Abstract

Optical spectral analysis of closely spaced, subcarrier multiplexed fiber-optic transmission is performed, based on stimulated Brillouin scattering (SBS). The Brillouin gain window of a single, continuous-wave pump is scanned across the spectral extent of the signal under test. The polarization pulling effect associated with SBS is employed to improve the rejection ratio of the analysis by an order of magnitude. Ten tones, spaced by only 10 MHz and each carrying random-sequence on–off keying data, are clearly resolved. The measurement identifies the absence of a single subcarrier, directly in the optical domain. The results are applicable to the monitoring of optical orthogonal frequency domain multiplexing and radio over fiber transmission.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol. 27, 189–204 (2009).
    [CrossRef]
  2. A. J. Lowery, L. B. Du, and J. Armstrong, “Performance of optical OFDM in ultralong-haul WDM lightwave systems,” J. Lightwave Technol. 25, 131–138 (2007).
    [CrossRef]
  3. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
    [CrossRef]
  4. D. M. Baney, B. Szafraniec, and A. Motamedi, “Coherent optical spectrum analyzer,” IEEE Photon. Technol. Lett. 14, 355–357 (2002).
    [CrossRef]
  5. F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics 4, 853–857 (2010).
    [CrossRef]
  6. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  7. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  8. A. Boh Ruffin, “Stimulated Brillouin scattering: an overview of measurements, system impairments, and applications,” in Technical Digest: Symposium on Optical Fiber Measurements (2004), pp. 23–28.
  9. D. Cotter, “Observation of stimulated Brillouin scattering in low-loss silica fibre at 1.3 μm,” Electron. Lett. 18, 495–496 (1982).
    [CrossRef]
  10. A. Zadok, A. Eyal, and M. Tur, “GHz-wide optically reconfigurable filters using stimulated Brillouin scattering,” J. Lightwave Technol. 25, 2168–2174 (2007).
    [CrossRef]
  11. A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett. 18, 1744–1746 (2006).
    [CrossRef]
  12. T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2, pp. 352–354 (1990).
    [CrossRef]
  13. A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thevenaz, “Random-access distributed fiber sensing,” Laser Photon. Rev. 6, L1–L5 (2012).
    [CrossRef]
  14. A. Zadok, A. Eyal, and M. Tur, “Stimulated Brillouin scattering slow light in optical fibers,” Appl. Opt. 50, E38–E49 (2011).
    [CrossRef]
  15. S. P. Smith, F. Zarinetchi, and S. Ezekiel, “Narrow-linewidth stimulated Brillouin fiber laser and applications,” Opt. Lett. 16, 393–395 (1991).
    [CrossRef]
  16. S. Loranger, V. L. Iezzi, and R. Kashyap, “Demonstration of an ultra-high frequency picosecond pulse generator using an SBS frequency comb and self phase-locking,” Opt. Express 20, 19455–19462 (2012).
    [CrossRef]
  17. A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18, 208–210 (2006).
    [CrossRef]
  18. Y. Antman, N. Levanon, and A. Zadok, “Low-noise delays from dynamic Brillouin gratings based on perfect Golomb coding of pump waves,” Opt. Lett. 37, 5259–5261 (2012).
    [CrossRef]
  19. T. Schneider, “Wavelength and line width measurement of optical sources with femtometre resolution,” Electron. Lett. 41, 1234–1235 (2005).
    [CrossRef]
  20. J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 855–857 (2005).
    [CrossRef]
  21. S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Ultrahigh-resolution spectroscopy based on the bandwidth reduction of stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 23, 1118–1120 (2011).
    [CrossRef]
  22. A. Wiatrek, S. Preußler, K. Jamshidi, and T. Schneider, “Frequency domain aperture for ultra-high resolution Brillouin based spectroscopy,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (Optical Society of America, 2012), paper JW4A.63.
  23. M. O. van Deventer and J. Boot, “Polarization properties of stimulated Brillouin scattering in single mode fibers,” J. Lightwave Technol. 12, 585–590 (1994).
    [CrossRef]
  24. A. Galtarossa, L. Palmieri, M. Santagiustina, L. Schenato, and L. Ursini, “Polarized Brillouin amplification in randomly birefringent and unidirectionally spun fibers,” IEEE Photon. Technol. Lett. 20, 1420–1422 (2008).
    [CrossRef]
  25. A. Zadok, E. Zilka, A. Eyal, L. Thevenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16, 21692–21707 (2008).
    [CrossRef]
  26. S. Preussler, A. Zadok, A. Wiatrek, M. Tur, and T. Schneider, “Enhancement of spectral resolution and optical rejection ratio of Brillouin optical spectral analysis using polarization pulling,” Opt. Express 20, 14734–14745 (2012).
    [CrossRef]
  27. A. Wise, M. Tur, and A. Zadok, “Sharp tunable optical filters based on the polarization attributes of stimulated Brillouin scattering,” Opt. Express 19, 21945–21955 (2011).
    [CrossRef]
  28. B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13, 666–674 (2005).
    [CrossRef]

