Abstract

We present a simple, reliable, and nondestructive method for the measurement of vacuum pressure in a magneto-optical trap. The vacuum pressure is verified to be proportional to the collision rate constant between cold atoms and the background gas with a coefficient k, which can be calculated by means of the simple ideal gas law. The rate constant for loss due to collisions with all background gases can be derived from the total collision loss rate by a series of loading curves of cold atoms under different trapping laser intensities. The presented method is also applicable for other cold atomic systems and meets the miniaturization requirement of commercial applications.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Perrin, P. Lemonde, F. P. dos Santos, V. Josse, B. L. Tolra, F. Chevy, and D. Comparat, “Application of lasers to ultra-cold atoms and molecules,” C.R. Phys. 12, 417–432 (2011).
    [CrossRef]
  2. E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
    [CrossRef]
  3. J. J. McClelland and J. L. Hanssen, “Laser cooling without repumping: a magneto-optical trap for erbium atoms,” Phys. Rev. Lett. 96, 143005 (2006).
    [CrossRef]
  4. C. R. Tilford, “Pressure and vacuum measurements,” in Physical Methods of Chemistry, B. W. Rossiter and R. C. Baetzold, eds., 2nd ed. (Wiley, 1992), Vol. VI, Chap. 2.
  5. J. M. Lafferty, ed., Foundations of Vacuum Science and Technology (Wiley, 1998).
  6. P. A. Redhead, “Measurement of residual currents in ionization gauges and residual gas analyzers,” J. Vac. Sci. Technol. A 10, 2665–2673 (1992).
    [CrossRef]
  7. A. Roth, Vacuum Technology, 3rd ed. (Elsevier North Holland, 1996).
  8. A. Cable, M. Prentiss, and N. P. Bigelow, “Observations of sodium atoms in a magnetic molasses trap loaded by a continuous uncooled source,” Opt. Lett. 15, 507–509 (1990).
    [CrossRef]
  9. M. H. Anderson, W. Petrich, J. R. Ensher, and E. A. Cornell, “Reduction of light assisted collisional loss rate from a low pressure vapor-cell trap,” Phys. Rev. A 50, R3597–R3600 (1994).
    [CrossRef]
  10. P. A. Willems and K. G. Libbrecht, “Creating long-lived neutral atom traps in a cryogenic environment,” Phys. Rev. A 51, 1403–1406 (1995).
    [CrossRef]
  11. T. Arpornthip, C. A. Sackett, and K. J. Hughes, “Vacuum pressure measurement using a magneto-optical trap,” Phys. Rev. A 85, 033420 (2012).
    [CrossRef]
  12. D. W. Sesko, T. G. Walker, and C. E. Wieman, “Behavior of neutral atoms in a spontaneous force trap,” J. Opt. Soc. Am. B 8, 946–958 (1991).
    [CrossRef]
  13. K. R. Overstreet, P. Zabawa, J. Tallant, A. Schwettmann, and J. P. Shaffer, “Multiple scattering and the density distribution of a Cs MOT,” Opt. Express 13, 9672–9682 (2005).
    [CrossRef]
  14. L. Marcassa, V. Bagnato, Y. Wang, C. Tsao, J. Weiner, O. Dulieu, Y. B. Band, and P. S. Julienne, “Collisional loss rate in a magneto-optical trap for sodium atoms: light intensity dependence,” Phys. Rev. A 47, R4563–R4566 (1993).
    [CrossRef]
  15. D. E. Fagnan, J. Wang, C. Zhu, P. Djuricanin, B. G. Klappauf, J. L. Booth, and K. W. Madison, “Observation of quantum diffractive collisions using shallow atomic traps,” Phys. Rev. A 80, 022712 (2009).
    [CrossRef]
  16. J. Van Dongen, C. Zhu, D. Clement, G. Dufour, J. L. Booth, and K. W. Madison, “Trap depth determination from residual gas collisions,” Phys. Rev. A 84, 022708 (2011).
    [CrossRef]
  17. M. Haw, N. Evetts, W. Gunton, J. Van Dongen, J. L. Booth, and K. W. Madison, “Magneto-optical trap loading rate dependence on trap depth and vapor density,” J. Opt. Soc. Am. B 29, 475–483 (2012).
    [CrossRef]
  18. J. E. Bjorkholm, “Collision-limited lifetimes of atom traps,” Phys. Rev. A 38, 1599–1600 (1988).
    [CrossRef]
  19. M. G. Prentiss, A. E. Cable, J. E. Bjorkholm, S. Chu, E. L. Raab, and D. E. Pritchard, “Atomic-density-dependent losses in an optical trap,” Opt. Lett. 13, 452–454 (1988).
    [CrossRef]
  20. J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, “Experiments and theory in cold and ultracold collisions,” Rev. Mod. Phys. 71, 1–85 (1999).
    [CrossRef]
  21. S. Bali, K. M. O’Hara, M. E. Gehm, S. R. Granade, and J. E. Thomas, “Quantum-diffractive background gas collisions in atom-trap heating and loss,” Phys. Rev. A 60, R29–R32 (1999).
    [CrossRef]
  22. H. Margenau and N. R. Kestner, Theory of Intermolecular Forces (Pergamon, 1969).
  23. T. M. Miller and B. Bederson, “Atomic and molecular polarizabilities—a review of recent advances,” in Advances in Atomic and Molecular Physics, D. Bates and B. Bederson, eds. (Academic, 1977), Vol. 13, pp. 1–55.
  24. Z. H. Ji, H. S. Zhang, J. Z. Wu, J. P. Yuan, Y. G. Yang, Y. T. Zhao, J. Ma, L. R. Wang, L. T. Xiao, and S. T. Jia, “Photoassociative formation of ultracold RbCs molecules in the (2)3Π state,” Phys. Rev. A 85, 013401 (2012).
    [CrossRef]

