Abstract

Nanofluids have been increasingly used in a wide range of thermal applications. Although these applications can benefit greatly from investigating the behavior of nanoparticles under different heating scenarios, there is a lack of experiments that can achieve this. To overcome this challenge, an optical “pump–probe”-type experiment is suggested in this paper. In experiments of this type, a set of “pumping” nanoparticles are specifically selected to absorb laser radiation. These particles represent a flexible tool for volumetric heating. A second set of “probing” nanoparticles can be tailored to scatter a separate optical probing signal. This work presents a selection procedure for nanoparticles of both types. The selection procedure is then demonstrated for a specific example where the pump and probe wavelengths are of 980 and 532 nm, respectively. Gold nanorods with diameters of 10 and a length of 58 nm are selected as the “most suitable” absorbing particles, while silver nanospheres with a diameter of 110 nm are selected as the “most suitable” scattering particles. These particles are synthesized and shown to experimentally match the desired optical properties. Overall, this paper proposes and demonstrates an approach by which it is possible to design and fabricate particles for a wide range of optical studies in semi-transparent nanofluids.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription