Abstract

An approach for constructing an optical Hash function, also known as a one-way cryptosystem, based on two-beam interference (OHF-TBI) is proposed. The purpose of this method is creating the “digital fingerprint” of any precoding message with arbitrary length. This approach consists of three steps, in which the main step is a one-way processing procedure with a compression mechanism. To achieve the function of one-way property and compressibility, we designed a cascaded process on the basis of the two-beam interference principle and phase-truncation operation. The performance of the mentioned OHF-TBI is verified by theoretical analysis and a set of numerical simulations.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Schneier and P. Sutherland, Applied Cryptography: Protocols, Algorithms, and Source Code in C (Wiley, 1995).
  2. P. Refregier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20, 767–769 (1995).
    [CrossRef]
  3. O. Matoba and B. Javidi, “Encrypted optical memory system using three-dimensional keys in the Fresnel domain,” Opt. Lett. 24, 762–764 (1999).
    [CrossRef]
  4. J. W. Han and C. S. Park, “Optical image encryption based on XOR operations,” Opt. Eng. 38, 47–54 (1999).
    [CrossRef]
  5. Y. Zhang and B. Wang, “Optical image encryption based on interference,” Opt. Lett. 33, 2443–2445 (2008).
    [CrossRef]
  6. P. Kumar, J. Joseph, and K. Singh, “Optical image encryption using a jigsaw transform for silhouette removal in interference-based methods and decryption with a single spatial light modulator,” Appl. Opt. 50, 1805–1811 (2011).
    [CrossRef]
  7. L. Z. Cai, M. Z. He, Q. Liu, and X. L. Yang, “Digital image encryption and watermarking by phase-shifting interferometry,” Appl. Opt. 43, 3078–3084 (2004).
    [CrossRef]
  8. B. Javidi and J. L. Horner, “Optical-pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994).
    [CrossRef]
  9. B. Javidi and A. Sergent, “Fully phase encoded key and biometrics for security verification,” Opt. Eng. 36, 935–942 (1997).
    [CrossRef]
  10. D. Abookasis, O. Arazi, J. Rosen, and B. Javidi, “Security optical systems based on a joint transform correlator with significant output images,” Opt. Eng. 40, 1584–1589 (2001).
    [CrossRef]
  11. A. Carnicer, M. Montes-Usategui, S. Arcos, and I. Juvells, “Vulnerability to chosen-cyphertext attacks of optical encryption schemes based on double random phase keys,” Opt. Lett. 30, 1644–1646 (2005).
    [CrossRef]
  12. U. Gopinathan, D. S. Monaghan, T. J. Naughton, and J. T. Sheridan, “A known-plaintext heuristic attack on the Fourier plane encryption algorithm,” Opt. Express 14, 3181–3186 (2006).
    [CrossRef]
  13. X. Peng, H. Z. Wei, and P. Zhang, “Chosen-plaintext attack on lensless double-random phase encoding in the Fresnel domain,” Opt. Lett. 31, 3261–3263 (2006).
    [CrossRef]
  14. X. Peng, P. Zhang, H. Z. Wei, and B. Yu, “Known-plaintext attack on optical encryption based on double random phase keys,” Opt. Lett. 31, 1044–1046 (2006).
    [CrossRef]
  15. X. Peng, H. Z. Wei, and P. Zhang, “Chosen plaintext attack on double random-phase encoding in the Fresnel domain,” Acta Phys. Sin. 56, 3924–3930 (2007).
  16. J. F. Barrera, C. Vargas, M. Tebaldi, and R. Torroba, “Chosen-plaintext attack on a joint transform correlator encrypting system,” Opt. Commun. 283, 3917–3921 (2010).
    [CrossRef]
  17. W. Qin, X. Peng, and X. Meng, “Cryptanalysis of optical encryption schemes based on joint transform correlator architecture,” Opt. Eng. 50, 028201 (2011).
    [CrossRef]
  18. P. Kumar, J. Joseph, and K. Singh, “Known-plaintext attack-free double random phase-amplitude optical encryption: vulnerability to impulse function attack,” J. Opt. 14, 045401 (2012).
    [CrossRef]
  19. X. Peng, P. Zhang, and L. L. Cai, “Information security system based on virtual-optics imaging methodology and public key infrastructure,” Optik 115, 420–426 (2004).
    [CrossRef]
  20. S. Yuan, X. Zhou, M. S. Alam, X. Lu, and X.-F. Li, “Information hiding based on double random-phase encoding and public-key cryptography,” Opt. Express 17, 3270–3284 (2009).
    [CrossRef]
  21. X. F. Meng, X. Peng, L. Z. Cai, A. M. Li, Z. Gao, and Y. R. Wang, “Cryptosystem based on two-step phase-shifting interferometry and the RSA public-key encryption algorithm,” Pure Appl. Opt. 11, 085402 (2009).
    [CrossRef]
  22. X. Peng, H. Wei, and P. Zhang, “Asymmetric cryptography based on wavefront sensing,” Opt. Lett. 31, 3579–3581 (2006).
    [CrossRef]
  23. W. Qin and X. Peng, “Asymmetric cryptosystem based on phase-truncated Fourier transforms,” Opt. Lett. 35, 118–120 (2010).
    [CrossRef]
  24. W. He, X. Peng, W. Qin, and X. Meng, “The keyed optical Hash function based on cascaded phase-truncated Fourier transforms,” Opt. Commun. 283, 2328–2332 (2010).
    [CrossRef]
  25. R. L. Rivest, “The MD5 message digest algorithm,” (1992).
  26. Y. Wang, X. F. Liao, D. Xiao, and K. W. Wong, “One-way Hash function construction based on 2D coupled map lattices,” Inform. Sci. 178, 1391–1406 (2008).
    [CrossRef]
  27. D. Xiao, X. F. Liao, and Y. Wang, “Parallel keyed Hash function construction based on chaotic neural network,” Neurocomputing 72, 2288–2296 (2009).
    [CrossRef]
  28. A. Kanso, H. Yahyaoui, and M. Almull, “Keyed Hash function based on a chaotic map,” Inform. Sci. 186, 249–264 (2012).
    [CrossRef]
  29. A. Kanso and M. Ghebleh, “A fast and efficient chaos-based keyed Hash function,” Commun. Nonlinear Sci. Numer. Simul. 18, 109–123 (2013).
    [CrossRef]
  30. A. Alfalou and C. Brosseau, “Optical image compression and encryption methods,” Adv. Opt. Photon. 1, 589–636 (2009).
    [CrossRef]
  31. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2005).