2012 (4)

2011 (3)

2010 (1)

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics 4, 853–857 (2010).
[CrossRef]

2009 (1)

2008 (2)

A. Galtarossa, L. Palmieri, M. Santagiustina, L. Schenato, and L. Ursini, “Polarized Brillouin amplification in randomly birefringent and unidirectionally spun fibers,” IEEE Photon. Technol. Lett. 20, 1420–1422 (2008).
[CrossRef]

A. Zadok, E. Zilka, A. Eyal, L. Thevenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16, 21692–21707 (2008).
[CrossRef]

2007 (3)

2006 (2)

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett. 18, 1744–1746 (2006).
[CrossRef]

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18, 208–210 (2006).
[CrossRef]

2005 (3)

B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13, 666–674 (2005).
[CrossRef]

T. Schneider, “Wavelength and line width measurement of optical sources with femtometre resolution,” Electron. Lett. 41, 1234–1235 (2005).
[CrossRef]

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 855–857 (2005).
[CrossRef]

2002 (1)

D. M. Baney, B. Szafraniec, and A. Motamedi, “Coherent optical spectrum analyzer,” IEEE Photon. Technol. Lett. 14, 355–357 (2002).
[CrossRef]

1994 (1)

M. O. van Deventer and J. Boot, “Polarization properties of stimulated Brillouin scattering in single mode fibers,” J. Lightwave Technol. 12, 585–590 (1994).
[CrossRef]

1991 (1)

1990 (1)

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2, pp. 352–354 (1990).
[CrossRef]

1982 (1)

D. Cotter, “Observation of stimulated Brillouin scattering in low-loss silica fibre at 1.3 μm,” Electron. Lett. 18, 495–496 (1982).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Antman, Y.

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thevenaz, “Random-access distributed fiber sensing,” Laser Photon. Rev. 6, L1–L5 (2012).
[CrossRef]

Y. Antman, N. Levanon, and A. Zadok, “Low-noise delays from dynamic Brillouin gratings based on perfect Golomb coding of pump waves,” Opt. Lett. 37, 5259–5261 (2012).
[CrossRef]

Armstrong, J.

Baney, D. M.

D. M. Baney, B. Szafraniec, and A. Motamedi, “Coherent optical spectrum analyzer,” IEEE Photon. Technol. Lett. 14, 355–357 (2002).
[CrossRef]

Baumann, E.

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics 4, 853–857 (2010).
[CrossRef]

Boh Ruffin, A.

A. Boh Ruffin, “Stimulated Brillouin scattering: an overview of measurements, system impairments, and applications,” in Technical Digest: Symposium on Optical Fiber Measurements (2004), pp. 23–28.

Boot, J.

M. O. van Deventer and J. Boot, “Polarization properties of stimulated Brillouin scattering in single mode fibers,” J. Lightwave Technol. 12, 585–590 (1994).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[CrossRef]

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett. 18, 1744–1746 (2006).
[CrossRef]

Coddington, I.

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics 4, 853–857 (2010).
[CrossRef]

Cotter, D.

D. Cotter, “Observation of stimulated Brillouin scattering in low-loss silica fibre at 1.3 μm,” Electron. Lett. 18, 495–496 (1982).
[CrossRef]

Denisov, A.

