 2011), p. 61.
  17. B. K. Chang, X. Q. Du, L. Liu, Z. Y. Zong, R. G. Fu, and Y. S. Qian, “The automatic recording system of dynamic spectral response and its applications,” Proc. SPIE 5209, 209–218 (2003).
    [CrossRef]
  18. J. J. Zou, L. Feng, G. Y. Lin, Y. T. Rao, Z. Yang, Y. S. Qian, and B. K. Chang, “On-line measurement system of GaAs photocathodes and its applications,” Proc. SPIE 6782, 67823D (2007).
    [CrossRef]
  19. Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, F. Shi, and H. C. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010).
    [CrossRef]
  20. Z. Liu, Y. Sun, S. Peterson, and P. Pianetta, “Photoemission study of Cs–NF3 activated GaAs(100) negative electron affinity photocathodes,” Appl. Phys. Lett. 92, 241107 (2008).
    [CrossRef]
  21. C. Y. Su, W. E. Spicer, and I. Lindau, “Photoelectron spectroscopic determination of the structure of (Cs, O) activated GaAs (110) surfaces,” J. Appl. Phys. 54, 1413–1422 (1983).
    [CrossRef]
  22. C. Y. Su, I. Lindau, and W. E. Spicer, “Photoemission studies of the oxidation of Cs. Identification of the multiplet structures of oxygen species,” Chem. Phys. Lett. 87, 523–527 (1982).
    [CrossRef]

2013

X. L. Chen, Y. J. Zhang, B. K. Chang, J. Zhao, M. C. Jin, G. H. Hao, and Y. Xu, “Research on quantum efficiency of reflection-mode GaAs photocathode with thin emission layer,” Opt. Commun. 287, 35–39 (2013).
[CrossRef]

2012

X. L. Chen, J. Zhao, B. K. Chang, M. C. Jin, G. H. Hao, and Y. Xu, “Blue–green reflection-mode GaAlAs photocathodes,” Proc. SPIE 8555, 85550R (2012).
[CrossRef]

2011

M. Kuriki, C. Shonaka, H. Iijima, D. Kubo, H. Okamoto, H. Higaki, K. Ito, M. Yamamoto, T. Konomi, S. Okumi, M. Kuwahara, and T. Nakanishi, “Dark-lifetime degradation of GaAs photocathode at higher temperature,” Nucl. Instrum. Methods Phys. Res. A 637, S87–S90 (2011).
[CrossRef]

2010

Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, F. Shi, and H. C. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, and Y. J. Xiong, “Variation of spectral response for exponential-doped transmission-mode GaAs photocathodes in the preparation process,” Appl. Opt. 49, 3935–3940 (2010).
[CrossRef]

2009

T. Nishitani, M. Tabuchi, Y. Takeda, Y. Suzuki, K. Motoki, and T. Meguro, “High-brightness spin-polarized electron source using semiconductor photocathodes,” Jpn. J. Appl. Phys. 48, 06FF02 (2009).
[CrossRef]

2008

Z. Liu, Y. Sun, S. Peterson, and P. Pianetta, “Photoemission study of Cs–NF3 activated GaAs(100) negative electron affinity photocathodes,” Appl. Phys. Lett. 92, 241107 (2008).
[CrossRef]

J. J. Zou, B. K. Chang, Z. Yang, J. L. Qiao, and Y. P. Zeng, “Stability and photoemission characteristics for GaAs photocathodes in a demountable vacuum system,” Appl. Phys. Lett. 92, 172102 (2008).
[CrossRef]

2007

N. Yamamoto, M. Yamamoto, M. Kuwahara, R. Sakai, T. Morino, K. Tamagaki, A. Mano, A. Utsu, S. Okumi, T. Nakanishi, M. Kuriki, C. Bo, T. Ujihara, and Y. Takeda, “Thermal emittance measurements for electron beams produced from bulk and superlattice negative electron affinity photocathodes,” J. Appl. Phys. 102, 024904 (2007).
[CrossRef]

J. J. Zou, L. Feng, G. Y. Lin, Y. T. Rao, Z. Yang, Y. S. Qian, and B. K. Chang, “On-line measurement system of GaAs photocathodes and its applications,” Proc. SPIE 6782, 67823D (2007).
[CrossRef]

2006

J. J. Zou and B. K. Chang, “Gradient-doping negative electron affinity GaAs photocathodes,” Opt. Eng. 45, 054001 (2006).
[CrossRef]

T. Rao, A. Burrill, X. Y. Chang, J. Smedley, T. Nishitani, C. Hernandez Garcia, M. Poelker, E. Seddon, F. E. Hannon, C. K. Sinclair, J. Lewellen, and D. Feldmang, “Photocathodes for the energy recovery linacs,” Nucl. Instrum. Methods Phys. Res. A 557, 124–130 (2006).
[CrossRef]

2004

Z. Liu, F. Machuca, P. Pianetta, W. E. Spicer, and R. F. W. Pease, “Electron scattering study within the depletion region of the GaN(0001) and the GaAs(100) surface,” Appl. Phys. Lett. 85, 1541–1543 (2004).
[CrossRef]

2003

F. Machuca, Z. Liu, Y. Sun, P. Pianetta, W. E. Spicer, and R. F. W. Pease, “Oxygen species in Cs/O activated gallium nitride (GaN) negative electron affinity photocathodes,” J. Vac. Sci. Technol. B 21, 1863–1869 (2003).
[CrossRef]

B. K. Chang, X. Q. Du, L. Liu, Z. Y. Zong, R. G. Fu, and Y. S. Qian, “The automatic recording system of dynamic spectral response and its applications,” Proc. SPIE 5209, 209–218 (2003).
[CrossRef]

1999

D. Durek, F. Frommberger, T. Reichelt, and M. Westermann, “Degradation of a gallium–arsenide photoemitting NEA surface by water vapour,” Appl. Surf. Sci. 143, 319–322 (1999).
[CrossRef]

1994

R. Calabres, V. Guidi, P. Lenisa, B. Maciga, G. Ciullo, G. Della, G. P. Egeni, G. Lamanna, V. Rigato, V. Rudello, B. Yang, S. Zandolin, and L. Tecchio, “Surface analysis of a GaAs electron source using Rutherford backscattering spectroscopy,” Appl. Phys. Lett. 65, 301–302 (1994).
[CrossRef]

R. Calabres, G. Ciullo, V. Guidi, G. Lamanna, P. Lenisa, B. Maciga, L. Tecchio, and B. Yang, “Long-lifetime high-intensity GaAs photosource,” Rev. Sci. Instrum. 65, 343–348 (1994).
[CrossRef]

1983

C. Y. Su, W. E. Spicer, and I. Lindau, “Photoelectron spectroscopic determination of the structure of (Cs, O) activated GaAs (110) surfaces,” J. Appl. Phys. 54, 1413–1422 (1983).
[CrossRef]

1982

C. Y. Su, I. Lindau, and W. E. Spicer, “Photoemission studies of the oxidation of Cs. Identification of the multiplet structures of oxygen species,” Chem. Phys. Lett. 87, 523–527 (1982).
[CrossRef]

1974

R. U. Martinelli and M. Ettenberg, “Electron transport and emission characteristics of negative electron affinity AlxGal-x As alloys (0∼x∼0.3),” J. Appl. Phys. 45, 3896–3898 (1974).
[CrossRef]

Bo, C.

