Abstract

The process of depositing nanoparticles onto tapered fiber probes with the laser-induced chemical deposition method (LICDM) and the surface-enhanced Raman scattering (SERS) detection performance of the prepared probes are experimentally investigated in this paper. Our results show that the nanoparticle-deposited tapered fiber probes prepared with the LICDM method depend strongly on the value of the cone angle. For small-angle tapered probes the nanoparticle-deposited areas are only focused at the taper tips, because the taper surfaces are mainly covered by a relatively low-intensity evanescent field. By lengthening the reaction time or increasing the induced power or solution concentration, it is still possible to deposit nanoparticles on small-angle tapers with the light-scattering effect. With 4-aminothiophenol as the testing molecule, it was found that for given preparation conditions, the cone angles for the tapered probes with the highest SERS spectral intensities for different excitation laser powers are almost the same. However, such an optimal cone angle is determined by the combined effects of both the localized surface plasmon resonance strength and the transmission loss generated by the nanoparticles deposited.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Bolboaca, T. Iliescu, and W. Kiefer, “Infrared absorption, Raman, and SERS investigations in conjunction with theoretical simulations on a phenothiazine derivative,” Chem. Phys. 298, 87–95 (2004).
    [CrossRef]
  2. R. Y. Zhang, D. W. Pang, Z. L. Zhang, J. W. Yan, J. L. Yao, Z. Q. Tian, B. W. Mao, and S. G. Sun, “Investigation of ordered ds-DNA monolayers on gold electrodes,” J. Phys. Chem. B 106, 11233–11239 (2002).
    [CrossRef]
  3. T. M. Cotton, J. H. Kim, and G. D. Chumanov, “Application of surface-enhanced Raman spectroscopy to biological systems,” J. Raman Spectrosc. 22, 729–742 (1991).
    [CrossRef]
  4. T. Siegfried, Y. Ekinci, H. H. Solak, O. J. F. Martin, and H. Sigg, “Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors,” Appl. Phys. Lett. 99, 263302 (2011).
    [CrossRef]
  5. M. Volkan, D. L. Stokes, and T. V. Dinh, “A sol-gel derived AgCl photochromic coating on glass for SERS chemical sensor application,” Sens. Actuators B 106, 660–667 (2005).
  6. K. I. Mullen and K. T. Carron, “Surface-enhanced Raman spectroscopy with abrasively modified fiber optic probes,” Anal. Chem. 63, 2196–2199 (1991).
    [CrossRef]
  7. Y. Zhang, C. Gu, A. M. Schwartzberg, and J. Z. Zhang, “Surface-enhanced Raman scattering sensor based on D-shaped fiber,” Appl. Phys. Lett. 87, 123105 (2005).
    [CrossRef]
  8. C. Viets and W. Hill, “Fibre-optic SERS sensors with angled tips,” J. Mol. Struct. 565–566, 515–518 (2001).
    [CrossRef]
  9. C. Viets and W. Hill, “Fibre-optic SERS sensors with conically etched tips,” J. Mol. Struct. 563–564, 163–166 (2001).
    [CrossRef]
  10. A. Lucotti and G. Zerbi, “Fiber-optic SERS sensor with optimized geometry,” Sens. Actuators B 121, 356–364 (2007).
  11. X. W. Lan, Y. K. Han, T. Wei, Y. N. Zhang, L. Jiang, H. L. Tsai, and H. Xiao, “Surface-enhanced Raman-scattering fiber probe fabricated by femtosecond laser,” Opt. Lett. 34, 2285–2287 (2009).
    [CrossRef]
  12. E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9, 1132–1138 (2009).
  13. X. L. Zheng, D. W. Guo, Y. L. Shao, S. J. Jia, S. P. Xu, B. Zhao, W. Q. Xu, C. Corredor, and J. R. Lombardi, “Photochemical modification of an optical fiber tip with a silver nanoparticle film: a SERS chemical sensor,” Langmuir 24, 4394–4398 (2008).
    [CrossRef]
  14. T. Liu, X. S. Xiao, and C. X. Yang, “Surfactantless photochemical deposition of gold nanoparticles on an optical fiber core for surface-enhanced Raman scattering,” Langmuir 27, 4623–4626 (2011).
    [CrossRef]
  15. A. Grazia, M. Riccardo, and F. L. Ciaccheri, “Evanescent wave absorption spectroscopy by means of bi-tapered multimode optical fibers,” Appl. Spectrosc. 52, 546–551 (1998).
    [CrossRef]
  16. M. S. Kumar, Fundamentals of Optical Fibre Communication (Prentice-Hall, 2005), p. 41.
  17. S. P. Guo and S. Albin, “Transmission property and evanescent wave absorption of cladded multimode fiber tapers,” Opt. Express 11, 215–223 (2003).
    [CrossRef]
  18. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235402 (2001).
  19. Y. H. Ngo, D. Li, G. P. Simon, and G. Garnier, “Effect of cationic polyacrylamides on the aggregation and SERS performance of gold nanoparticles-treated paper,” J. Colloid Interface Sci. 392, 237–246 (2013).
    [CrossRef]
  20. S. F. Zong, Z. Y. Wang, J. Yang, and Y. P. Cui, “Intracellular pH sensing using p-aminothiophenol functionalized gold nanorods with low cytotoxicity,” Anal. Chem. 83, 4178–4183 (2011).
    [CrossRef]
  21. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Ann. Rev. Phys. Chem. 58, 267–297 (2007).
  22. D. A. Weitz, S. Garoff, C. D. Hanson, T. J. Gramila, and J. I. Gersten, “Fluorescent lifetimes of molecules on silver-island films,” Opt. Lett. 7, 89–91 (1982).
    [CrossRef]