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thevenaz, “Random-access distributed fiber sensing,” Laser Photon. Rev. 6, L1–L5 (2012).
[CrossRef]

Domingo, J. M. S.

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 855–857 (2005).
[CrossRef]

Du, L. B.

Eyal, A.

Ezekiel, S.

Froggatt, M.

Galtarossa, A.

A. Galtarossa, L. Palmieri, M. Santagiustina, L. Schenato, and L. Ursini, “Polarized Brillouin amplification in randomly birefringent and unidirectionally spun fibers,” IEEE Photon. Technol. Lett. 20, 1420–1422 (2008).
[CrossRef]

Gifford, D.

Giorgetta, F. R.

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics 4, 853–857 (2010).
[CrossRef]

Heras, C. D.

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 855–857 (2005).
[CrossRef]

Horiguchi, T.

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2, pp. 352–354 (1990).
[CrossRef]

Iezzi, V. L.

Jamshidi, K.

S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Ultrahigh-resolution spectroscopy based on the bandwidth reduction of stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 23, 1118–1120 (2011).
[CrossRef]

A. Wiatrek, S. Preußler, K. Jamshidi, and T. Schneider, “Frequency domain aperture for ultra-high resolution Brillouin based spectroscopy,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (Optical Society of America, 2012), paper JW4A.63.

Kashyap, R.

Kurashima, T.

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2, pp. 352–354 (1990).
[CrossRef]

Lahoz, F. J.

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18, 208–210 (2006).
[CrossRef]

Levanon, N.

Loayssa, A.

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18, 208–210 (2006).
[CrossRef]

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett. 18, 1744–1746 (2006).
[CrossRef]

Loranger, S.

Lowery, A. J.

Mora, J.

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett. 18, 1744–1746 (2006).
[CrossRef]

Motamedi, A.

D. M. Baney, B. Szafraniec, and A. Motamedi, “Coherent optical spectrum analyzer,” IEEE Photon. Technol. Lett. 14, 355–357 (2002).
[CrossRef]

Newbury, N. R.

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics 4, 853–857 (2010).
[CrossRef]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[CrossRef]

Palmieri, L.

A. Galtarossa, L. Palmieri, M. Santagiustina, L. Schenato, and L. Ursini, “Polarized Brillouin amplification in randomly birefringent and unidirectionally spun fibers,” IEEE Photon. Technol. Lett. 20, 1420–1422 (2008).
[CrossRef]

Pelayo, J.

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 855–857 (2005).
[CrossRef]

Pellejer, E.

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 855–857 (2005).
[CrossRef]

Preussler, S.

S. Preussler, A. Zadok, A. Wiatrek, M. Tur, and T. Schneider, “Enhancement of spectral resolution and optical rejection ratio of Brillouin optical spectral analysis using polarization pulling,” Opt. Express 20, 14734–14745 (2012).
[CrossRef]

S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Ultrahigh-resolution spectroscopy based on the bandwidth reduction of stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 23, 1118–1120 (2011).
[CrossRef]

Preußler, S.

A. Wiatrek, S. Preußler, K. Jamshidi, and T. Schneider, “Frequency domain aperture for ultra-high resolution Brillouin based spectroscopy,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (Optical Society of America, 2012), paper JW4A.63.

Primerov, N.

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thevenaz, “Random-access distributed fiber sensing,” Laser Photon. Rev. 6, L1–L5 (2012).
[CrossRef]

Sagues, M.

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett. 18, 1744–1746 (2006).
[CrossRef]

Sancho, J.

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thevenaz, “Random-access distributed fiber sensing,” Laser Photon. Rev. 6, L1–L5 (2012).
[CrossRef]

Santagiustina, M.

A. Galtarossa, L. Palmieri, M. Santagiustina, L. Schenato, and L. Ursini, “Polarized Brillouin amplification in randomly birefringent and unidirectionally spun fibers,” IEEE Photon. Technol. Lett. 20, 1420–1422 (2008).
[CrossRef]

Schenato, L.

A. Galtarossa, L. Palmieri, M. Santagiustina, L. Schenato, and L. Ursini, “Polarized Brillouin amplification in randomly birefringent and unidirectionally spun fibers,” IEEE Photon. Technol. Lett. 20, 1420–1422 (2008).
[CrossRef]

Schneider, T.