2013 (1)

A. Kanso and M. Ghebleh, “A fast and efficient chaos-based keyed Hash function,” Commun. Nonlinear Sci. Numer. Simul. 18, 109–123 (2013).
[CrossRef]

2012 (2)

A. Kanso, H. Yahyaoui, and M. Almull, “Keyed Hash function based on a chaotic map,” Inform. Sci. 186, 249–264 (2012).
[CrossRef]

P. Kumar, J. Joseph, and K. Singh, “Known-plaintext attack-free double random phase-amplitude optical encryption: vulnerability to impulse function attack,” J. Opt. 14, 045401 (2012).
[CrossRef]

2011 (2)

2010 (3)

J. F. Barrera, C. Vargas, M. Tebaldi, and R. Torroba, “Chosen-plaintext attack on a joint transform correlator encrypting system,” Opt. Commun. 283, 3917–3921 (2010).
[CrossRef]

W. Qin and X. Peng, “Asymmetric cryptosystem based on phase-truncated Fourier transforms,” Opt. Lett. 35, 118–120 (2010).
[CrossRef]

W. He, X. Peng, W. Qin, and X. Meng, “The keyed optical Hash function based on cascaded phase-truncated Fourier transforms,” Opt. Commun. 283, 2328–2332 (2010).
[CrossRef]

2009 (4)

S. Yuan, X. Zhou, M. S. Alam, X. Lu, and X.-F. Li, “Information hiding based on double random-phase encoding and public-key cryptography,” Opt. Express 17, 3270–3284 (2009).
[CrossRef]

X. F. Meng, X. Peng, L. Z. Cai, A. M. Li, Z. Gao, and Y. R. Wang, “Cryptosystem based on two-step phase-shifting interferometry and the RSA public-key encryption algorithm,” Pure Appl. Opt. 11, 085402 (2009).
[CrossRef]

D. Xiao, X. F. Liao, and Y. Wang, “Parallel keyed Hash function construction based on chaotic neural network,” Neurocomputing 72, 2288–2296 (2009).
[CrossRef]

A. Alfalou and C. Brosseau, “Optical image compression and encryption methods,” Adv. Opt. Photon. 1, 589–636 (2009).
[CrossRef]

2008 (2)

Y. Wang, X. F. Liao, D. Xiao, and K. W. Wong, “One-way Hash function construction based on 2D coupled map lattices,” Inform. Sci. 178, 1391–1406 (2008).
[CrossRef]

Y. Zhang and B. Wang, “Optical image encryption based on interference,” Opt. Lett. 33, 2443–2445 (2008).
[CrossRef]

2007 (1)

X. Peng, H. Z. Wei, and P. Zhang, “Chosen plaintext attack on double random-phase encoding in the Fresnel domain,” Acta Phys. Sin. 56, 3924–3930 (2007).