2012 (3)

T. Arpornthip, C. A. Sackett, and K. J. Hughes, “Vacuum pressure measurement using a magneto-optical trap,” Phys. Rev. A 85, 033420 (2012).
[CrossRef]

Z. H. Ji, H. S. Zhang, J. Z. Wu, J. P. Yuan, Y. G. Yang, Y. T. Zhao, J. Ma, L. R. Wang, L. T. Xiao, and S. T. Jia, “Photoassociative formation of ultracold RbCs molecules in the (2)3Π state,” Phys. Rev. A 85, 013401 (2012).
[CrossRef]

M. Haw, N. Evetts, W. Gunton, J. Van Dongen, J. L. Booth, and K. W. Madison, “Magneto-optical trap loading rate dependence on trap depth and vapor density,” J. Opt. Soc. Am. B 29, 475–483 (2012).
[CrossRef]

2011 (2)

J. Van Dongen, C. Zhu, D. Clement, G. Dufour, J. L. Booth, and K. W. Madison, “Trap depth determination from residual gas collisions,” Phys. Rev. A 84, 022708 (2011).
[CrossRef]

H. Perrin, P. Lemonde, F. P. dos Santos, V. Josse, B. L. Tolra, F. Chevy, and D. Comparat, “Application of lasers to ultra-cold atoms and molecules,” C.R. Phys. 12, 417–432 (2011).
[CrossRef]

2009 (1)

D. E. Fagnan, J. Wang, C. Zhu, P. Djuricanin, B. G. Klappauf, J. L. Booth, and K. W. Madison, “Observation of quantum diffractive collisions using shallow atomic traps,” Phys. Rev. A 80, 022712 (2009).
[CrossRef]

2006 (1)

J. J. McClelland and J. L. Hanssen, “Laser cooling without repumping: a magneto-optical trap for erbium atoms,” Phys. Rev. Lett. 96, 143005 (2006).
[CrossRef]

2005 (1)

1999 (2)

J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, “Experiments and theory in cold and ultracold collisions,” Rev. Mod. Phys. 71, 1–85 (1999).
[CrossRef]

S. Bali, K. M. O’Hara, M. E. Gehm, S. R. Granade, and J. E. Thomas, “Quantum-diffractive background gas collisions in atom-trap heating and loss,” Phys. Rev. A 60, R29–R32 (1999).
[CrossRef]

1995 (1)

P. A. Willems and K. G. Libbrecht, “Creating long-lived neutral atom traps in a cryogenic environment,” Phys. Rev. A 51, 1403–1406 (1995).
[CrossRef]

1994 (1)

M. H. Anderson, W. Petrich, J. R. Ensher, and E. A. Cornell, “Reduction of light assisted collisional loss rate from a low pressure vapor-cell trap,” Phys. Rev. A 50, R3597–R3600 (1994).
[CrossRef]

1993 (1)

L. Marcassa, V. Bagnato, Y. Wang, C. Tsao, J. Weiner, O. Dulieu, Y. B. Band, and P. S. Julienne, “Collisional loss rate in a magneto-optical trap for sodium atoms: light intensity dependence,” Phys. Rev. A 47, R4563–R4566 (1993).
[CrossRef]

1992 (1)

P. A. Redhead, “Measurement of residual currents in ionization gauges and residual gas analyzers,” J. Vac. Sci. Technol. A 10, 2665–2673 (1992).
[CrossRef]

1991 (1)

1990 (1)

1988 (2)

1987 (1)

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef]

Anderson, M. H.