N. Yamamoto, M. Yamamoto, M. Kuwahara, R. Sakai, T. Morino, K. Tamagaki, A. Mano, A. Utsu, S. Okumi, T. Nakanishi, M. Kuriki, C. Bo, T. Ujihara, and Y. Takeda, “Thermal emittance measurements for electron beams produced from bulk and superlattice negative electron affinity photocathodes,” J. Appl. Phys. 102, 024904 (2007).
[CrossRef]

Burrill, A.

T. Rao, A. Burrill, X. Y. Chang, J. Smedley, T. Nishitani, C. Hernandez Garcia, M. Poelker, E. Seddon, F. E. Hannon, C. K. Sinclair, J. Lewellen, and D. Feldmang, “Photocathodes for the energy recovery linacs,” Nucl. Instrum. Methods Phys. Res. A 557, 124–130 (2006).
[CrossRef]

Calabres, R.

R. Calabres, V. Guidi, P. Lenisa, B. Maciga, G. Ciullo, G. Della, G. P. Egeni, G. Lamanna, V. Rigato, V. Rudello, B. Yang, S. Zandolin, and L. Tecchio, “Surface analysis of a GaAs electron source using Rutherford backscattering spectroscopy,” Appl. Phys. Lett. 65, 301–302 (1994).
[CrossRef]

R. Calabres, G. Ciullo, V. Guidi, G. Lamanna, P. Lenisa, B. Maciga, L. Tecchio, and B. Yang, “Long-lifetime high-intensity GaAs photosource,” Rev. Sci. Instrum. 65, 343–348 (1994).
[CrossRef]

Chang, B. K.

X. L. Chen, Y. J. Zhang, B. K. Chang, J. Zhao, M. C. Jin, G. H. Hao, and Y. Xu, “Research on quantum efficiency of reflection-mode GaAs photocathode with thin emission layer,” Opt. Commun. 287, 35–39 (2013).
[CrossRef]

X. L. Chen, J. Zhao, B. K. Chang, M. C. Jin, G. H. Hao, and Y. Xu, “Blue–green reflection-mode GaAlAs photocathodes,” Proc. SPIE 8555, 85550R (2012).
[CrossRef]

Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, F. Shi, and H. C. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, and Y. J. Xiong, “Variation of spectral response for exponential-doped transmission-mode GaAs photocathodes in the preparation process,” Appl. Opt. 49, 3935–3940 (2010).
[CrossRef]

J. J. Zou, B. K. Chang, Z. Yang, J. L. Qiao, and Y. P. Zeng, “Stability and photoemission characteristics for GaAs photocathodes in a demountable vacuum system,” Appl. Phys. Lett. 92, 172102 (2008).
[CrossRef]

J. J. Zou, L. Feng, G. Y. Lin, Y. T. Rao, Z. Yang, Y. S. Qian, and B. K. Chang, “On-line measurement system of GaAs photocathodes and its applications,” Proc. SPIE 6782, 67823D (2007).
[CrossRef]

J. J. Zou and B. K. Chang, “Gradient-doping negative electron affinity GaAs photocathodes,” Opt. Eng. 45, 054001 (2006).
[CrossRef]

B. K. Chang, X. Q. Du, L. Liu, Z. Y. Zong, R. G. Fu, and Y. S. Qian, “The automatic recording system of dynamic spectral response and its applications,” Proc. SPIE 5209, 209–218 (2003).
[CrossRef]

Chang, X. Y.

T. Rao, A. Burrill, X. Y. Chang, J. Smedley, T. Nishitani, C. Hernandez Garcia, M. Poelker, E. Seddon, F. E. Hannon, C. K. Sinclair, J. Lewellen, and D. Feldmang, “Photocathodes for the energy recovery linacs,” Nucl. Instrum. Methods Phys. Res. A 557, 124–130 (2006).
[CrossRef]

Chanlek, N.

N. Chanlek, “Quantum efficiency lifetime studies using the photocathode preparation experimental facility developed for the Alice accelerator,” Ph.D. thesis (Manchester University, 2011), p. 61.

Chen, X. L.

X. L. Chen, Y. J. Zhang, B. K. Chang, J. Zhao, M. C. Jin, G. H. Hao, and Y. Xu, “Research on quantum efficiency of reflection-mode GaAs photocathode with thin emission layer,” Opt. Commun. 287, 35–39 (2013).
[CrossRef]

X. L. Chen, J. Zhao, B. K. Chang, M. C. Jin, G. H. Hao, and Y. Xu, “Blue–green reflection-mode GaAlAs photocathodes,” Proc. SPIE 8555, 85550R (2012).
[CrossRef]

Cheng, H. C.

Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, F. Shi, and H. C. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

Ciullo, G.

R. Calabres, G. Ciullo, V. Guidi, G. Lamanna, P. Lenisa, B. Maciga, L. Tecchio, and B. Yang, “Long-lifetime high-intensity GaAs photosource,” Rev. Sci. Instrum. 65, 343–348 (1994).
[CrossRef]

R. Calabres, V. Guidi, P. Lenisa, B. Maciga, G. Ciullo, G. Della, G. P. Egeni, G. Lamanna, V. Rigato, V. Rudello, B. Yang, S. Zandolin, and L. Tecchio, “Surface analysis of a GaAs electron source using Rutherford backscattering spectroscopy,” Appl. Phys. Lett. 65, 301–302 (1994).
[CrossRef]

Della, G.

R. Calabres, V. Guidi, P. Lenisa, B. Maciga, G. Ciullo, G. Della, G. P. Egeni, G. Lamanna, V. Rigato, V. Rudello, B. Yang, S. Zandolin, and L. Tecchio, “Surface analysis of a GaAs electron source using Rutherford backscattering spectroscopy,” Appl. Phys. Lett. 65, 301–302 (1994).
[CrossRef]

Du, X. Q.

B. K. Chang, X. Q. Du, L. Liu, Z. Y. Zong, R. G. Fu, and Y. S. Qian, “The automatic recording system of dynamic spectral response and its applications,” Proc. SPIE 5209, 209–218 (2003).
[CrossRef]

Durek, D.

D. Durek, F. Frommberger, T. Reichelt, and M. Westermann, “Degradation of a gallium–arsenide photoemitting NEA surface by water vapour,” Appl. Surf. Sci. 143, 319–322 (1999).
[CrossRef]

Egeni, G. P.

R. Calabres, V. Guidi, P. Lenisa, B. Maciga, G. Ciullo, G. Della, G. P. Egeni, G. Lamanna, V. Rigato, V. Rudello, B. Yang, S. Zandolin, and L. Tecchio, “Surface analysis of a GaAs electron source using Rutherford backscattering spectroscopy,” Appl. Phys. Lett. 65, 301–302 (1994).
[CrossRef]

Ettenberg, M.

R. U. Martinelli and M. Ettenberg, “Electron transport and emission characteristics of negative electron affinity AlxGal-x As alloys (0∼x∼0.3),” J. Appl. Phys. 45, 3896–3898 (1974).
[CrossRef]

Feldmang, D.

T. Rao, A. Burrill, X. Y. Chang, J. Smedley, T. Nishitani, C. Hernandez Garcia, M. Poelker, E. Seddon, F. E. Hannon, C. K. Sinclair, J. Lewellen, and D. Feldmang, “Photocathodes for the energy recovery linacs,” Nucl. Instrum. Methods Phys. Res. A 557, 124–130 (2006).
[CrossRef]

Feng, L.

J. J. Zou, L. Feng, G. Y. Lin, Y. T. Rao, Z. Yang, Y. S. Qian, and B. K. Chang, “On-line measurement system of GaAs photocathodes and its applications,” Proc. SPIE 6782, 67823D (2007).
[CrossRef]

Frommberger, F.