2006 (4)

2005 (1)

2004 (2)

X. Peng, P. Zhang, and L. L. Cai, “Information security system based on virtual-optics imaging methodology and public key infrastructure,” Optik 115, 420–426 (2004).
[CrossRef]

L. Z. Cai, M. Z. He, Q. Liu, and X. L. Yang, “Digital image encryption and watermarking by phase-shifting interferometry,” Appl. Opt. 43, 3078–3084 (2004).
[CrossRef]

2001 (1)

D. Abookasis, O. Arazi, J. Rosen, and B. Javidi, “Security optical systems based on a joint transform correlator with significant output images,” Opt. Eng. 40, 1584–1589 (2001).
[CrossRef]

1999 (2)

O. Matoba and B. Javidi, “Encrypted optical memory system using three-dimensional keys in the Fresnel domain,” Opt. Lett. 24, 762–764 (1999).
[CrossRef]

J. W. Han and C. S. Park, “Optical image encryption based on XOR operations,” Opt. Eng. 38, 47–54 (1999).
[CrossRef]

1997 (1)

B. Javidi and A. Sergent, “Fully phase encoded key and biometrics for security verification,” Opt. Eng. 36, 935–942 (1997).
[CrossRef]

1995 (1)

1994 (1)

B. Javidi and J. L. Horner, “Optical-pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994).
[CrossRef]

Abookasis, D.

D. Abookasis, O. Arazi, J. Rosen, and B. Javidi, “Security optical systems based on a joint transform correlator with significant output images,” Opt. Eng. 40, 1584–1589 (2001).
[CrossRef]

Alam, M. S.

Alfalou, A.

Almull, M.

A. Kanso, H. Yahyaoui, and M. Almull, “Keyed Hash function based on a chaotic map,” Inform. Sci. 186, 249–264 (2012).
[CrossRef]

Arazi, O.

D. Abookasis, O. Arazi, J. Rosen, and B. Javidi, “Security optical systems based on a joint transform correlator with significant output images,” Opt. Eng. 40, 1584–1589 (2001).
[CrossRef]

Arcos, S.

Barrera, J. F.

J. F. Barrera, C. Vargas, M. Tebaldi, and R. Torroba, “Chosen-plaintext attack on a joint transform correlator encrypting system,” Opt. Commun. 283, 3917–3921 (2010).
[CrossRef]

Brosseau, C.

Cai, L. L.

X. Peng, P. Zhang, and L. L. Cai, “Information security system based on virtual-optics imaging methodology and public key infrastructure,” Optik 115, 420–426 (2004).
[CrossRef]

Cai, L. Z.

X. F. Meng, X. Peng, L. Z. Cai, A. M. Li, Z. Gao, and Y. R. Wang, “Cryptosystem based on two-step phase-shifting interferometry and the RSA public-key encryption algorithm,” Pure Appl. Opt. 11, 085402 (2009).
[CrossRef]

L. Z. Cai, M. Z. He, Q. Liu, and X. L. Yang, “Digital image encryption and watermarking by phase-shifting interferometry,” Appl. Opt. 43, 3078–3084 (2004).
[CrossRef]

Carnicer, A.

Gao, Z.

X. F. Meng, X. Peng, L. Z. Cai, A. M. Li, Z. Gao, and Y. R. Wang, “Cryptosystem based on two-step phase-shifting interferometry and the RSA public-key encryption algorithm,” Pure Appl. Opt. 11, 085402 (2009).
[CrossRef]

Ghebleh, M.

A. Kanso and M. Ghebleh, “A fast and efficient chaos-based keyed Hash function,” Commun. Nonlinear Sci. Numer. Simul. 18, 109–123 (2013).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2005).

Gopinathan, U.

Han, J. W.

J. W. Han and C. S. Park, “Optical image encryption based on XOR operations,” Opt. Eng. 38, 47–54 (1999).
[CrossRef]

He, M. Z.

He, W.

W. He, X. Peng, W. Qin, and X. Meng, “The keyed optical Hash function based on cascaded phase-truncated Fourier transforms,” Opt. Commun. 283, 2328–2332 (2010).
[CrossRef]

Horner, J. L.

B. Javidi and J. L. Horner, “Optical-pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994).
[CrossRef]

Javidi, B.

D. Abookasis, O. Arazi, J. Rosen, and B. Javidi, “Security optical systems based on a joint transform correlator with significant output images,” Opt. Eng. 40, 1584–1589 (2001).
[CrossRef]

O. Matoba and B. Javidi, “Encrypted optical memory system using three-dimensional keys in the Fresnel domain,” Opt. Lett. 24, 762–764 (1999).
[CrossRef]

B. Javidi and A. Sergent, “Fully phase encoded key and biometrics for security verification,” Opt. Eng. 36, 935–942 (1997).
[CrossRef]

P. Refregier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20, 767–769 (1995).
[CrossRef]

B. Javidi and J. L. Horner, “Optical-pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994).
[CrossRef]

Joseph, J.

P. Kumar, J. Joseph, and K. Singh, “Known-plaintext attack-free double random phase-amplitude optical encryption: vulnerability to impulse function attack,” J. Opt. 14, 045401 (2012).
[CrossRef]

P. Kumar, J. Joseph, and K. Singh, “Optical image encryption using a jigsaw transform for silhouette removal in interference-based methods and decryption with a single spatial light modulator,” Appl. Opt. 50, 1805–1811 (2011).
[CrossRef]

Juvells, I.

Kanso, A.

A. Kanso and M. Ghebleh, “A fast and efficient chaos-based keyed Hash function,” Commun. Nonlinear Sci. Numer. Simul. 18, 109–123 (2013).
[CrossRef]

A. Kanso, H. Yahyaoui, and M. Almull, “Keyed Hash function based on a chaotic map,” Inform. Sci. 186, 249–264 (2012).
[CrossRef]

Kumar, P.

P. Kumar, J. Joseph, and K. Singh, “Known-plaintext attack-free double random phase-amplitude optical encryption: vulnerability to impulse function attack,” J. Opt. 14, 045401 (2012).
[CrossRef]

P. Kumar, J. Joseph, and K. Singh, “Optical image encryption using a jigsaw transform for silhouette removal in interference-based methods and decryption with a single spatial light modulator,” Appl. Opt. 50, 1805–1811 (2011).
[CrossRef]

Li, A. M.

X. F. Meng, X. Peng, L. Z. Cai, A. M. Li, Z. Gao, and Y. R. Wang, “Cryptosystem based on two-step phase-shifting interferometry and the RSA public-key encryption algorithm,” Pure Appl. Opt. 11, 085402 (2009).
[CrossRef]

Li, X.-F.

Liao, X. F.

D. Xiao, X. F. Liao, and Y. Wang, “Parallel keyed Hash function construction based on chaotic neural network,” Neurocomputing 72, 2288–2296 (2009).
[CrossRef]

Y. Wang, X. F. Liao, D. Xiao, and K. W. Wong, “One-way Hash function construction based on 2D coupled map lattices,” Inform. Sci. 178, 1391–1406 (2008).
[CrossRef]

Liu, Q.

Lu, X.

Matoba, O.

Meng, X.

W. Qin, X. Peng, and X. Meng, “Cryptanalysis of optical encryption schemes based on joint transform correlator architecture,” Opt. Eng. 50, 028201 (2011).
[CrossRef]

W. He, X. Peng, W. Qin, and X. Meng, “The keyed optical Hash function based on cascaded phase-truncated Fourier transforms,” Opt. Commun. 283, 2328–2332 (2010).
[CrossRef]

Meng, X. F.

X. F. Meng, X. Peng, L. Z. Cai, A. M. Li, Z. Gao, and Y. R. Wang, “Cryptosystem based on two-step phase-shifting interferometry and the RSA public-key encryption algorithm,” Pure Appl. Opt. 11, 085402 (2009).
[CrossRef]

Monaghan, D. S.

Montes-Usategui, M.

Naughton, T. J.

Park, C. S.