M. H. Anderson, W. Petrich, J. R. Ensher, and E. A. Cornell, “Reduction of light assisted collisional loss rate from a low pressure vapor-cell trap,” Phys. Rev. A 50, R3597–R3600 (1994).
[CrossRef]

Arpornthip, T.

T. Arpornthip, C. A. Sackett, and K. J. Hughes, “Vacuum pressure measurement using a magneto-optical trap,” Phys. Rev. A 85, 033420 (2012).
[CrossRef]

Bagnato, V.

L. Marcassa, V. Bagnato, Y. Wang, C. Tsao, J. Weiner, O. Dulieu, Y. B. Band, and P. S. Julienne, “Collisional loss rate in a magneto-optical trap for sodium atoms: light intensity dependence,” Phys. Rev. A 47, R4563–R4566 (1993).
[CrossRef]

Bagnato, V. S.

J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, “Experiments and theory in cold and ultracold collisions,” Rev. Mod. Phys. 71, 1–85 (1999).
[CrossRef]

Bali, S.

S. Bali, K. M. O’Hara, M. E. Gehm, S. R. Granade, and J. E. Thomas, “Quantum-diffractive background gas collisions in atom-trap heating and loss,” Phys. Rev. A 60, R29–R32 (1999).
[CrossRef]

Band, Y. B.

L. Marcassa, V. Bagnato, Y. Wang, C. Tsao, J. Weiner, O. Dulieu, Y. B. Band, and P. S. Julienne, “Collisional loss rate in a magneto-optical trap for sodium atoms: light intensity dependence,” Phys. Rev. A 47, R4563–R4566 (1993).
[CrossRef]

Bederson, B.

T. M. Miller and B. Bederson, “Atomic and molecular polarizabilities—a review of recent advances,” in Advances in Atomic and Molecular Physics, D. Bates and B. Bederson, eds. (Academic, 1977), Vol. 13, pp. 1–55.

Bigelow, N. P.

Bjorkholm, J. E.

Booth, J. L.

M. Haw, N. Evetts, W. Gunton, J. Van Dongen, J. L. Booth, and K. W. Madison, “Magneto-optical trap loading rate dependence on trap depth and vapor density,” J. Opt. Soc. Am. B 29, 475–483 (2012).
[CrossRef]

J. Van Dongen, C. Zhu, D. Clement, G. Dufour, J. L. Booth, and K. W. Madison, “Trap depth determination from residual gas collisions,” Phys. Rev. A 84, 022708 (2011).
[CrossRef]

D. E. Fagnan, J. Wang, C. Zhu, P. Djuricanin, B. G. Klappauf, J. L. Booth, and K. W. Madison, “Observation of quantum diffractive collisions using shallow atomic traps,” Phys. Rev. A 80, 022712 (2009).
[CrossRef]

Cable, A.

A. Cable, M. Prentiss, and N. P. Bigelow, “Observations of sodium atoms in a magnetic molasses trap loaded by a continuous uncooled source,” Opt. Lett. 15, 507–509 (1990).
[CrossRef]

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef]

Cable, A. E.

Chevy, F.

H. Perrin, P. Lemonde, F. P. dos Santos, V. Josse, B. L. Tolra, F. Chevy, and D. Comparat, “Application of lasers to ultra-cold atoms and molecules,” C.R. Phys. 12, 417–432 (2011).
[CrossRef]

Chu, S.

M. G. Prentiss, A. E. Cable, J. E. Bjorkholm, S. Chu, E. L. Raab, and D. E. Pritchard, “Atomic-density-dependent losses in an optical trap,” Opt. Lett. 13, 452–454 (1988).
[CrossRef]

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef]

Clement, D.

J. Van Dongen, C. Zhu, D. Clement, G. Dufour, J. L. Booth, and K. W. Madison, “Trap depth determination from residual gas collisions,” Phys. Rev. A 84, 022708 (2011).
[CrossRef]

Comparat, D.