2013 (1)

Y. H. Ngo, D. Li, G. P. Simon, and G. Garnier, “Effect of cationic polyacrylamides on the aggregation and SERS performance of gold nanoparticles-treated paper,” J. Colloid Interface Sci. 392, 237–246 (2013).
[CrossRef]

2011 (3)

S. F. Zong, Z. Y. Wang, J. Yang, and Y. P. Cui, “Intracellular pH sensing using p-aminothiophenol functionalized gold nanorods with low cytotoxicity,” Anal. Chem. 83, 4178–4183 (2011).
[CrossRef]

T. Liu, X. S. Xiao, and C. X. Yang, “Surfactantless photochemical deposition of gold nanoparticles on an optical fiber core for surface-enhanced Raman scattering,” Langmuir 27, 4623–4626 (2011).
[CrossRef]

T. Siegfried, Y. Ekinci, H. H. Solak, O. J. F. Martin, and H. Sigg, “Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors,” Appl. Phys. Lett. 99, 263302 (2011).
[CrossRef]

2009 (2)

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9, 1132–1138 (2009).

X. W. Lan, Y. K. Han, T. Wei, Y. N. Zhang, L. Jiang, H. L. Tsai, and H. Xiao, “Surface-enhanced Raman-scattering fiber probe fabricated by femtosecond laser,” Opt. Lett. 34, 2285–2287 (2009).
[CrossRef]

2008 (1)

X. L. Zheng, D. W. Guo, Y. L. Shao, S. J. Jia, S. P. Xu, B. Zhao, W. Q. Xu, C. Corredor, and J. R. Lombardi, “Photochemical modification of an optical fiber tip with a silver nanoparticle film: a SERS chemical sensor,” Langmuir 24, 4394–4398 (2008).
[CrossRef]

2007 (2)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Ann. Rev. Phys. Chem. 58, 267–297 (2007).

A. Lucotti and G. Zerbi, “Fiber-optic SERS sensor with optimized geometry,” Sens. Actuators B 121, 356–364 (2007).

2005 (2)

Y. Zhang, C. Gu, A. M. Schwartzberg, and J. Z. Zhang, “Surface-enhanced Raman scattering sensor based on D-shaped fiber,” Appl. Phys. Lett. 87, 123105 (2005).
[CrossRef]

M. Volkan, D. L. Stokes, and T. V. Dinh, “A sol-gel derived AgCl photochromic coating on glass for SERS chemical sensor application,” Sens. Actuators B 106, 660–667 (2005).