J. W. Han and C. S. Park, “Optical image encryption based on XOR operations,” Opt. Eng. 38, 47–54 (1999).
[CrossRef]

Peng, X.

W. Qin, X. Peng, and X. Meng, “Cryptanalysis of optical encryption schemes based on joint transform correlator architecture,” Opt. Eng. 50, 028201 (2011).
[CrossRef]

W. Qin and X. Peng, “Asymmetric cryptosystem based on phase-truncated Fourier transforms,” Opt. Lett. 35, 118–120 (2010).
[CrossRef]

W. He, X. Peng, W. Qin, and X. Meng, “The keyed optical Hash function based on cascaded phase-truncated Fourier transforms,” Opt. Commun. 283, 2328–2332 (2010).
[CrossRef]

X. F. Meng, X. Peng, L. Z. Cai, A. M. Li, Z. Gao, and Y. R. Wang, “Cryptosystem based on two-step phase-shifting interferometry and the RSA public-key encryption algorithm,” Pure Appl. Opt. 11, 085402 (2009).
[CrossRef]

X. Peng, H. Z. Wei, and P. Zhang, “Chosen plaintext attack on double random-phase encoding in the Fresnel domain,” Acta Phys. Sin. 56, 3924–3930 (2007).

X. Peng, P. Zhang, H. Z. Wei, and B. Yu, “Known-plaintext attack on optical encryption based on double random phase keys,” Opt. Lett. 31, 1044–1046 (2006).
[CrossRef]

X. Peng, H. Wei, and P. Zhang, “Asymmetric cryptography based on wavefront sensing,” Opt. Lett. 31, 3579–3581 (2006).
[CrossRef]

X. Peng, H. Z. Wei, and P. Zhang, “Chosen-plaintext attack on lensless double-random phase encoding in the Fresnel domain,” Opt. Lett. 31, 3261–3263 (2006).
[CrossRef]

X. Peng, P. Zhang, and L. L. Cai, “Information security system based on virtual-optics imaging methodology and public key infrastructure,” Optik 115, 420–426 (2004).
[CrossRef]

Qin, W.

W. Qin, X. Peng, and X. Meng, “Cryptanalysis of optical encryption schemes based on joint transform correlator architecture,” Opt. Eng. 50, 028201 (2011).
[CrossRef]

W. Qin and X. Peng, “Asymmetric cryptosystem based on phase-truncated Fourier transforms,” Opt. Lett. 35, 118–120 (2010).
[CrossRef]

W. He, X. Peng, W. Qin, and X. Meng, “The keyed optical Hash function based on cascaded phase-truncated Fourier transforms,” Opt. Commun. 283, 2328–2332 (2010).
[CrossRef]

Refregier, P.

Rivest, R. L.

R. L. Rivest, “The MD5 message digest algorithm,” (1992).

Rosen, J.

D. Abookasis, O. Arazi, J. Rosen, and B. Javidi, “Security optical systems based on a joint transform correlator with significant output images,” Opt. Eng. 40, 1584–1589 (2001).
[CrossRef]

Schneier, B.

B. Schneier and P. Sutherland, Applied Cryptography: Protocols, Algorithms, and Source Code in C (Wiley, 1995).

Sergent, A.

B. Javidi and A. Sergent, “Fully phase encoded key and biometrics for security verification,” Opt. Eng. 36, 935–942 (1997).
[CrossRef]

Sheridan, J. T.

Singh, K.

P. Kumar, J. Joseph, and K. Singh, “Known-plaintext attack-free double random phase-amplitude optical encryption: vulnerability to impulse function attack,” J. Opt. 14, 045401 (2012).
[CrossRef]

P. Kumar, J. Joseph, and K. Singh, “Optical image encryption using a jigsaw transform for silhouette removal in interference-based methods and decryption with a single spatial light modulator,” Appl. Opt. 50, 1805–1811 (2011).
[CrossRef]

Sutherland, P.

B. Schneier and P. Sutherland, Applied Cryptography: Protocols, Algorithms, and Source Code in C (Wiley, 1995).

Tebaldi, M.

J. F. Barrera, C. Vargas, M. Tebaldi, and R. Torroba, “Chosen-plaintext attack on a joint transform correlator encrypting system,” Opt. Commun. 283, 3917–3921 (2010).
[CrossRef]

Torroba, R.