H. Perrin, P. Lemonde, F. P. dos Santos, V. Josse, B. L. Tolra, F. Chevy, and D. Comparat, “Application of lasers to ultra-cold atoms and molecules,” C.R. Phys. 12, 417–432 (2011).
[CrossRef]

Cornell, E. A.

M. H. Anderson, W. Petrich, J. R. Ensher, and E. A. Cornell, “Reduction of light assisted collisional loss rate from a low pressure vapor-cell trap,” Phys. Rev. A 50, R3597–R3600 (1994).
[CrossRef]

Djuricanin, P.

D. E. Fagnan, J. Wang, C. Zhu, P. Djuricanin, B. G. Klappauf, J. L. Booth, and K. W. Madison, “Observation of quantum diffractive collisions using shallow atomic traps,” Phys. Rev. A 80, 022712 (2009).
[CrossRef]

dos Santos, F. P.

H. Perrin, P. Lemonde, F. P. dos Santos, V. Josse, B. L. Tolra, F. Chevy, and D. Comparat, “Application of lasers to ultra-cold atoms and molecules,” C.R. Phys. 12, 417–432 (2011).
[CrossRef]

Dufour, G.

J. Van Dongen, C. Zhu, D. Clement, G. Dufour, J. L. Booth, and K. W. Madison, “Trap depth determination from residual gas collisions,” Phys. Rev. A 84, 022708 (2011).
[CrossRef]

Dulieu, O.

L. Marcassa, V. Bagnato, Y. Wang, C. Tsao, J. Weiner, O. Dulieu, Y. B. Band, and P. S. Julienne, “Collisional loss rate in a magneto-optical trap for sodium atoms: light intensity dependence,” Phys. Rev. A 47, R4563–R4566 (1993).
[CrossRef]

Ensher, J. R.

M. H. Anderson, W. Petrich, J. R. Ensher, and E. A. Cornell, “Reduction of light assisted collisional loss rate from a low pressure vapor-cell trap,” Phys. Rev. A 50, R3597–R3600 (1994).
[CrossRef]

Evetts, N.

Fagnan, D. E.

D. E. Fagnan, J. Wang, C. Zhu, P. Djuricanin, B. G. Klappauf, J. L. Booth, and K. W. Madison, “Observation of quantum diffractive collisions using shallow atomic traps,” Phys. Rev. A 80, 022712 (2009).
[CrossRef]

Gehm, M. E.

S. Bali, K. M. O’Hara, M. E. Gehm, S. R. Granade, and J. E. Thomas, “Quantum-diffractive background gas collisions in atom-trap heating and loss,” Phys. Rev. A 60, R29–R32 (1999).
[CrossRef]

Granade, S. R.

S. Bali, K. M. O’Hara, M. E. Gehm, S. R. Granade, and J. E. Thomas, “Quantum-diffractive background gas collisions in atom-trap heating and loss,” Phys. Rev. A 60, R29–R32 (1999).
[CrossRef]

Gunton, W.

Hanssen, J. L.

J. J. McClelland and J. L. Hanssen, “Laser cooling without repumping: a magneto-optical trap for erbium atoms,” Phys. Rev. Lett. 96, 143005 (2006).
[CrossRef]

Haw, M.

Hughes, K. J.

T. Arpornthip, C. A. Sackett, and K. J. Hughes, “Vacuum pressure measurement using a magneto-optical trap,” Phys. Rev. A 85, 033420 (2012).
[CrossRef]

Ji, Z. H.

Z. H. Ji, H. S. Zhang, J. Z. Wu, J. P. Yuan, Y. G. Yang, Y. T. Zhao, J. Ma, L. R. Wang, L. T. Xiao, and S. T. Jia, “Photoassociative formation of ultracold RbCs molecules in the (2)3Π state,” Phys. Rev. A 85, 013401 (2012).
[CrossRef]

Jia, S. T.

Z. H. Ji, H. S. Zhang, J. Z. Wu, J. P. Yuan, Y. G. Yang, Y. T. Zhao, J. Ma, L. R. Wang, L. T. Xiao, and S. T. Jia, “Photoassociative formation of ultracold RbCs molecules in the (2)3Π state,” Phys. Rev. A 85, 013401 (2012).
[CrossRef]

Josse, V.

H. Perrin, P. Lemonde, F. P. dos Santos, V. Josse, B. L. Tolra, F. Chevy, and D. Comparat, “Application of lasers to ultra-cold atoms and molecules,” C.R. Phys. 12, 417–432 (2011).
[CrossRef]

Julienne, P. S.