D. Durek, F. Frommberger, T. Reichelt, and M. Westermann, “Degradation of a gallium–arsenide photoemitting NEA surface by water vapour,” Appl. Surf. Sci. 143, 319–322 (1999).
[CrossRef]

Fu, R. G.

B. K. Chang, X. Q. Du, L. Liu, Z. Y. Zong, R. G. Fu, and Y. S. Qian, “The automatic recording system of dynamic spectral response and its applications,” Proc. SPIE 5209, 209–218 (2003).
[CrossRef]

Guidi, V.

R. Calabres, V. Guidi, P. Lenisa, B. Maciga, G. Ciullo, G. Della, G. P. Egeni, G. Lamanna, V. Rigato, V. Rudello, B. Yang, S. Zandolin, and L. Tecchio, “Surface analysis of a GaAs electron source using Rutherford backscattering spectroscopy,” Appl. Phys. Lett. 65, 301–302 (1994).
[CrossRef]

R. Calabres, G. Ciullo, V. Guidi, G. Lamanna, P. Lenisa, B. Maciga, L. Tecchio, and B. Yang, “Long-lifetime high-intensity GaAs photosource,” Rev. Sci. Instrum. 65, 343–348 (1994).
[CrossRef]

Hannon, F. E.

T. Rao, A. Burrill, X. Y. Chang, J. Smedley, T. Nishitani, C. Hernandez Garcia, M. Poelker, E. Seddon, F. E. Hannon, C. K. Sinclair, J. Lewellen, and D. Feldmang, “Photocathodes for the energy recovery linacs,” Nucl. Instrum. Methods Phys. Res. A 557, 124–130 (2006).
[CrossRef]

Hao, G. H.

X. L. Chen, Y. J. Zhang, B. K. Chang, J. Zhao, M. C. Jin, G. H. Hao, and Y. Xu, “Research on quantum efficiency of reflection-mode GaAs photocathode with thin emission layer,” Opt. Commun. 287, 35–39 (2013).
[CrossRef]

X. L. Chen, J. Zhao, B. K. Chang, M. C. Jin, G. H. Hao, and Y. Xu, “Blue–green reflection-mode GaAlAs photocathodes,” Proc. SPIE 8555, 85550R (2012).
[CrossRef]

Hernandez Garcia, C.

T. Rao, A. Burrill, X. Y. Chang, J. Smedley, T. Nishitani, C. Hernandez Garcia, M. Poelker, E. Seddon, F. E. Hannon, C. K. Sinclair, J. Lewellen, and D. Feldmang, “Photocathodes for the energy recovery linacs,” Nucl. Instrum. Methods Phys. Res. A 557, 124–130 (2006).
[CrossRef]

Higaki, H.

M. Kuriki, C. Shonaka, H. Iijima, D. Kubo, H. Okamoto, H. Higaki, K. Ito, M. Yamamoto, T. Konomi, S. Okumi, M. Kuwahara, and T. Nakanishi, “Dark-lifetime degradation of GaAs photocathode at higher temperature,” Nucl. Instrum. Methods Phys. Res. A 637, S87–S90 (2011).
[CrossRef]

Iijima, H.

M. Kuriki, C. Shonaka, H. Iijima, D. Kubo, H. Okamoto, H. Higaki, K. Ito, M. Yamamoto, T. Konomi, S. Okumi, M. Kuwahara, and T. Nakanishi, “Dark-lifetime degradation of GaAs photocathode at higher temperature,” Nucl. Instrum. Methods Phys. Res. A 637, S87–S90 (2011).
[CrossRef]

Ito, K.

M. Kuriki, C. Shonaka, H. Iijima, D. Kubo, H. Okamoto, H. Higaki, K. Ito, M. Yamamoto, T. Konomi, S. Okumi, M. Kuwahara, and T. Nakanishi, “Dark-lifetime degradation of GaAs photocathode at higher temperature,” Nucl. Instrum. Methods Phys. Res. A 637, S87–S90 (2011).
[CrossRef]

Jin, M. C.

X. L. Chen, Y. J. Zhang, B. K. Chang, J. Zhao, M. C. Jin, G. H. Hao, and Y. Xu, “Research on quantum efficiency of reflection-mode GaAs photocathode with thin emission layer,” Opt. Commun. 287, 35–39 (2013).
[CrossRef]

X. L. Chen, J. Zhao, B. K. Chang, M. C. Jin, G. H. Hao, and Y. Xu, “Blue–green reflection-mode GaAlAs photocathodes,” Proc. SPIE 8555, 85550R (2012).
[CrossRef]

Konomi, T.

M. Kuriki, C. Shonaka, H. Iijima, D. Kubo, H. Okamoto, H. Higaki, K. Ito, M. Yamamoto, T. Konomi, S. Okumi, M. Kuwahara, and T. Nakanishi, “Dark-lifetime degradation of GaAs photocathode at higher temperature,” Nucl. Instrum. Methods Phys. Res. A 637, S87–S90 (2011).
[CrossRef]

Kubo, D.

M. Kuriki, C. Shonaka, H. Iijima, D. Kubo, H. Okamoto, H. Higaki, K. Ito, M. Yamamoto, T. Konomi, S. Okumi, M. Kuwahara, and T. Nakanishi, “Dark-lifetime degradation of GaAs photocathode at higher temperature,” Nucl. Instrum. Methods Phys. Res. A 637, S87–S90 (2011).
[CrossRef]

Kuriki, M.

M. Kuriki, C. Shonaka, H. Iijima, D. Kubo, H. Okamoto, H. Higaki, K. Ito, M. Yamamoto, T. Konomi, S. Okumi, M. Kuwahara, and T. Nakanishi, “Dark-lifetime degradation of GaAs photocathode at higher temperature,” Nucl. Instrum. Methods Phys. Res. A 637, S87–S90 (2011).
[CrossRef]

N. Yamamoto, M. Yamamoto, M. Kuwahara, R. Sakai, T. Morino, K. Tamagaki, A. Mano, A. Utsu, S. Okumi, T. Nakanishi, M. Kuriki, C. Bo, T. Ujihara, and Y. Takeda, “Thermal emittance measurements for electron beams produced from bulk and superlattice negative electron affinity photocathodes,” J. Appl. Phys. 102, 024904 (2007).
[CrossRef]

Kuwahara, M.

M. Kuriki, C. Shonaka, H. Iijima, D. Kubo, H. Okamoto, H. Higaki, K. Ito, M. Yamamoto, T. Konomi, S. Okumi, M. Kuwahara, and T. Nakanishi, “Dark-lifetime degradation of GaAs photocathode at higher temperature,” Nucl. Instrum. Methods Phys. Res. A 637, S87–S90 (2011).
[CrossRef]

N. Yamamoto, M. Yamamoto, M. Kuwahara, R. Sakai, T. Morino, K. Tamagaki, A. Mano, A. Utsu, S. Okumi, T. Nakanishi, M. Kuriki, C. Bo, T. Ujihara, and Y. Takeda, “Thermal emittance measurements for electron beams produced from bulk and superlattice negative electron affinity photocathodes,” J. Appl. Phys. 102, 024904 (2007).
[CrossRef]

Lamanna, G.

R. Calabres, G. Ciullo, V. Guidi, G. Lamanna, P. Lenisa, B. Maciga, L. Tecchio, and B. Yang, “Long-lifetime high-intensity GaAs photosource,” Rev. Sci. Instrum. 65, 343–348 (1994).
[CrossRef]

R. Calabres, V. Guidi, P. Lenisa, B. Maciga, G. Ciullo, G. Della, G. P. Egeni, G. Lamanna, V. Rigato, V. Rudello, B. Yang, S. Zandolin, and L. Tecchio, “Surface analysis of a GaAs electron source using Rutherford backscattering spectroscopy,” Appl. Phys. Lett. 65, 301–302 (1994).
[CrossRef]

Lenisa, P.