S. Preussler, A. Zadok, A. Wiatrek, M. Tur, and T. Schneider, “Enhancement of spectral resolution and optical rejection ratio of Brillouin optical spectral analysis using polarization pulling,” Opt. Express 20, 14734–14745 (2012).
[CrossRef]

S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Ultrahigh-resolution spectroscopy based on the bandwidth reduction of stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 23, 1118–1120 (2011).
[CrossRef]

T. Schneider, “Wavelength and line width measurement of optical sources with femtometre resolution,” Electron. Lett. 41, 1234–1235 (2005).
[CrossRef]

A. Wiatrek, S. Preußler, K. Jamshidi, and T. Schneider, “Frequency domain aperture for ultra-high resolution Brillouin based spectroscopy,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (Optical Society of America, 2012), paper JW4A.63.

Smith, S. P.

Soller, B.

Swann, W. C.

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics 4, 853–857 (2010).
[CrossRef]

Szafraniec, B.

D. M. Baney, B. Szafraniec, and A. Motamedi, “Coherent optical spectrum analyzer,” IEEE Photon. Technol. Lett. 14, 355–357 (2002).
[CrossRef]

Tateda, M.

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2, pp. 352–354 (1990).
[CrossRef]

Thevenaz, L.

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thevenaz, “Random-access distributed fiber sensing,” Laser Photon. Rev. 6, L1–L5 (2012).
[CrossRef]

A. Zadok, E. Zilka, A. Eyal, L. Thevenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16, 21692–21707 (2008).
[CrossRef]

Tur, M.

Ursini, L.

A. Galtarossa, L. Palmieri, M. Santagiustina, L. Schenato, and L. Ursini, “Polarized Brillouin amplification in randomly birefringent and unidirectionally spun fibers,” IEEE Photon. Technol. Lett. 20, 1420–1422 (2008).
[CrossRef]

van Deventer, M. O.

M. O. van Deventer and J. Boot, “Polarization properties of stimulated Brillouin scattering in single mode fibers,” J. Lightwave Technol. 12, 585–590 (1994).
[CrossRef]

Villuendas, F.

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 855–857 (2005).
[CrossRef]

Wiatrek, A.

S. Preussler, A. Zadok, A. Wiatrek, M. Tur, and T. Schneider, “Enhancement of spectral resolution and optical rejection ratio of Brillouin optical spectral analysis using polarization pulling,” Opt. Express 20, 14734–14745 (2012).
[CrossRef]

S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Ultrahigh-resolution spectroscopy based on the bandwidth reduction of stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 23, 1118–1120 (2011).
[CrossRef]

A. Wiatrek, S. Preußler, K. Jamshidi, and T. Schneider, “Frequency domain aperture for ultra-high resolution Brillouin based spectroscopy,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (Optical Society of America, 2012), paper JW4A.63.

Wise, A.

Wolfe, M.

Zadok, A.

Zarinetchi, F.

Zilka, E.

Appl. Opt. (1)

Electron. Lett. (2)

T. Schneider, “Wavelength and line width measurement of optical sources with femtometre resolution,” Electron. Lett. 41, 1234–1235 (2005).
[CrossRef]

D. Cotter, “Observation of stimulated Brillouin scattering in low-loss silica fibre at 1.3 μm,” Electron. Lett. 18, 495–496 (1982).
[CrossRef]

IEEE Photon. Technol. Lett. (7)

D. M. Baney, B. Szafraniec, and A. Motamedi, “Coherent optical spectrum analyzer,” IEEE Photon. Technol. Lett. 14, 355–357 (2002).
[CrossRef]

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17, 855–857 (2005).
[CrossRef]

S. Preussler, A. Wiatrek, K. Jamshidi, and T. Schneider, “Ultrahigh-resolution spectroscopy based on the bandwidth reduction of stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 23, 1118–1120 (2011).
[CrossRef]

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett. 18, 1744–1746 (2006).
[CrossRef]

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2, pp. 352–354 (1990).
[CrossRef]