J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, “Experiments and theory in cold and ultracold collisions,” Rev. Mod. Phys. 71, 1–85 (1999).
[CrossRef]

L. Marcassa, V. Bagnato, Y. Wang, C. Tsao, J. Weiner, O. Dulieu, Y. B. Band, and P. S. Julienne, “Collisional loss rate in a magneto-optical trap for sodium atoms: light intensity dependence,” Phys. Rev. A 47, R4563–R4566 (1993).
[CrossRef]

Kestner, N. R.

H. Margenau and N. R. Kestner, Theory of Intermolecular Forces (Pergamon, 1969).

Klappauf, B. G.

D. E. Fagnan, J. Wang, C. Zhu, P. Djuricanin, B. G. Klappauf, J. L. Booth, and K. W. Madison, “Observation of quantum diffractive collisions using shallow atomic traps,” Phys. Rev. A 80, 022712 (2009).
[CrossRef]

Lemonde, P.

H. Perrin, P. Lemonde, F. P. dos Santos, V. Josse, B. L. Tolra, F. Chevy, and D. Comparat, “Application of lasers to ultra-cold atoms and molecules,” C.R. Phys. 12, 417–432 (2011).
[CrossRef]

Libbrecht, K. G.

P. A. Willems and K. G. Libbrecht, “Creating long-lived neutral atom traps in a cryogenic environment,” Phys. Rev. A 51, 1403–1406 (1995).
[CrossRef]

Ma, J.

Z. H. Ji, H. S. Zhang, J. Z. Wu, J. P. Yuan, Y. G. Yang, Y. T. Zhao, J. Ma, L. R. Wang, L. T. Xiao, and S. T. Jia, “Photoassociative formation of ultracold RbCs molecules in the (2)3Π state,” Phys. Rev. A 85, 013401 (2012).
[CrossRef]

Madison, K. W.

M. Haw, N. Evetts, W. Gunton, J. Van Dongen, J. L. Booth, and K. W. Madison, “Magneto-optical trap loading rate dependence on trap depth and vapor density,” J. Opt. Soc. Am. B 29, 475–483 (2012).
[CrossRef]

J. Van Dongen, C. Zhu, D. Clement, G. Dufour, J. L. Booth, and K. W. Madison, “Trap depth determination from residual gas collisions,” Phys. Rev. A 84, 022708 (2011).
[CrossRef]

D. E. Fagnan, J. Wang, C. Zhu, P. Djuricanin, B. G. Klappauf, J. L. Booth, and K. W. Madison, “Observation of quantum diffractive collisions using shallow atomic traps,” Phys. Rev. A 80, 022712 (2009).
[CrossRef]

Marcassa, L.

L. Marcassa, V. Bagnato, Y. Wang, C. Tsao, J. Weiner, O. Dulieu, Y. B. Band, and P. S. Julienne, “Collisional loss rate in a magneto-optical trap for sodium atoms: light intensity dependence,” Phys. Rev. A 47, R4563–R4566 (1993).
[CrossRef]

Margenau, H.

H. Margenau and N. R. Kestner, Theory of Intermolecular Forces (Pergamon, 1969).

McClelland, J. J.

J. J. McClelland and J. L. Hanssen, “Laser cooling without repumping: a magneto-optical trap for erbium atoms,” Phys. Rev. Lett. 96, 143005 (2006).
[CrossRef]

Miller, T. M.

T. M. Miller and B. Bederson, “Atomic and molecular polarizabilities—a review of recent advances,” in Advances in Atomic and Molecular Physics, D. Bates and B. Bederson, eds. (Academic, 1977), Vol. 13, pp. 1–55.

O’Hara, K. M.

S. Bali, K. M. O’Hara, M. E. Gehm, S. R. Granade, and J. E. Thomas, “Quantum-diffractive background gas collisions in atom-trap heating and loss,” Phys. Rev. A 60, R29–R32 (1999).
[CrossRef]

Overstreet, K. R.

Perrin, H.

H. Perrin, P. Lemonde, F. P. dos Santos, V. Josse, B. L. Tolra, F. Chevy, and D. Comparat, “Application of lasers to ultra-cold atoms and molecules,” C.R. Phys. 12, 417–432 (2011).
[CrossRef]

Petrich, W.

M. H. Anderson, W. Petrich, J. R. Ensher, and E. A. Cornell, “Reduction of light assisted collisional loss rate from a low pressure vapor-cell trap,” Phys. Rev. A 50, R3597–R3600 (1994).
[CrossRef]

Prentiss, M.