J. F. Barrera, C. Vargas, M. Tebaldi, and R. Torroba, “Chosen-plaintext attack on a joint transform correlator encrypting system,” Opt. Commun. 283, 3917–3921 (2010).
[CrossRef]

Vargas, C.

J. F. Barrera, C. Vargas, M. Tebaldi, and R. Torroba, “Chosen-plaintext attack on a joint transform correlator encrypting system,” Opt. Commun. 283, 3917–3921 (2010).
[CrossRef]

Wang, B.

Wang, Y.

D. Xiao, X. F. Liao, and Y. Wang, “Parallel keyed Hash function construction based on chaotic neural network,” Neurocomputing 72, 2288–2296 (2009).
[CrossRef]

Y. Wang, X. F. Liao, D. Xiao, and K. W. Wong, “One-way Hash function construction based on 2D coupled map lattices,” Inform. Sci. 178, 1391–1406 (2008).
[CrossRef]

Wang, Y. R.

X. F. Meng, X. Peng, L. Z. Cai, A. M. Li, Z. Gao, and Y. R. Wang, “Cryptosystem based on two-step phase-shifting interferometry and the RSA public-key encryption algorithm,” Pure Appl. Opt. 11, 085402 (2009).
[CrossRef]

Wei, H.

Wei, H. Z.

Wong, K. W.

Y. Wang, X. F. Liao, D. Xiao, and K. W. Wong, “One-way Hash function construction based on 2D coupled map lattices,” Inform. Sci. 178, 1391–1406 (2008).
[CrossRef]

Xiao, D.

D. Xiao, X. F. Liao, and Y. Wang, “Parallel keyed Hash function construction based on chaotic neural network,” Neurocomputing 72, 2288–2296 (2009).
[CrossRef]

Y. Wang, X. F. Liao, D. Xiao, and K. W. Wong, “One-way Hash function construction based on 2D coupled map lattices,” Inform. Sci. 178, 1391–1406 (2008).
[CrossRef]

Yahyaoui, H.

A. Kanso, H. Yahyaoui, and M. Almull, “Keyed Hash function based on a chaotic map,” Inform. Sci. 186, 249–264 (2012).
[CrossRef]

Yang, X. L.

Yu, B.

Yuan, S.

Zhang, P.

X. Peng, H. Z. Wei, and P. Zhang, “Chosen plaintext attack on double random-phase encoding in the Fresnel domain,” Acta Phys. Sin. 56, 3924–3930 (2007).

X. Peng, P. Zhang, H. Z. Wei, and B. Yu, “Known-plaintext attack on optical encryption based on double random phase keys,” Opt. Lett. 31, 1044–1046 (2006).
[CrossRef]

X. Peng, H. Wei, and P. Zhang, “Asymmetric cryptography based on wavefront sensing,” Opt. Lett. 31, 3579–3581 (2006).
[CrossRef]

X. Peng, H. Z. Wei, and P. Zhang, “Chosen-plaintext attack on lensless double-random phase encoding in the Fresnel domain,” Opt. Lett. 31, 3261–3263 (2006).
[CrossRef]

X. Peng, P. Zhang, and L. L. Cai, “Information security system based on virtual-optics imaging methodology and public key infrastructure,” Optik 115, 420–426 (2004).
[CrossRef]

Zhang, Y.

Zhou, X.

Acta Phys. Sin. (1)

X. Peng, H. Z. Wei, and P. Zhang, “Chosen plaintext attack on double random-phase encoding in the Fresnel domain,” Acta Phys. Sin. 56, 3924–3930 (2007).

Adv. Opt. Photon. (1)

Appl. Opt. (2)

Commun. Nonlinear Sci. Numer. Simul. (1)

A. Kanso and M. Ghebleh, “A fast and efficient chaos-based keyed Hash function,” Commun. Nonlinear Sci. Numer. Simul. 18, 109–123 (2013).
[CrossRef]

Inform. Sci. (2)

Y. Wang, X. F. Liao, D. Xiao, and K. W. Wong, “One-way Hash function construction based on 2D coupled map lattices,” Inform. Sci. 178, 1391–1406 (2008).
[CrossRef]

A. Kanso, H. Yahyaoui, and M. Almull, “Keyed Hash function based on a chaotic map,” Inform. Sci. 186, 249–264 (2012).
[CrossRef]

J. Opt. (1)

P. Kumar, J. Joseph, and K. Singh, “Known-plaintext attack-free double random phase-amplitude optical encryption: vulnerability to impulse function attack,” J. Opt. 14, 045401 (2012).
[CrossRef]