R. Calabres, V. Guidi, P. Lenisa, B. Maciga, G. Ciullo, G. Della, G. P. Egeni, G. Lamanna, V. Rigato, V. Rudello, B. Yang, S. Zandolin, and L. Tecchio, “Surface analysis of a GaAs electron source using Rutherford backscattering spectroscopy,” Appl. Phys. Lett. 65, 301–302 (1994).
[CrossRef]

R. Calabres, G. Ciullo, V. Guidi, G. Lamanna, P. Lenisa, B. Maciga, L. Tecchio, and B. Yang, “Long-lifetime high-intensity GaAs photosource,” Rev. Sci. Instrum. 65, 343–348 (1994).
[CrossRef]

Lewellen, J.

T. Rao, A. Burrill, X. Y. Chang, J. Smedley, T. Nishitani, C. Hernandez Garcia, M. Poelker, E. Seddon, F. E. Hannon, C. K. Sinclair, J. Lewellen, and D. Feldmang, “Photocathodes for the energy recovery linacs,” Nucl. Instrum. Methods Phys. Res. A 557, 124–130 (2006).
[CrossRef]

Lin, G. Y.

J. J. Zou, L. Feng, G. Y. Lin, Y. T. Rao, Z. Yang, Y. S. Qian, and B. K. Chang, “On-line measurement system of GaAs photocathodes and its applications,” Proc. SPIE 6782, 67823D (2007).
[CrossRef]

Lindau, I.

C. Y. Su, W. E. Spicer, and I. Lindau, “Photoelectron spectroscopic determination of the structure of (Cs, O) activated GaAs (110) surfaces,” J. Appl. Phys. 54, 1413–1422 (1983).
[CrossRef]

C. Y. Su, I. Lindau, and W. E. Spicer, “Photoemission studies of the oxidation of Cs. Identification of the multiplet structures of oxygen species,” Chem. Phys. Lett. 87, 523–527 (1982).
[CrossRef]

Liu, L.

B. K. Chang, X. Q. Du, L. Liu, Z. Y. Zong, R. G. Fu, and Y. S. Qian, “The automatic recording system of dynamic spectral response and its applications,” Proc. SPIE 5209, 209–218 (2003).
[CrossRef]

Liu, Z.

Z. Liu, Y. Sun, S. Peterson, and P. Pianetta, “Photoemission study of Cs–NF3 activated GaAs(100) negative electron affinity photocathodes,” Appl. Phys. Lett. 92, 241107 (2008).
[CrossRef]

Z. Liu, F. Machuca, P. Pianetta, W. E. Spicer, and R. F. W. Pease, “Electron scattering study within the depletion region of the GaN(0001) and the GaAs(100) surface,” Appl. Phys. Lett. 85, 1541–1543 (2004).
[CrossRef]

F. Machuca, Z. Liu, Y. Sun, P. Pianetta, W. E. Spicer, and R. F. W. Pease, “Oxygen species in Cs/O activated gallium nitride (GaN) negative electron affinity photocathodes,” J. Vac. Sci. Technol. B 21, 1863–1869 (2003).
[CrossRef]

Machuca, F.

Z. Liu, F. Machuca, P. Pianetta, W. E. Spicer, and R. F. W. Pease, “Electron scattering study within the depletion region of the GaN(0001) and the GaAs(100) surface,” Appl. Phys. Lett. 85, 1541–1543 (2004).
[CrossRef]

F. Machuca, Z. Liu, Y. Sun, P. Pianetta, W. E. Spicer, and R. F. W. Pease, “Oxygen species in Cs/O activated gallium nitride (GaN) negative electron affinity photocathodes,” J. Vac. Sci. Technol. B 21, 1863–1869 (2003).
[CrossRef]

Maciga, B.

R. Calabres, V. Guidi, P. Lenisa, B. Maciga, G. Ciullo, G. Della, G. P. Egeni, G. Lamanna, V. Rigato, V. Rudello, B. Yang, S. Zandolin, and L. Tecchio, “Surface analysis of a GaAs electron source using Rutherford backscattering spectroscopy,” Appl. Phys. Lett. 65, 301–302 (1994).
[CrossRef]

R. Calabres, G. Ciullo, V. Guidi, G. Lamanna, P. Lenisa, B. Maciga, L. Tecchio, and B. Yang, “Long-lifetime high-intensity GaAs photosource,” Rev. Sci. Instrum. 65, 343–348 (1994).
[CrossRef]

Mano, A.

N. Yamamoto, M. Yamamoto, M. Kuwahara, R. Sakai, T. Morino, K. Tamagaki, A. Mano, A. Utsu, S. Okumi, T. Nakanishi, M. Kuriki, C. Bo, T. Ujihara, and Y. Takeda, “Thermal emittance measurements for electron beams produced from bulk and superlattice negative electron affinity photocathodes,” J. Appl. Phys. 102, 024904 (2007).
[CrossRef]

Martinelli, R. U.

R. U. Martinelli and M. Ettenberg, “Electron transport and emission characteristics of negative electron affinity AlxGal-x As alloys (0∼x∼0.3),” J. Appl. Phys. 45, 3896–3898 (1974).
[CrossRef]

Meguro, T.

T. Nishitani, M. Tabuchi, Y. Takeda, Y. Suzuki, K. Motoki, and T. Meguro, “High-brightness spin-polarized electron source using semiconductor photocathodes,” Jpn. J. Appl. Phys. 48, 06FF02 (2009).
[CrossRef]

Morino, T.

N. Yamamoto, M. Yamamoto, M. Kuwahara, R. Sakai, T. Morino, K. Tamagaki, A. Mano, A. Utsu, S. Okumi, T. Nakanishi, M. Kuriki, C. Bo, T. Ujihara, and Y. Takeda, “Thermal emittance measurements for electron beams produced from bulk and superlattice negative electron affinity photocathodes,” J. Appl. Phys. 102, 024904 (2007).
[CrossRef]

Motoki, K.

T. Nishitani, M. Tabuchi, Y. Takeda, Y. Suzuki, K. Motoki, and T. Meguro, “High-brightness spin-polarized electron source using semiconductor photocathodes,” Jpn. J. Appl. Phys. 48, 06FF02 (2009).
[CrossRef]

Nakanishi, T.

M. Kuriki, C. Shonaka, H. Iijima, D. Kubo, H. Okamoto, H. Higaki, K. Ito, M. Yamamoto, T. Konomi, S. Okumi, M. Kuwahara, and T. Nakanishi, “Dark-lifetime degradation of GaAs photocathode at higher temperature,” Nucl. Instrum. Methods Phys. Res. A 637, S87–S90 (2011).
[CrossRef]

N. Yamamoto, M. Yamamoto, M. Kuwahara, R. Sakai, T. Morino, K. Tamagaki, A. Mano, A. Utsu, S. Okumi, T. Nakanishi, M. Kuriki, C. Bo, T. Ujihara, and Y. Takeda, “Thermal emittance measurements for electron beams produced from bulk and superlattice negative electron affinity photocathodes,” J. Appl. Phys. 102, 024904 (2007).
[CrossRef]

Nishitani, T.