A. Cable, M. Prentiss, and N. P. Bigelow, “Observations of sodium atoms in a magnetic molasses trap loaded by a continuous uncooled source,” Opt. Lett. 15, 507–509 (1990).
[CrossRef]

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef]

Prentiss, M. G.

Pritchard, D. E.

M. G. Prentiss, A. E. Cable, J. E. Bjorkholm, S. Chu, E. L. Raab, and D. E. Pritchard, “Atomic-density-dependent losses in an optical trap,” Opt. Lett. 13, 452–454 (1988).
[CrossRef]

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef]

Raab, E. L.

M. G. Prentiss, A. E. Cable, J. E. Bjorkholm, S. Chu, E. L. Raab, and D. E. Pritchard, “Atomic-density-dependent losses in an optical trap,” Opt. Lett. 13, 452–454 (1988).
[CrossRef]

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef]

Redhead, P. A.

P. A. Redhead, “Measurement of residual currents in ionization gauges and residual gas analyzers,” J. Vac. Sci. Technol. A 10, 2665–2673 (1992).
[CrossRef]

Roth, A.

A. Roth, Vacuum Technology, 3rd ed. (Elsevier North Holland, 1996).

Sackett, C. A.

T. Arpornthip, C. A. Sackett, and K. J. Hughes, “Vacuum pressure measurement using a magneto-optical trap,” Phys. Rev. A 85, 033420 (2012).
[CrossRef]

Schwettmann, A.

Sesko, D. W.

Shaffer, J. P.

Tallant, J.

Thomas, J. E.

S. Bali, K. M. O’Hara, M. E. Gehm, S. R. Granade, and J. E. Thomas, “Quantum-diffractive background gas collisions in atom-trap heating and loss,” Phys. Rev. A 60, R29–R32 (1999).
[CrossRef]

Tilford, C. R.

C. R. Tilford, “Pressure and vacuum measurements,” in Physical Methods of Chemistry, B. W. Rossiter and R. C. Baetzold, eds., 2nd ed. (Wiley, 1992), Vol. VI, Chap. 2.

Tolra, B. L.

H. Perrin, P. Lemonde, F. P. dos Santos, V. Josse, B. L. Tolra, F. Chevy, and D. Comparat, “Application of lasers to ultra-cold atoms and molecules,” C.R. Phys. 12, 417–432 (2011).
[CrossRef]

Tsao, C.

L. Marcassa, V. Bagnato, Y. Wang, C. Tsao, J. Weiner, O. Dulieu, Y. B. Band, and P. S. Julienne, “Collisional loss rate in a magneto-optical trap for sodium atoms: light intensity dependence,” Phys. Rev. A 47, R4563–R4566 (1993).
[CrossRef]

Van Dongen, J.

M. Haw, N. Evetts, W. Gunton, J. Van Dongen, J. L. Booth, and K. W. Madison, “Magneto-optical trap loading rate dependence on trap depth and vapor density,” J. Opt. Soc. Am. B 29, 475–483 (2012).
[CrossRef]

J. Van Dongen, C. Zhu, D. Clement, G. Dufour, J. L. Booth, and K. W. Madison, “Trap depth determination from residual gas collisions,” Phys. Rev. A 84, 022708 (2011).
[CrossRef]

Walker, T. G.

Wang, J.

D. E. Fagnan, J. Wang, C. Zhu, P. Djuricanin, B. G. Klappauf, J. L. Booth, and K. W. Madison, “Observation of quantum diffractive collisions using shallow atomic traps,” Phys. Rev. A 80, 022712 (2009).
[CrossRef]

Wang, L. R.

Z. H. Ji, H. S. Zhang, J. Z. Wu, J. P. Yuan, Y. G. Yang, Y. T. Zhao, J. Ma, L. R. Wang, L. T. Xiao, and S. T. Jia, “Photoassociative formation of ultracold RbCs molecules in the (2)3Π state,” Phys. Rev. A 85, 013401 (2012).
[CrossRef]

Wang, Y.

L. Marcassa, V. Bagnato, Y. Wang, C. Tsao, J. Weiner, O. Dulieu, Y. B. Band, and P. S. Julienne, “Collisional loss rate in a magneto-optical trap for sodium atoms: light intensity dependence,” Phys. Rev. A 47, R4563–R4566 (1993).
[CrossRef]

Weiner, J.