Neurocomputing (1)

D. Xiao, X. F. Liao, and Y. Wang, “Parallel keyed Hash function construction based on chaotic neural network,” Neurocomputing 72, 2288–2296 (2009).
[CrossRef]

Opt. Commun. (2)

W. He, X. Peng, W. Qin, and X. Meng, “The keyed optical Hash function based on cascaded phase-truncated Fourier transforms,” Opt. Commun. 283, 2328–2332 (2010).
[CrossRef]

J. F. Barrera, C. Vargas, M. Tebaldi, and R. Torroba, “Chosen-plaintext attack on a joint transform correlator encrypting system,” Opt. Commun. 283, 3917–3921 (2010).
[CrossRef]

Opt. Eng. (5)

W. Qin, X. Peng, and X. Meng, “Cryptanalysis of optical encryption schemes based on joint transform correlator architecture,” Opt. Eng. 50, 028201 (2011).
[CrossRef]

B. Javidi and J. L. Horner, “Optical-pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994).
[CrossRef]

B. Javidi and A. Sergent, “Fully phase encoded key and biometrics for security verification,” Opt. Eng. 36, 935–942 (1997).
[CrossRef]

D. Abookasis, O. Arazi, J. Rosen, and B. Javidi, “Security optical systems based on a joint transform correlator with significant output images,” Opt. Eng. 40, 1584–1589 (2001).
[CrossRef]

J. W. Han and C. S. Park, “Optical image encryption based on XOR operations,” Opt. Eng. 38, 47–54 (1999).
[CrossRef]

Opt. Express (2)

Opt. Lett. (8)

Optik (1)

X. Peng, P. Zhang, and L. L. Cai, “Information security system based on virtual-optics imaging methodology and public key infrastructure,” Optik 115, 420–426 (2004).
[CrossRef]

Pure Appl. Opt. (1)

X. F. Meng, X. Peng, L. Z. Cai, A. M. Li, Z. Gao, and Y. R. Wang, “Cryptosystem based on two-step phase-shifting interferometry and the RSA public-key encryption algorithm,” Pure Appl. Opt. 11, 085402 (2009).
[CrossRef]

Other (3)

R. L. Rivest, “The MD5 message digest algorithm,” (1992).

B. Schneier and P. Sutherland, Applied Cryptography: Protocols, Algorithms, and Source Code in C (Wiley, 1995).

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic of the Hash function.

Fig. 2.
Fig. 2.

Optoelectronic architecture of realizing the CF based on two-beam interference.

Fig. 3.
Fig. 3.

Precoding process for the message.

Fig. 4.
Fig. 4.

Flowchart for creating pseudo-random image.

Fig. 5.
Fig. 5.

Procedure of cascaded compression.

Fig. 6.
Fig. 6.

Flowchart of cascade compression.

Fig. 7.
Fig. 7.

Relative positions of microlens array and subimages written on SLM.

Fig. 8.
Fig. 8.

Optical realization of output transformation.

Fig. 9.
Fig. 9.

Whole procedure for constructing the Hash function.

Fig. 10.
Fig. 10.

Flowchart of modifying the bit of message.

Fig. 11.
Fig. 11.

Distribution of values of Bi in tests for the messages with (a) 10, (b) 100, and (c) 1000 kb.

Tables (2)

Tables Icon

Table 1. Result of Testing Avalanche Effect

Tables Icon

Table 2. Comparison with MD5 and SHA-1

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

o(m,n)=M0*h(x,y,l)+M1*h(x,y,l),
h(x,y,l)=exp(i2πl/λ)ilλexp[iπlλ(x2+y2)].
H1=Q148{Q14(|o(m,n)|2)},
H1=f[M0,M1]=Q148{Q14(|o(m,n)|2)}.
H2=f[H1,M2].
Cn(u,v)=exp[ik2f(u2+v2)]iλf,×++cn(x,y)exp[i2πλf(xu+yv)]dxdy,
|Cn(u,v)|2=|++cn(x,y)exp[i2πλf(xu+yv)]dxdyiλf|2.
Bi=diff(hash,hash),
B¯=1Ni=1NBi,
P=(B¯/128)×100%,
ΔB=[1N1i=1N(BiB¯)2]1/2,
ΔP=[1N1i=1N(Bi/128P)2]1/2×100%.

Metrics