T. Nishitani, M. Tabuchi, Y. Takeda, Y. Suzuki, K. Motoki, and T. Meguro, “High-brightness spin-polarized electron source using semiconductor photocathodes,” Jpn. J. Appl. Phys. 48, 06FF02 (2009).
[CrossRef]

T. Rao, A. Burrill, X. Y. Chang, J. Smedley, T. Nishitani, C. Hernandez Garcia, M. Poelker, E. Seddon, F. E. Hannon, C. K. Sinclair, J. Lewellen, and D. Feldmang, “Photocathodes for the energy recovery linacs,” Nucl. Instrum. Methods Phys. Res. A 557, 124–130 (2006).
[CrossRef]

Niu, J.

Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, and Y. J. Xiong, “Variation of spectral response for exponential-doped transmission-mode GaAs photocathodes in the preparation process,” Appl. Opt. 49, 3935–3940 (2010).
[CrossRef]

Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, F. Shi, and H. C. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

Okamoto, H.

M. Kuriki, C. Shonaka, H. Iijima, D. Kubo, H. Okamoto, H. Higaki, K. Ito, M. Yamamoto, T. Konomi, S. Okumi, M. Kuwahara, and T. Nakanishi, “Dark-lifetime degradation of GaAs photocathode at higher temperature,” Nucl. Instrum. Methods Phys. Res. A 637, S87–S90 (2011).
[CrossRef]

Okumi, S.

M. Kuriki, C. Shonaka, H. Iijima, D. Kubo, H. Okamoto, H. Higaki, K. Ito, M. Yamamoto, T. Konomi, S. Okumi, M. Kuwahara, and T. Nakanishi, “Dark-lifetime degradation of GaAs photocathode at higher temperature,” Nucl. Instrum. Methods Phys. Res. A 637, S87–S90 (2011).
[CrossRef]

N. Yamamoto, M. Yamamoto, M. Kuwahara, R. Sakai, T. Morino, K. Tamagaki, A. Mano, A. Utsu, S. Okumi, T. Nakanishi, M. Kuriki, C. Bo, T. Ujihara, and Y. Takeda, “Thermal emittance measurements for electron beams produced from bulk and superlattice negative electron affinity photocathodes,” J. Appl. Phys. 102, 024904 (2007).
[CrossRef]

Pease, R. F. W.

Z. Liu, F. Machuca, P. Pianetta, W. E. Spicer, and R. F. W. Pease, “Electron scattering study within the depletion region of the GaN(0001) and the GaAs(100) surface,” Appl. Phys. Lett. 85, 1541–1543 (2004).
[CrossRef]

F. Machuca, Z. Liu, Y. Sun, P. Pianetta, W. E. Spicer, and R. F. W. Pease, “Oxygen species in Cs/O activated gallium nitride (GaN) negative electron affinity photocathodes,” J. Vac. Sci. Technol. B 21, 1863–1869 (2003).
[CrossRef]

Peterson, S.

Z. Liu, Y. Sun, S. Peterson, and P. Pianetta, “Photoemission study of Cs–NF3 activated GaAs(100) negative electron affinity photocathodes,” Appl. Phys. Lett. 92, 241107 (2008).
[CrossRef]

Pianetta, P.

Z. Liu, Y. Sun, S. Peterson, and P. Pianetta, “Photoemission study of Cs–NF3 activated GaAs(100) negative electron affinity photocathodes,” Appl. Phys. Lett. 92, 241107 (2008).
[CrossRef]

Z. Liu, F. Machuca, P. Pianetta, W. E. Spicer, and R. F. W. Pease, “Electron scattering study within the depletion region of the GaN(0001) and the GaAs(100) surface,” Appl. Phys. Lett. 85, 1541–1543 (2004).
[CrossRef]

F. Machuca, Z. Liu, Y. Sun, P. Pianetta, W. E. Spicer, and R. F. W. Pease, “Oxygen species in Cs/O activated gallium nitride (GaN) negative electron affinity photocathodes,” J. Vac. Sci. Technol. B 21, 1863–1869 (2003).
[CrossRef]

Poelker, M.

T. Rao, A. Burrill, X. Y. Chang, J. Smedley, T. Nishitani, C. Hernandez Garcia, M. Poelker, E. Seddon, F. E. Hannon, C. K. Sinclair, J. Lewellen, and D. Feldmang, “Photocathodes for the energy recovery linacs,” Nucl. Instrum. Methods Phys. Res. A 557, 124–130 (2006).
[CrossRef]

Qian, Y. S.

J. J. Zou, L. Feng, G. Y. Lin, Y. T. Rao, Z. Yang, Y. S. Qian, and B. K. Chang, “On-line measurement system of GaAs photocathodes and its applications,” Proc. SPIE 6782, 67823D (2007).
[CrossRef]

B. K. Chang, X. Q. Du, L. Liu, Z. Y. Zong, R. G. Fu, and Y. S. Qian, “The automatic recording system of dynamic spectral response and its applications,” Proc. SPIE 5209, 209–218 (2003).
[CrossRef]

Qiao, J. L.

J. J. Zou, B. K. Chang, Z. Yang, J. L. Qiao, and Y. P. Zeng, “Stability and photoemission characteristics for GaAs photocathodes in a demountable vacuum system,” Appl. Phys. Lett. 92, 172102 (2008).
[CrossRef]

Rao, T.

T. Rao, A. Burrill, X. Y. Chang, J. Smedley, T. Nishitani, C. Hernandez Garcia, M. Poelker, E. Seddon, F. E. Hannon, C. K. Sinclair, J. Lewellen, and D. Feldmang, “Photocathodes for the energy recovery linacs,” Nucl. Instrum. Methods Phys. Res. A 557, 124–130 (2006).
[CrossRef]

Rao, Y. T.

J. J. Zou, L. Feng, G. Y. Lin, Y. T. Rao, Z. Yang, Y. S. Qian, and B. K. Chang, “On-line measurement system of GaAs photocathodes and its applications,” Proc. SPIE 6782, 67823D (2007).
[CrossRef]

Reichelt, T.

D. Durek, F. Frommberger, T. Reichelt, and M. Westermann, “Degradation of a gallium–arsenide photoemitting NEA surface by water vapour,” Appl. Surf. Sci. 143, 319–322 (1999).
[CrossRef]

Rigato, V.

R. Calabres, V. Guidi, P. Lenisa, B. Maciga, G. Ciullo, G. Della, G. P. Egeni, G. Lamanna, V. Rigato, V. Rudello, B. Yang, S. Zandolin, and L. Tecchio, “Surface analysis of a GaAs electron source using Rutherford backscattering spectroscopy,” Appl. Phys. Lett. 65, 301–302 (1994).
[CrossRef]

Rudello, V.

R. Calabres, V. Guidi, P. Lenisa, B. Maciga, G. Ciullo, G. Della, G. P. Egeni, G. Lamanna, V. Rigato, V. Rudello, B. Yang, S. Zandolin, and L. Tecchio, “Surface analysis of a GaAs electron source using Rutherford backscattering spectroscopy,” Appl. Phys. Lett. 65, 301–302 (1994).
[CrossRef]

Sakai, R.

N. Yamamoto, M. Yamamoto, M. Kuwahara, R. Sakai, T. Morino, K. Tamagaki, A. Mano, A. Utsu, S. Okumi, T. Nakanishi, M. Kuriki, C. Bo, T. Ujihara, and Y. Takeda, “Thermal emittance measurements for electron beams produced from bulk and superlattice negative electron affinity photocathodes,” J. Appl. Phys. 102, 024904 (2007).
[CrossRef]

Seddon, E.