J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, “Experiments and theory in cold and ultracold collisions,” Rev. Mod. Phys. 71, 1–85 (1999).
[CrossRef]

L. Marcassa, V. Bagnato, Y. Wang, C. Tsao, J. Weiner, O. Dulieu, Y. B. Band, and P. S. Julienne, “Collisional loss rate in a magneto-optical trap for sodium atoms: light intensity dependence,” Phys. Rev. A 47, R4563–R4566 (1993).
[CrossRef]

Wieman, C. E.

Willems, P. A.

P. A. Willems and K. G. Libbrecht, “Creating long-lived neutral atom traps in a cryogenic environment,” Phys. Rev. A 51, 1403–1406 (1995).
[CrossRef]

Wu, J. Z.

Z. H. Ji, H. S. Zhang, J. Z. Wu, J. P. Yuan, Y. G. Yang, Y. T. Zhao, J. Ma, L. R. Wang, L. T. Xiao, and S. T. Jia, “Photoassociative formation of ultracold RbCs molecules in the (2)3Π state,” Phys. Rev. A 85, 013401 (2012).
[CrossRef]

Xiao, L. T.

Z. H. Ji, H. S. Zhang, J. Z. Wu, J. P. Yuan, Y. G. Yang, Y. T. Zhao, J. Ma, L. R. Wang, L. T. Xiao, and S. T. Jia, “Photoassociative formation of ultracold RbCs molecules in the (2)3Π state,” Phys. Rev. A 85, 013401 (2012).
[CrossRef]

Yang, Y. G.

Z. H. Ji, H. S. Zhang, J. Z. Wu, J. P. Yuan, Y. G. Yang, Y. T. Zhao, J. Ma, L. R. Wang, L. T. Xiao, and S. T. Jia, “Photoassociative formation of ultracold RbCs molecules in the (2)3Π state,” Phys. Rev. A 85, 013401 (2012).
[CrossRef]

Yuan, J. P.

Z. H. Ji, H. S. Zhang, J. Z. Wu, J. P. Yuan, Y. G. Yang, Y. T. Zhao, J. Ma, L. R. Wang, L. T. Xiao, and S. T. Jia, “Photoassociative formation of ultracold RbCs molecules in the (2)3Π state,” Phys. Rev. A 85, 013401 (2012).
[CrossRef]

Zabawa, P.

Zhang, H. S.

Z. H. Ji, H. S. Zhang, J. Z. Wu, J. P. Yuan, Y. G. Yang, Y. T. Zhao, J. Ma, L. R. Wang, L. T. Xiao, and S. T. Jia, “Photoassociative formation of ultracold RbCs molecules in the (2)3Π state,” Phys. Rev. A 85, 013401 (2012).
[CrossRef]

Zhao, Y. T.

Z. H. Ji, H. S. Zhang, J. Z. Wu, J. P. Yuan, Y. G. Yang, Y. T. Zhao, J. Ma, L. R. Wang, L. T. Xiao, and S. T. Jia, “Photoassociative formation of ultracold RbCs molecules in the (2)3Π state,” Phys. Rev. A 85, 013401 (2012).
[CrossRef]

Zhu, C.

J. Van Dongen, C. Zhu, D. Clement, G. Dufour, J. L. Booth, and K. W. Madison, “Trap depth determination from residual gas collisions,” Phys. Rev. A 84, 022708 (2011).
[CrossRef]

D. E. Fagnan, J. Wang, C. Zhu, P. Djuricanin, B. G. Klappauf, J. L. Booth, and K. W. Madison, “Observation of quantum diffractive collisions using shallow atomic traps,” Phys. Rev. A 80, 022712 (2009).
[CrossRef]

Zilio, S.

J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, “Experiments and theory in cold and ultracold collisions,” Rev. Mod. Phys. 71, 1–85 (1999).
[CrossRef]

C.R. Phys. (1)

H. Perrin, P. Lemonde, F. P. dos Santos, V. Josse, B. L. Tolra, F. Chevy, and D. Comparat, “Application of lasers to ultra-cold atoms and molecules,” C.R. Phys. 12, 417–432 (2011).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Vac. Sci. Technol. A (1)

P. A. Redhead, “Measurement of residual currents in ionization gauges and residual gas analyzers,” J. Vac. Sci. Technol. A 10, 2665–2673 (1992).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (9)

Z. H. Ji, H. S. Zhang, J. Z. Wu, J. P. Yuan, Y. G. Yang, Y. T. Zhao, J. Ma, L. R. Wang, L. T. Xiao, and S. T. Jia, “Photoassociative formation of ultracold RbCs molecules in the (2)3Π state,” Phys. Rev. A 85, 013401 (2012).
[CrossRef]