2004 (1)

M. Bolboaca, T. Iliescu, and W. Kiefer, “Infrared absorption, Raman, and SERS investigations in conjunction with theoretical simulations on a phenothiazine derivative,” Chem. Phys. 298, 87–95 (2004).
[CrossRef]

2003 (1)

2002 (1)

R. Y. Zhang, D. W. Pang, Z. L. Zhang, J. W. Yan, J. L. Yao, Z. Q. Tian, B. W. Mao, and S. G. Sun, “Investigation of ordered ds-DNA monolayers on gold electrodes,” J. Phys. Chem. B 106, 11233–11239 (2002).
[CrossRef]

2001 (3)

C. Viets and W. Hill, “Fibre-optic SERS sensors with angled tips,” J. Mol. Struct. 565–566, 515–518 (2001).
[CrossRef]

C. Viets and W. Hill, “Fibre-optic SERS sensors with conically etched tips,” J. Mol. Struct. 563–564, 163–166 (2001).
[CrossRef]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235402 (2001).

1998 (1)

1991 (2)

T. M. Cotton, J. H. Kim, and G. D. Chumanov, “Application of surface-enhanced Raman spectroscopy to biological systems,” J. Raman Spectrosc. 22, 729–742 (1991).
[CrossRef]

K. I. Mullen and K. T. Carron, “Surface-enhanced Raman spectroscopy with abrasively modified fiber optic probes,” Anal. Chem. 63, 2196–2199 (1991).
[CrossRef]

1982 (1)

Albin, S.

Bao, J.

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9, 1132–1138 (2009).

Bolboaca, M.

M. Bolboaca, T. Iliescu, and W. Kiefer, “Infrared absorption, Raman, and SERS investigations in conjunction with theoretical simulations on a phenothiazine derivative,” Chem. Phys. 298, 87–95 (2004).
[CrossRef]

Capasso, F.

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9, 1132–1138 (2009).

Carron, K. T.

K. I. Mullen and K. T. Carron, “Surface-enhanced Raman spectroscopy with abrasively modified fiber optic probes,” Anal. Chem. 63, 2196–2199 (1991).
[CrossRef]

Chumanov, G. D.

T. M. Cotton, J. H. Kim, and G. D. Chumanov, “Application of surface-enhanced Raman spectroscopy to biological systems,” J. Raman Spectrosc. 22, 729–742 (1991).
[CrossRef]

Ciaccheri, F. L.

Corredor, C.

X. L. Zheng, D. W. Guo, Y. L. Shao, S. J. Jia, S. P. Xu, B. Zhao, W. Q. Xu, C. Corredor, and J. R. Lombardi, “Photochemical modification of an optical fiber tip with a silver nanoparticle film: a SERS chemical sensor,” Langmuir 24, 4394–4398 (2008).
[CrossRef]

Cotton, T. M.

T. M. Cotton, J. H. Kim, and G. D. Chumanov, “Application of surface-enhanced Raman spectroscopy to biological systems,” J. Raman Spectrosc. 22, 729–742 (1991).
[CrossRef]

Cui, Y. P.

S. F. Zong, Z. Y. Wang, J. Yang, and Y. P. Cui, “Intracellular pH sensing using p-aminothiophenol functionalized gold nanorods with low cytotoxicity,” Anal. Chem. 83, 4178–4183 (2011).
[CrossRef]

Dickey, M. D.

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9, 1132–1138 (2009).

Dinh, T. V.

M. Volkan, D. L. Stokes, and T. V. Dinh, “A sol-gel derived AgCl photochromic coating on glass for SERS chemical sensor application,” Sens. Actuators B 106, 660–667 (2005).

Ekinci, Y.

T. Siegfried, Y. Ekinci, H. H. Solak, O. J. F. Martin, and H. Sigg, “Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors,” Appl. Phys. Lett. 99, 263302 (2011).
[CrossRef]

Garnier, G.

Y. H. Ngo, D. Li, G. P. Simon, and G. Garnier, “Effect of cationic polyacrylamides on the aggregation and SERS performance of gold nanoparticles-treated paper,” J. Colloid Interface Sci. 392, 237–246 (2013).
[CrossRef]

Garoff, S.

Gersten, J. I.

Gramila, T. J.

Grazia, A.

Gu, C.

Y. Zhang, C. Gu, A. M. Schwartzberg, and J. Z. Zhang, “Surface-enhanced Raman scattering sensor based on D-shaped fiber,” Appl. Phys. Lett. 87, 123105 (2005).
[CrossRef]

Guo, D. W.

X. L. Zheng, D. W. Guo, Y. L. Shao, S. J. Jia, S. P. Xu, B. Zhao, W. Q. Xu, C. Corredor, and J. R. Lombardi, “Photochemical modification of an optical fiber tip with a silver nanoparticle film: a SERS chemical sensor,” Langmuir 24, 4394–4398 (2008).
[CrossRef]

Guo, S. P.

Han, Y. K.

Hanson, C. D.

Hill, W.

C. Viets and W. Hill, “Fibre-optic SERS sensors with conically etched tips,” J. Mol. Struct. 563–564, 163–166 (2001).
[CrossRef]

C. Viets and W. Hill, “Fibre-optic SERS sensors with angled tips,” J. Mol. Struct. 565–566, 515–518 (2001).
[CrossRef]

Iliescu, T.

M. Bolboaca, T. Iliescu, and W. Kiefer, “Infrared absorption, Raman, and SERS investigations in conjunction with theoretical simulations on a phenothiazine derivative,” Chem. Phys. 298, 87–95 (2004).
[CrossRef]

Jia, S. J.

X. L. Zheng, D. W. Guo, Y. L. Shao, S. J. Jia, S. P. Xu, B. Zhao, W. Q. Xu, C. Corredor, and J. R. Lombardi, “Photochemical modification of an optical fiber tip with a silver nanoparticle film: a SERS chemical sensor,” Langmuir 24, 4394–4398 (2008).
[CrossRef]

Jiang, L.

Kiefer, W.

M. Bolboaca, T. Iliescu, and W. Kiefer, “Infrared absorption, Raman, and SERS investigations in conjunction with theoretical simulations on a phenothiazine derivative,” Chem. Phys. 298, 87–95 (2004).
[CrossRef]

Kim, J. H.

T. M. Cotton, J. H. Kim, and G. D. Chumanov, “Application of surface-enhanced Raman spectroscopy to biological systems,” J. Raman Spectrosc. 22, 729–742 (1991).
[CrossRef]

Kottmann, J. P.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235402 (2001).

Kumar, M. S.

M. S. Kumar, Fundamentals of Optical Fibre Communication (Prentice-Hall, 2005), p. 41.

Lan, X. W.

Li, D.

Y. H. Ngo, D. Li, G. P. Simon, and G. Garnier, “Effect of cationic polyacrylamides on the aggregation and SERS performance of gold nanoparticles-treated paper,” J. Colloid Interface Sci. 392, 237–246 (2013).
[CrossRef]

Liu, T.

T. Liu, X. S. Xiao, and C. X. Yang, “Surfactantless photochemical deposition of gold nanoparticles on an optical fiber core for surface-enhanced Raman scattering,” Langmuir 27, 4623–4626 (2011).
[CrossRef]

Lombardi, J. R.

X. L. Zheng, D. W. Guo, Y. L. Shao, S. J. Jia, S. P. Xu, B. Zhao, W. Q. Xu, C. Corredor, and J. R. Lombardi, “Photochemical modification of an optical fiber tip with a silver nanoparticle film: a SERS chemical sensor,” Langmuir 24, 4394–4398 (2008).
[CrossRef]

Lucotti, A.