T. Rao, A. Burrill, X. Y. Chang, J. Smedley, T. Nishitani, C. Hernandez Garcia, M. Poelker, E. Seddon, F. E. Hannon, C. K. Sinclair, J. Lewellen, and D. Feldmang, “Photocathodes for the energy recovery linacs,” Nucl. Instrum. Methods Phys. Res. A 557, 124–130 (2006).
[CrossRef]

Shi, F.

Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, F. Shi, and H. C. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

Shonaka, C.

M. Kuriki, C. Shonaka, H. Iijima, D. Kubo, H. Okamoto, H. Higaki, K. Ito, M. Yamamoto, T. Konomi, S. Okumi, M. Kuwahara, and T. Nakanishi, “Dark-lifetime degradation of GaAs photocathode at higher temperature,” Nucl. Instrum. Methods Phys. Res. A 637, S87–S90 (2011).
[CrossRef]

Sinclair, C. K.

T. Rao, A. Burrill, X. Y. Chang, J. Smedley, T. Nishitani, C. Hernandez Garcia, M. Poelker, E. Seddon, F. E. Hannon, C. K. Sinclair, J. Lewellen, and D. Feldmang, “Photocathodes for the energy recovery linacs,” Nucl. Instrum. Methods Phys. Res. A 557, 124–130 (2006).
[CrossRef]

Smedley, J.

T. Rao, A. Burrill, X. Y. Chang, J. Smedley, T. Nishitani, C. Hernandez Garcia, M. Poelker, E. Seddon, F. E. Hannon, C. K. Sinclair, J. Lewellen, and D. Feldmang, “Photocathodes for the energy recovery linacs,” Nucl. Instrum. Methods Phys. Res. A 557, 124–130 (2006).
[CrossRef]

Spicer, W. E.

Z. Liu, F. Machuca, P. Pianetta, W. E. Spicer, and R. F. W. Pease, “Electron scattering study within the depletion region of the GaN(0001) and the GaAs(100) surface,” Appl. Phys. Lett. 85, 1541–1543 (2004).
[CrossRef]

F. Machuca, Z. Liu, Y. Sun, P. Pianetta, W. E. Spicer, and R. F. W. Pease, “Oxygen species in Cs/O activated gallium nitride (GaN) negative electron affinity photocathodes,” J. Vac. Sci. Technol. B 21, 1863–1869 (2003).
[CrossRef]

C. Y. Su, W. E. Spicer, and I. Lindau, “Photoelectron spectroscopic determination of the structure of (Cs, O) activated GaAs (110) surfaces,” J. Appl. Phys. 54, 1413–1422 (1983).
[CrossRef]

C. Y. Su, I. Lindau, and W. E. Spicer, “Photoemission studies of the oxidation of Cs. Identification of the multiplet structures of oxygen species,” Chem. Phys. Lett. 87, 523–527 (1982).
[CrossRef]

Su, C. Y.

C. Y. Su, W. E. Spicer, and I. Lindau, “Photoelectron spectroscopic determination of the structure of (Cs, O) activated GaAs (110) surfaces,” J. Appl. Phys. 54, 1413–1422 (1983).
[CrossRef]

C. Y. Su, I. Lindau, and W. E. Spicer, “Photoemission studies of the oxidation of Cs. Identification of the multiplet structures of oxygen species,” Chem. Phys. Lett. 87, 523–527 (1982).
[CrossRef]

Sun, Y.

Z. Liu, Y. Sun, S. Peterson, and P. Pianetta, “Photoemission study of Cs–NF3 activated GaAs(100) negative electron affinity photocathodes,” Appl. Phys. Lett. 92, 241107 (2008).
[CrossRef]

F. Machuca, Z. Liu, Y. Sun, P. Pianetta, W. E. Spicer, and R. F. W. Pease, “Oxygen species in Cs/O activated gallium nitride (GaN) negative electron affinity photocathodes,” J. Vac. Sci. Technol. B 21, 1863–1869 (2003).
[CrossRef]

Suzuki, Y.

T. Nishitani, M. Tabuchi, Y. Takeda, Y. Suzuki, K. Motoki, and T. Meguro, “High-brightness spin-polarized electron source using semiconductor photocathodes,” Jpn. J. Appl. Phys. 48, 06FF02 (2009).
[CrossRef]

Tabuchi, M.

T. Nishitani, M. Tabuchi, Y. Takeda, Y. Suzuki, K. Motoki, and T. Meguro, “High-brightness spin-polarized electron source using semiconductor photocathodes,” Jpn. J. Appl. Phys. 48, 06FF02 (2009).
[CrossRef]

Takeda, Y.

T. Nishitani, M. Tabuchi, Y. Takeda, Y. Suzuki, K. Motoki, and T. Meguro, “High-brightness spin-polarized electron source using semiconductor photocathodes,” Jpn. J. Appl. Phys. 48, 06FF02 (2009).
[CrossRef]

N. Yamamoto, M. Yamamoto, M. Kuwahara, R. Sakai, T. Morino, K. Tamagaki, A. Mano, A. Utsu, S. Okumi, T. Nakanishi, M. Kuriki, C. Bo, T. Ujihara, and Y. Takeda, “Thermal emittance measurements for electron beams produced from bulk and superlattice negative electron affinity photocathodes,” J. Appl. Phys. 102, 024904 (2007).
[CrossRef]

Tamagaki, K.

N. Yamamoto, M. Yamamoto, M. Kuwahara, R. Sakai, T. Morino, K. Tamagaki, A. Mano, A. Utsu, S. Okumi, T. Nakanishi, M. Kuriki, C. Bo, T. Ujihara, and Y. Takeda, “Thermal emittance measurements for electron beams produced from bulk and superlattice negative electron affinity photocathodes,” J. Appl. Phys. 102, 024904 (2007).
[CrossRef]

Tecchio, L.

R. Calabres, G. Ciullo, V. Guidi, G. Lamanna, P. Lenisa, B. Maciga, L. Tecchio, and B. Yang, “Long-lifetime high-intensity GaAs photosource,” Rev. Sci. Instrum. 65, 343–348 (1994).
[CrossRef]

R. Calabres, V. Guidi, P. Lenisa, B. Maciga, G. Ciullo, G. Della, G. P. Egeni, G. Lamanna, V. Rigato, V. Rudello, B. Yang, S. Zandolin, and L. Tecchio, “Surface analysis of a GaAs electron source using Rutherford backscattering spectroscopy,” Appl. Phys. Lett. 65, 301–302 (1994).
[CrossRef]

Ujihara, T.

N. Yamamoto, M. Yamamoto, M. Kuwahara, R. Sakai, T. Morino, K. Tamagaki, A. Mano, A. Utsu, S. Okumi, T. Nakanishi, M. Kuriki, C. Bo, T. Ujihara, and Y. Takeda, “Thermal emittance measurements for electron beams produced from bulk and superlattice negative electron affinity photocathodes,” J. Appl. Phys. 102, 024904 (2007).
[CrossRef]

Utsu, A.

N. Yamamoto, M. Yamamoto, M. Kuwahara, R. Sakai, T. Morino, K. Tamagaki, A. Mano, A. Utsu, S. Okumi, T. Nakanishi, M. Kuriki, C. Bo, T. Ujihara, and Y. Takeda, “Thermal emittance measurements for electron beams produced from bulk and superlattice negative electron affinity photocathodes,” J. Appl. Phys. 102, 024904 (2007).
[CrossRef]

Westermann, M.

D. Durek, F. Frommberger, T. Reichelt, and M. Westermann, “Degradation of a gallium–arsenide photoemitting NEA surface by water vapour,” Appl. Surf. Sci. 143, 319–322 (1999).
[CrossRef]

Xiong, Y. J.

Xu, Y.