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photon. Technol. Lett. 18, 208–210 (2006).
[CrossRef]

A. Galtarossa, L. Palmieri, M. Santagiustina, L. Schenato, and L. Ursini, “Polarized Brillouin amplification in randomly birefringent and unidirectionally spun fibers,” IEEE Photon. Technol. Lett. 20, 1420–1422 (2008).
[CrossRef]

J. Lightwave Technol. (4)

Laser Photon. Rev. (1)

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thevenaz, “Random-access distributed fiber sensing,” Laser Photon. Rev. 6, L1–L5 (2012).
[CrossRef]

Nat. Photonics (2)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[CrossRef]

F. R. Giorgetta, I. Coddington, E. Baumann, W. C. Swann, and N. R. Newbury, “Fast high resolution spectroscopy of dynamic continuous-wave laser sources,” Nat. Photonics 4, 853–857 (2010).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Other (4)

A. Wiatrek, S. Preußler, K. Jamshidi, and T. Schneider, “Frequency domain aperture for ultra-high resolution Brillouin based spectroscopy,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (Optical Society of America, 2012), paper JW4A.63.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

A. Boh Ruffin, “Stimulated Brillouin scattering: an overview of measurements, system impairments, and applications,” in Technical Digest: Symposium on Optical Fiber Measurements (2004), pp. 23–28.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Simulations of the reconstruction of the PSD of a SUT, using a SBS-based OSA. The SUT consisted of a strong, central tone and two side tones that are 30 dB weaker and detuned by ±40MHz (inset). Dashed red curve, the SOP of the SUT is adjusted for maximum Brillouin amplification (scalar process). Solid black curve, polarization pulling of Brillouin amplification, together with an output polarizer, is employed to optimize the rejection of out-of-band components.

Fig. 2.
Fig. 2.

Experimental setup for SBS-based OSA. PC, polarization controller; MZM, Mach–Zehnder modulator; AWG, arbitrary waveform generator; VOA, variable optical attenuator; FBG, fiber Bragg grating; PBS, polarization beam splitter.

Fig. 3.
Fig. 3.

Experimental (magenta, solid curve) and simulated (blue, dashed curve) reconstruction of the PSD of a SUT, using a polarization-enhanced SBS-based OSA setup. The SUT consisted of ten subcarriers, separated by 10 MHz. Each subcarrier was independently modulated by an on–off keying, pseudo-sequence bit sequence at 2.5Mbit/s.

Fig. 4.
Fig. 4.

Experimental (magenta, solid curve) and simulated (blue, dashed curve) reconstruction of the PSD of a SUT, using a polarization-enhanced SBS-based OSA setup. The SUT was the same as that of Fig. 3 above, with subcarrier 7 intentionally removed.

Fig. 5.
Fig. 5.

Experimental reconstruction of the PSD of a SUT, using scalar (red, dashed curve) and polarization-enhanced (black, solid curve) SBS-based OSA setups. The SUT consisted of a central tone and two weaker sidelobes whose optical power levels were 24.7 dB lower than that of the central tone.

Fig. 6.
Fig. 6.

Experimental reconstruction of the PSD of a SUT, using scalar (red, dashed curve) and polarization-enhanced (black, solid curve) SBS-based OSA setups. The SUT consisted of a central tone and two weaker sidelobes whose optical power levels were 33.5 dB lower than that of the central tone.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Gmax(ωpωs)=exp[13g(ωpωs)Leff],Gmin(ωpωs)=exp[16g(ωpωs)Leff].
E⃗(ωs,z=0)=E0(ωs)(α0e^maxin+β0e^minin).
E⃗(ωs,z=L)=E0(ωs)[α0Gmax(ωpωs)e^maxout+β0Gmin(ωpωs)e^minout].
p^tr=pmaxe^maxout+pmine^minout,
|E⃗out(ωs)|2=|E0(ωs)|2|α0Pmax*|2|Gmax(ωpωs)Gmin(ωpωs)|2|E0(ωs)|2|H(ωpωs)|2.
H(ωpωs)α0pmax*[Gmax(ωpωs)Gmin(ωpωs)].
P(ωp)=|E0(ωs)|2|H(ωpωs)|2dωs.

Metrics