A. Lucotti and G. Zerbi, “Fiber-optic SERS sensor with optimized geometry,” Sens. Actuators B 121, 356–364 (2007).

Mao, B. W.

R. Y. Zhang, D. W. Pang, Z. L. Zhang, J. W. Yan, J. L. Yao, Z. Q. Tian, B. W. Mao, and S. G. Sun, “Investigation of ordered ds-DNA monolayers on gold electrodes,” J. Phys. Chem. B 106, 11233–11239 (2002).
[CrossRef]

Martin, O. J. F.

T. Siegfried, Y. Ekinci, H. H. Solak, O. J. F. Martin, and H. Sigg, “Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors,” Appl. Phys. Lett. 99, 263302 (2011).
[CrossRef]

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235402 (2001).

Mullen, K. I.

K. I. Mullen and K. T. Carron, “Surface-enhanced Raman spectroscopy with abrasively modified fiber optic probes,” Anal. Chem. 63, 2196–2199 (1991).
[CrossRef]

Ngo, Y. H.

Y. H. Ngo, D. Li, G. P. Simon, and G. Garnier, “Effect of cationic polyacrylamides on the aggregation and SERS performance of gold nanoparticles-treated paper,” J. Colloid Interface Sci. 392, 237–246 (2013).
[CrossRef]

Pang, D. W.

R. Y. Zhang, D. W. Pang, Z. L. Zhang, J. W. Yan, J. L. Yao, Z. Q. Tian, B. W. Mao, and S. G. Sun, “Investigation of ordered ds-DNA monolayers on gold electrodes,” J. Phys. Chem. B 106, 11233–11239 (2002).
[CrossRef]

Riccardo, M.

Schultz, S.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235402 (2001).

Schwartzberg, A. M.

Y. Zhang, C. Gu, A. M. Schwartzberg, and J. Z. Zhang, “Surface-enhanced Raman scattering sensor based on D-shaped fiber,” Appl. Phys. Lett. 87, 123105 (2005).
[CrossRef]

Shao, Y. L.

X. L. Zheng, D. W. Guo, Y. L. Shao, S. J. Jia, S. P. Xu, B. Zhao, W. Q. Xu, C. Corredor, and J. R. Lombardi, “Photochemical modification of an optical fiber tip with a silver nanoparticle film: a SERS chemical sensor,” Langmuir 24, 4394–4398 (2008).
[CrossRef]

Siegfried, T.

T. Siegfried, Y. Ekinci, H. H. Solak, O. J. F. Martin, and H. Sigg, “Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors,” Appl. Phys. Lett. 99, 263302 (2011).
[CrossRef]

Sigg, H.

T. Siegfried, Y. Ekinci, H. H. Solak, O. J. F. Martin, and H. Sigg, “Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors,” Appl. Phys. Lett. 99, 263302 (2011).
[CrossRef]

Simon, G. P.

Y. H. Ngo, D. Li, G. P. Simon, and G. Garnier, “Effect of cationic polyacrylamides on the aggregation and SERS performance of gold nanoparticles-treated paper,” J. Colloid Interface Sci. 392, 237–246 (2013).
[CrossRef]

Smith, D. R.

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235402 (2001).

Smythe, E. J.

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9, 1132–1138 (2009).

Solak, H. H.

T. Siegfried, Y. Ekinci, H. H. Solak, O. J. F. Martin, and H. Sigg, “Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors,” Appl. Phys. Lett. 99, 263302 (2011).
[CrossRef]

Stokes, D. L.

M. Volkan, D. L. Stokes, and T. V. Dinh, “A sol-gel derived AgCl photochromic coating on glass for SERS chemical sensor application,” Sens. Actuators B 106, 660–667 (2005).

Sun, S. G.

R. Y. Zhang, D. W. Pang, Z. L. Zhang, J. W. Yan, J. L. Yao, Z. Q. Tian, B. W. Mao, and S. G. Sun, “Investigation of ordered ds-DNA monolayers on gold electrodes,” J. Phys. Chem. B 106, 11233–11239 (2002).
[CrossRef]

Tian, Z. Q.