X. L. Chen, Y. J. Zhang, B. K. Chang, J. Zhao, M. C. Jin, G. H. Hao, and Y. Xu, “Research on quantum efficiency of reflection-mode GaAs photocathode with thin emission layer,” Opt. Commun. 287, 35–39 (2013).
[CrossRef]

X. L. Chen, J. Zhao, B. K. Chang, M. C. Jin, G. H. Hao, and Y. Xu, “Blue–green reflection-mode GaAlAs photocathodes,” Proc. SPIE 8555, 85550R (2012).
[CrossRef]

Yamamoto, M.

M. Kuriki, C. Shonaka, H. Iijima, D. Kubo, H. Okamoto, H. Higaki, K. Ito, M. Yamamoto, T. Konomi, S. Okumi, M. Kuwahara, and T. Nakanishi, “Dark-lifetime degradation of GaAs photocathode at higher temperature,” Nucl. Instrum. Methods Phys. Res. A 637, S87–S90 (2011).
[CrossRef]

N. Yamamoto, M. Yamamoto, M. Kuwahara, R. Sakai, T. Morino, K. Tamagaki, A. Mano, A. Utsu, S. Okumi, T. Nakanishi, M. Kuriki, C. Bo, T. Ujihara, and Y. Takeda, “Thermal emittance measurements for electron beams produced from bulk and superlattice negative electron affinity photocathodes,” J. Appl. Phys. 102, 024904 (2007).
[CrossRef]

Yamamoto, N.

N. Yamamoto, M. Yamamoto, M. Kuwahara, R. Sakai, T. Morino, K. Tamagaki, A. Mano, A. Utsu, S. Okumi, T. Nakanishi, M. Kuriki, C. Bo, T. Ujihara, and Y. Takeda, “Thermal emittance measurements for electron beams produced from bulk and superlattice negative electron affinity photocathodes,” J. Appl. Phys. 102, 024904 (2007).
[CrossRef]

Yang, B.

R. Calabres, G. Ciullo, V. Guidi, G. Lamanna, P. Lenisa, B. Maciga, L. Tecchio, and B. Yang, “Long-lifetime high-intensity GaAs photosource,” Rev. Sci. Instrum. 65, 343–348 (1994).
[CrossRef]

R. Calabres, V. Guidi, P. Lenisa, B. Maciga, G. Ciullo, G. Della, G. P. Egeni, G. Lamanna, V. Rigato, V. Rudello, B. Yang, S. Zandolin, and L. Tecchio, “Surface analysis of a GaAs electron source using Rutherford backscattering spectroscopy,” Appl. Phys. Lett. 65, 301–302 (1994).
[CrossRef]

Yang, Z.

J. J. Zou, B. K. Chang, Z. Yang, J. L. Qiao, and Y. P. Zeng, “Stability and photoemission characteristics for GaAs photocathodes in a demountable vacuum system,” Appl. Phys. Lett. 92, 172102 (2008).
[CrossRef]

J. J. Zou, L. Feng, G. Y. Lin, Y. T. Rao, Z. Yang, Y. S. Qian, and B. K. Chang, “On-line measurement system of GaAs photocathodes and its applications,” Proc. SPIE 6782, 67823D (2007).
[CrossRef]

Zandolin, S.

R. Calabres, V. Guidi, P. Lenisa, B. Maciga, G. Ciullo, G. Della, G. P. Egeni, G. Lamanna, V. Rigato, V. Rudello, B. Yang, S. Zandolin, and L. Tecchio, “Surface analysis of a GaAs electron source using Rutherford backscattering spectroscopy,” Appl. Phys. Lett. 65, 301–302 (1994).
[CrossRef]

Zeng, Y. P.

J. J. Zou, B. K. Chang, Z. Yang, J. L. Qiao, and Y. P. Zeng, “Stability and photoemission characteristics for GaAs photocathodes in a demountable vacuum system,” Appl. Phys. Lett. 92, 172102 (2008).
[CrossRef]

Zhang, Y. J.

X. L. Chen, Y. J. Zhang, B. K. Chang, J. Zhao, M. C. Jin, G. H. Hao, and Y. Xu, “Research on quantum efficiency of reflection-mode GaAs photocathode with thin emission layer,” Opt. Commun. 287, 35–39 (2013).
[CrossRef]

Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, and Y. J. Xiong, “Variation of spectral response for exponential-doped transmission-mode GaAs photocathodes in the preparation process,” Appl. Opt. 49, 3935–3940 (2010).
[CrossRef]

Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, F. Shi, and H. C. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

Zhao, J.

X. L. Chen, Y. J. Zhang, B. K. Chang, J. Zhao, M. C. Jin, G. H. Hao, and Y. Xu, “Research on quantum efficiency of reflection-mode GaAs photocathode with thin emission layer,” Opt. Commun. 287, 35–39 (2013).
[CrossRef]

X. L. Chen, J. Zhao, B. K. Chang, M. C. Jin, G. H. Hao, and Y. Xu, “Blue–green reflection-mode GaAlAs photocathodes,” Proc. SPIE 8555, 85550R (2012).
[CrossRef]

Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, F. Shi, and H. C. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, and Y. J. Xiong, “Variation of spectral response for exponential-doped transmission-mode GaAs photocathodes in the preparation process,” Appl. Opt. 49, 3935–3940 (2010).
[CrossRef]

Zong, Z. Y.

B. K. Chang, X. Q. Du, L. Liu, Z. Y. Zong, R. G. Fu, and Y. S. Qian, “The automatic recording system of dynamic spectral response and its applications,” Proc. SPIE 5209, 209–218 (2003).
[CrossRef]

Zou, J. J.

Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, and Y. J. Xiong, “Variation of spectral response for exponential-doped transmission-mode GaAs photocathodes in the preparation process,” Appl. Opt. 49, 3935–3940 (2010).
[CrossRef]

Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, F. Shi, and H. C. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

J. J. Zou, B. K. Chang, Z. Yang, J. L. Qiao, and Y. P. Zeng, “Stability and photoemission characteristics for GaAs photocathodes in a demountable vacuum system,” Appl. Phys. Lett. 92, 172102 (2008).
[CrossRef]

J. J. Zou, L. Feng, G. Y. Lin, Y. T. Rao, Z. Yang, Y. S. Qian, and B. K. Chang, “On-line measurement system of GaAs photocathodes and its applications,” Proc. SPIE 6782, 67823D (2007).
[CrossRef]

J. J. Zou and B. K. Chang, “Gradient-doping negative electron affinity GaAs photocathodes,” Opt. Eng. 45, 054001 (2006).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

Z. Liu, Y. Sun, S. Peterson, and P. Pianetta, “Photoemission study of Cs–NF3 activated GaAs(100) negative electron affinity photocathodes,” Appl. Phys. Lett. 92, 241107 (2008).
[CrossRef]

Z. Liu, F. Machuca, P. Pianetta, W. E. Spicer, and R. F. W. Pease, “Electron scattering study within the depletion region of the GaN(0001) and the GaAs(100) surface,” Appl. Phys. Lett. 85, 1541–1543 (2004).
[CrossRef]

J. J. Zou, B. K. Chang, Z. Yang, J. L. Qiao, and Y. P. Zeng, “Stability and photoemission characteristics for GaAs photocathodes in a demountable vacuum system,” Appl. Phys. Lett. 92, 172102 (2008).
[CrossRef]

R. Calabres, V. Guidi, P. Lenisa, B. Maciga, G. Ciullo, G. Della, G. P. Egeni, G. Lamanna, V. Rigato, V. Rudello, B. Yang, S. Zandolin, and L. Tecchio, “Surface analysis of a GaAs electron source using Rutherford backscattering spectroscopy,” Appl. Phys. Lett. 65, 301–302 (1994).
[CrossRef]

Appl. Surf. Sci.