J. E. Bjorkholm, “Collision-limited lifetimes of atom traps,” Phys. Rev. A 38, 1599–1600 (1988).
[CrossRef]

S. Bali, K. M. O’Hara, M. E. Gehm, S. R. Granade, and J. E. Thomas, “Quantum-diffractive background gas collisions in atom-trap heating and loss,” Phys. Rev. A 60, R29–R32 (1999).
[CrossRef]

M. H. Anderson, W. Petrich, J. R. Ensher, and E. A. Cornell, “Reduction of light assisted collisional loss rate from a low pressure vapor-cell trap,” Phys. Rev. A 50, R3597–R3600 (1994).
[CrossRef]

P. A. Willems and K. G. Libbrecht, “Creating long-lived neutral atom traps in a cryogenic environment,” Phys. Rev. A 51, 1403–1406 (1995).
[CrossRef]

T. Arpornthip, C. A. Sackett, and K. J. Hughes, “Vacuum pressure measurement using a magneto-optical trap,” Phys. Rev. A 85, 033420 (2012).
[CrossRef]

L. Marcassa, V. Bagnato, Y. Wang, C. Tsao, J. Weiner, O. Dulieu, Y. B. Band, and P. S. Julienne, “Collisional loss rate in a magneto-optical trap for sodium atoms: light intensity dependence,” Phys. Rev. A 47, R4563–R4566 (1993).
[CrossRef]

D. E. Fagnan, J. Wang, C. Zhu, P. Djuricanin, B. G. Klappauf, J. L. Booth, and K. W. Madison, “Observation of quantum diffractive collisions using shallow atomic traps,” Phys. Rev. A 80, 022712 (2009).
[CrossRef]

J. Van Dongen, C. Zhu, D. Clement, G. Dufour, J. L. Booth, and K. W. Madison, “Trap depth determination from residual gas collisions,” Phys. Rev. A 84, 022708 (2011).
[CrossRef]

Phys. Rev. Lett. (2)

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef]

J. J. McClelland and J. L. Hanssen, “Laser cooling without repumping: a magneto-optical trap for erbium atoms,” Phys. Rev. Lett. 96, 143005 (2006).
[CrossRef]

Rev. Mod. Phys. (1)

J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, “Experiments and theory in cold and ultracold collisions,” Rev. Mod. Phys. 71, 1–85 (1999).
[CrossRef]

Other (5)

C. R. Tilford, “Pressure and vacuum measurements,” in Physical Methods of Chemistry, B. W. Rossiter and R. C. Baetzold, eds., 2nd ed. (Wiley, 1992), Vol. VI, Chap. 2.

J. M. Lafferty, ed., Foundations of Vacuum Science and Technology (Wiley, 1998).

H. Margenau and N. R. Kestner, Theory of Intermolecular Forces (Pergamon, 1969).

T. M. Miller and B. Bederson, “Atomic and molecular polarizabilities—a review of recent advances,” in Advances in Atomic and Molecular Physics, D. Bates and B. Bederson, eds. (Academic, 1977), Vol. 13, pp. 1–55.

A. Roth, Vacuum Technology, 3rd ed. (Elsevier North Holland, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Typical MOT loading curve. Inset, logarithmic plot [ln(1NtΓ/R)] versus time.

Fig. 2.
Fig. 2.

Collision loss rate Γ as a function of the trapping laser intensity for each beam.

Fig. 3.
Fig. 3.

Rate constant for loss due to collisions with background gases γ as a function of vacuum pressure.

Fig. 4.
Fig. 4.

Proportional coefficient k as a function of (a) repumping laser intensity and (b) magnetic field gradient. Solid line, proportional coefficient k of our system with the value of 3.15×106Pa·s for Cs atoms.

Tables (1)

Tables Icon

Table 1. Calculated Proportional Coefficient k for Common Alkali Metals and Alkaline Earth Metalsa

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

dNdt=RγN(t)βn¯N(t),
N=RΓ(1eΓt),
γ=iniσivi,
σi=θ>θLdσdΩdΩ=θ>θL16(15π8cimivi2)1/3θ7/3=(15π46)1/3(miCi2m0EiD)1/6,
Ci=32e(4πε0)2me1/2α0αi(α0/ρ0)1/2+(αi/ρi)1/2,
Pi(kBT)2/36.8(Cimi)1/3(Dm0)1/6γi.
P=kγ.

Metrics