R. Y. Zhang, D. W. Pang, Z. L. Zhang, J. W. Yan, J. L. Yao, Z. Q. Tian, B. W. Mao, and S. G. Sun, “Investigation of ordered ds-DNA monolayers on gold electrodes,” J. Phys. Chem. B 106, 11233–11239 (2002).
[CrossRef]

Tsai, H. L.

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Ann. Rev. Phys. Chem. 58, 267–297 (2007).

Viets, C.

C. Viets and W. Hill, “Fibre-optic SERS sensors with angled tips,” J. Mol. Struct. 565–566, 515–518 (2001).
[CrossRef]

C. Viets and W. Hill, “Fibre-optic SERS sensors with conically etched tips,” J. Mol. Struct. 563–564, 163–166 (2001).
[CrossRef]

Volkan, M.

M. Volkan, D. L. Stokes, and T. V. Dinh, “A sol-gel derived AgCl photochromic coating on glass for SERS chemical sensor application,” Sens. Actuators B 106, 660–667 (2005).

Wang, Z. Y.

S. F. Zong, Z. Y. Wang, J. Yang, and Y. P. Cui, “Intracellular pH sensing using p-aminothiophenol functionalized gold nanorods with low cytotoxicity,” Anal. Chem. 83, 4178–4183 (2011).
[CrossRef]

Wei, T.

Weitz, D. A.

Whitesides, G. M.

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9, 1132–1138 (2009).

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Ann. Rev. Phys. Chem. 58, 267–297 (2007).

Xiao, H.

Xiao, X. S.

T. Liu, X. S. Xiao, and C. X. Yang, “Surfactantless photochemical deposition of gold nanoparticles on an optical fiber core for surface-enhanced Raman scattering,” Langmuir 27, 4623–4626 (2011).
[CrossRef]

Xu, S. P.

X. L. Zheng, D. W. Guo, Y. L. Shao, S. J. Jia, S. P. Xu, B. Zhao, W. Q. Xu, C. Corredor, and J. R. Lombardi, “Photochemical modification of an optical fiber tip with a silver nanoparticle film: a SERS chemical sensor,” Langmuir 24, 4394–4398 (2008).
[CrossRef]

Xu, W. Q.

X. L. Zheng, D. W. Guo, Y. L. Shao, S. J. Jia, S. P. Xu, B. Zhao, W. Q. Xu, C. Corredor, and J. R. Lombardi, “Photochemical modification of an optical fiber tip with a silver nanoparticle film: a SERS chemical sensor,” Langmuir 24, 4394–4398 (2008).
[CrossRef]

Yan, J. W.

R. Y. Zhang, D. W. Pang, Z. L. Zhang, J. W. Yan, J. L. Yao, Z. Q. Tian, B. W. Mao, and S. G. Sun, “Investigation of ordered ds-DNA monolayers on gold electrodes,” J. Phys. Chem. B 106, 11233–11239 (2002).
[CrossRef]

Yang, C. X.

T. Liu, X. S. Xiao, and C. X. Yang, “Surfactantless photochemical deposition of gold nanoparticles on an optical fiber core for surface-enhanced Raman scattering,” Langmuir 27, 4623–4626 (2011).
[CrossRef]

Yang, J.

S. F. Zong, Z. Y. Wang, J. Yang, and Y. P. Cui, “Intracellular pH sensing using p-aminothiophenol functionalized gold nanorods with low cytotoxicity,” Anal. Chem. 83, 4178–4183 (2011).
[CrossRef]

Yao, J. L.

R. Y. Zhang, D. W. Pang, Z. L. Zhang, J. W. Yan, J. L. Yao, Z. Q. Tian, B. W. Mao, and S. G. Sun, “Investigation of ordered ds-DNA monolayers on gold electrodes,” J. Phys. Chem. B 106, 11233–11239 (2002).
[CrossRef]

Zerbi, G.

A. Lucotti and G. Zerbi, “Fiber-optic SERS sensor with optimized geometry,” Sens. Actuators B 121, 356–364 (2007).

Zhang, J. Z.