D. Durek, F. Frommberger, T. Reichelt, and M. Westermann, “Degradation of a gallium–arsenide photoemitting NEA surface by water vapour,” Appl. Surf. Sci. 143, 319–322 (1999).
[CrossRef]

Chem. Phys. Lett.

C. Y. Su, I. Lindau, and W. E. Spicer, “Photoemission studies of the oxidation of Cs. Identification of the multiplet structures of oxygen species,” Chem. Phys. Lett. 87, 523–527 (1982).
[CrossRef]

J. Appl. Phys.

C. Y. Su, W. E. Spicer, and I. Lindau, “Photoelectron spectroscopic determination of the structure of (Cs, O) activated GaAs (110) surfaces,” J. Appl. Phys. 54, 1413–1422 (1983).
[CrossRef]

R. U. Martinelli and M. Ettenberg, “Electron transport and emission characteristics of negative electron affinity AlxGal-x As alloys (0∼x∼0.3),” J. Appl. Phys. 45, 3896–3898 (1974).
[CrossRef]

N. Yamamoto, M. Yamamoto, M. Kuwahara, R. Sakai, T. Morino, K. Tamagaki, A. Mano, A. Utsu, S. Okumi, T. Nakanishi, M. Kuriki, C. Bo, T. Ujihara, and Y. Takeda, “Thermal emittance measurements for electron beams produced from bulk and superlattice negative electron affinity photocathodes,” J. Appl. Phys. 102, 024904 (2007).
[CrossRef]

Y. J. Zhang, J. Niu, J. Zhao, J. J. Zou, B. K. Chang, F. Shi, and H. C. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathodes,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

J. Vac. Sci. Technol. B

F. Machuca, Z. Liu, Y. Sun, P. Pianetta, W. E. Spicer, and R. F. W. Pease, “Oxygen species in Cs/O activated gallium nitride (GaN) negative electron affinity photocathodes,” J. Vac. Sci. Technol. B 21, 1863–1869 (2003).
[CrossRef]

Jpn. J. Appl. Phys.

T. Nishitani, M. Tabuchi, Y. Takeda, Y. Suzuki, K. Motoki, and T. Meguro, “High-brightness spin-polarized electron source using semiconductor photocathodes,” Jpn. J. Appl. Phys. 48, 06FF02 (2009).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A

T. Rao, A. Burrill, X. Y. Chang, J. Smedley, T. Nishitani, C. Hernandez Garcia, M. Poelker, E. Seddon, F. E. Hannon, C. K. Sinclair, J. Lewellen, and D. Feldmang, “Photocathodes for the energy recovery linacs,” Nucl. Instrum. Methods Phys. Res. A 557, 124–130 (2006).
[CrossRef]

M. Kuriki, C. Shonaka, H. Iijima, D. Kubo, H. Okamoto, H. Higaki, K. Ito, M. Yamamoto, T. Konomi, S. Okumi, M. Kuwahara, and T. Nakanishi, “Dark-lifetime degradation of GaAs photocathode at higher temperature,” Nucl. Instrum. Methods Phys. Res. A 637, S87–S90 (2011).
[CrossRef]

Opt. Commun.

X. L. Chen, Y. J. Zhang, B. K. Chang, J. Zhao, M. C. Jin, G. H. Hao, and Y. Xu, “Research on quantum efficiency of reflection-mode GaAs photocathode with thin emission layer,” Opt. Commun. 287, 35–39 (2013).
[CrossRef]

Opt. Eng.

J. J. Zou and B. K. Chang, “Gradient-doping negative electron affinity GaAs photocathodes,” Opt. Eng. 45, 054001 (2006).
[CrossRef]

Proc. SPIE

X. L. Chen, J. Zhao, B. K. Chang, M. C. Jin, G. H. Hao, and Y. Xu, “Blue–green reflection-mode GaAlAs photocathodes,” Proc. SPIE 8555, 85550R (2012).
[CrossRef]

B. K. Chang, X. Q. Du, L. Liu, Z. Y. Zong, R. G. Fu, and Y. S. Qian, “The automatic recording system of dynamic spectral response and its applications,” Proc. SPIE 5209, 209–218 (2003).
[CrossRef]

J. J. Zou, L. Feng, G. Y. Lin, Y. T. Rao, Z. Yang, Y. S. Qian, and B. K. Chang, “On-line measurement system of GaAs photocathodes and its applications,” Proc. SPIE 6782, 67823D (2007).
[CrossRef]

Rev. Sci. Instrum.

R. Calabres, G. Ciullo, V. Guidi, G. Lamanna, P. Lenisa, B. Maciga, L. Tecchio, and B. Yang, “Long-lifetime high-intensity GaAs photosource,” Rev. Sci. Instrum. 65, 343–348 (1994).
[CrossRef]

Other

N. Chanlek, “Quantum efficiency lifetime studies using the photocathode preparation experimental facility developed for the Alice accelerator,” Ph.D. thesis (Manchester University, 2011), p. 61.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Structure of the exponential-doping reflection-mode Ga0.37Al0.63As photocathode grown by MOCVD.

Fig. 2.
Fig. 2.

Schematic diagram of the multi-information measurement system for NEA Ga0.37Al0.63As photocathode preparation.

Fig. 3.
Fig. 3.

Photocurrent curves of samples 1–3 during the degradation process. Curves 1–3 are corresponding to the samples, respectively, illuminating by 100, 50, and 25 lx white light in the UHV system.

Fig. 4.
Fig. 4.

Quantum efficiency curves of sample 4 as a function of degradation time in the case of no illumination. Curve 1 is the quantum efficiency curve for the original photocathode. Curves 2–4 are the quantum efficiency curves for the original photocathodes degraded after 3, 7, and 13 h in the vacuum system, respectively.

Fig. 5.
Fig. 5.

Band structure and surface barrier for the reflection-mode GaAlAs photocathode. Ec is the conduction band minimum, Ev is the valence band maximum, EF is the Fermi level, Evac is the vacuum level, Eg1 is the band gap of the buffer layer, and Eg2 is the band gap of the emission layer.

Fig. 6.
Fig. 6.

Quantum efficiency curves of the Ga0.37Al0.63As photocathode after the activation. Curves 1–5 are the quantum efficiencies corresponding to the first, second, third, fourth, and fifth activations, respectively.

Fig. 7.
Fig. 7.

Degraded photocurrent curves of the Ga0.37Al0.63As photocathode after the activation. Curves 1–5 are the degraded photocurrents corresponding to the first, second, third, fourth, and fifth activations, respectively.

Tables (2)

Tables Icon

Table 1. Lifetime of the Ga0.37Al0.63As Photocathodes in Light of Different Intensity

Tables Icon

Table 2. Normalized Peak Activation Photocurrents and Lifetimes of the Ga0.37Al0.63As Photocathode under Illumination of 100 lx

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

YRE=P(1R)αhvLDαhv2LD2αhvLE1×[N(SαhvDn)exp(LETe/2LD2αhvTe)MQM+αhvLD],
N=LE2+4LD2,S=μ|E|+Sv,LE=μ|E|τ=q|E|k0TLD2,M=(NDn/LD)cosh(NTe/2LD2)+(2SLDDnLE/LD)sinh(NTe/2LD2),Q=SNcosh(NTe/2LD2)+(SLE+2Dn)sinh(NTe/2LD2),

Metrics