Y. Zhang, C. Gu, A. M. Schwartzberg, and J. Z. Zhang, “Surface-enhanced Raman scattering sensor based on D-shaped fiber,” Appl. Phys. Lett. 87, 123105 (2005).
[CrossRef]

Zhang, R. Y.

R. Y. Zhang, D. W. Pang, Z. L. Zhang, J. W. Yan, J. L. Yao, Z. Q. Tian, B. W. Mao, and S. G. Sun, “Investigation of ordered ds-DNA monolayers on gold electrodes,” J. Phys. Chem. B 106, 11233–11239 (2002).
[CrossRef]

Zhang, Y.

Y. Zhang, C. Gu, A. M. Schwartzberg, and J. Z. Zhang, “Surface-enhanced Raman scattering sensor based on D-shaped fiber,” Appl. Phys. Lett. 87, 123105 (2005).
[CrossRef]

Zhang, Y. N.

Zhang, Z. L.

R. Y. Zhang, D. W. Pang, Z. L. Zhang, J. W. Yan, J. L. Yao, Z. Q. Tian, B. W. Mao, and S. G. Sun, “Investigation of ordered ds-DNA monolayers on gold electrodes,” J. Phys. Chem. B 106, 11233–11239 (2002).
[CrossRef]

Zhao, B.

X. L. Zheng, D. W. Guo, Y. L. Shao, S. J. Jia, S. P. Xu, B. Zhao, W. Q. Xu, C. Corredor, and J. R. Lombardi, “Photochemical modification of an optical fiber tip with a silver nanoparticle film: a SERS chemical sensor,” Langmuir 24, 4394–4398 (2008).
[CrossRef]

Zheng, X. L.

X. L. Zheng, D. W. Guo, Y. L. Shao, S. J. Jia, S. P. Xu, B. Zhao, W. Q. Xu, C. Corredor, and J. R. Lombardi, “Photochemical modification of an optical fiber tip with a silver nanoparticle film: a SERS chemical sensor,” Langmuir 24, 4394–4398 (2008).
[CrossRef]

Zong, S. F.

S. F. Zong, Z. Y. Wang, J. Yang, and Y. P. Cui, “Intracellular pH sensing using p-aminothiophenol functionalized gold nanorods with low cytotoxicity,” Anal. Chem. 83, 4178–4183 (2011).
[CrossRef]

Anal. Chem. (2)

K. I. Mullen and K. T. Carron, “Surface-enhanced Raman spectroscopy with abrasively modified fiber optic probes,” Anal. Chem. 63, 2196–2199 (1991).
[CrossRef]

S. F. Zong, Z. Y. Wang, J. Yang, and Y. P. Cui, “Intracellular pH sensing using p-aminothiophenol functionalized gold nanorods with low cytotoxicity,” Anal. Chem. 83, 4178–4183 (2011).
[CrossRef]

Ann. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Ann. Rev. Phys. Chem. 58, 267–297 (2007).

Appl. Phys. Lett. (2)

Y. Zhang, C. Gu, A. M. Schwartzberg, and J. Z. Zhang, “Surface-enhanced Raman scattering sensor based on D-shaped fiber,” Appl. Phys. Lett. 87, 123105 (2005).
[CrossRef]

T. Siegfried, Y. Ekinci, H. H. Solak, O. J. F. Martin, and H. Sigg, “Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors,” Appl. Phys. Lett. 99, 263302 (2011).
[CrossRef]

Appl. Spectrosc. (1)

Chem. Phys. (1)

M. Bolboaca, T. Iliescu, and W. Kiefer, “Infrared absorption, Raman, and SERS investigations in conjunction with theoretical simulations on a phenothiazine derivative,” Chem. Phys. 298, 87–95 (2004).
[CrossRef]

J. Colloid Interface Sci. (1)

Y. H. Ngo, D. Li, G. P. Simon, and G. Garnier, “Effect of cationic polyacrylamides on the aggregation and SERS performance of gold nanoparticles-treated paper,” J. Colloid Interface Sci. 392, 237–246 (2013).
[CrossRef]

J. Mol. Struct. (2)

C. Viets and W. Hill, “Fibre-optic SERS sensors with angled tips,” J. Mol. Struct. 565–566, 515–518 (2001).
[CrossRef]

C. Viets and W. Hill, “Fibre-optic SERS sensors with conically etched tips,” J. Mol. Struct. 563–564, 163–166 (2001).
[CrossRef]

J. Phys. Chem. B (1)

R. Y. Zhang, D. W. Pang, Z. L. Zhang, J. W. Yan, J. L. Yao, Z. Q. Tian, B. W. Mao, and S. G. Sun, “Investigation of ordered ds-DNA monolayers on gold electrodes,” J. Phys. Chem. B 106, 11233–11239 (2002).
[CrossRef]

J. Raman Spectrosc. (1)

T. M. Cotton, J. H. Kim, and G. D. Chumanov, “Application of surface-enhanced Raman spectroscopy to biological systems,” J. Raman Spectrosc. 22, 729–742 (1991).
[CrossRef]

Langmuir (2)

X. L. Zheng, D. W. Guo, Y. L. Shao, S. J. Jia, S. P. Xu, B. Zhao, W. Q. Xu, C. Corredor, and J. R. Lombardi, “Photochemical modification of an optical fiber tip with a silver nanoparticle film: a SERS chemical sensor,” Langmuir 24, 4394–4398 (2008).
[CrossRef]

T. Liu, X. S. Xiao, and C. X. Yang, “Surfactantless photochemical deposition of gold nanoparticles on an optical fiber core for surface-enhanced Raman scattering,” Langmuir 27, 4623–4626 (2011).
[CrossRef]

Nano Lett. (1)

E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9, 1132–1138 (2009).

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (1)

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Plasmon resonances of silver nanowires with a nonregular cross section,” Phys. Rev. B 64, 235402 (2001).

Sens. Actuators B (2)

M. Volkan, D. L. Stokes, and T. V. Dinh, “A sol-gel derived AgCl photochromic coating on glass for SERS chemical sensor application,” Sens. Actuators B 106, 660–667 (2005).

A. Lucotti and G. Zerbi, “Fiber-optic SERS sensor with optimized geometry,” Sens. Actuators B 121, 356–364 (2007).

Other (1)

M. S. Kumar, Fundamentals of Optical Fibre Communication (Prentice-Hall, 2005), p. 41.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Images of tapered fiber probes prepared at an inducing laser power of 100 mW in 0.005mol/L reaction solution for 20 min with cone angles of (a) 22°, (b) 16°, (c) 11.6°, (d) 8.2°, (e) 5.6°, and (f) 3.6°.

Fig. 2.
Fig. 2.

Images of tapered fiber probes prepared under the same conditions as those in Fig. 1 except that the reaction time is extended to 60 min for cone angles of (a) 22°, (b) 16°, (c) 11.6°, (d) 8.2°, (e) 5.6°, and (f) 3.6°.

Fig. 3.
Fig. 3.

(a) SEM image of 8.2° probe prepared under the same conditions as those in Fig. 2 and (b) comparison images of SEM from different regions of the probe surface.

Fig. 4.
Fig. 4.

Experimental setup for the SERS test with the prepared tapered fiber probe.

Fig. 5.
Fig. 5.

Measured SERS spectra of 4-ATP with an integration time of 2 s for tapered fiber probes with different cone angles prepared at 100 mW induced laser power, 0.005mol/L reaction solution, and 60 min reaction time. Exciting laser power: (a) 10 mW and (b) 20 mW.

Fig. 6.
Fig. 6.

Measured SERS spectra of 4-ATP with an integration time of 2 s for tapered fiber probes with different cone angles prepared at 130 mW induced laser power, 0.01mol/L reaction solution, and 60 min reaction time. Exciting laser power: (a) 10 mW and (b) 20 mW.

Metrics