R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, and H. Tyagi, “Small particles, big impacts: a review of the diverse applications of nanofluids,” J. Appl. Phys. 113, 011301 (2013).

[CrossRef]

S. Soni, H. Tyagi, R. A. Taylor, and A. Kumar, “Role of optical coefficients and healthy tissue-sparing characteristics in gold nanorod-assisted thermal therapy,” Int. J. Hyperthermia 29, 87–97 (2013).

[CrossRef]

L. A. Dombrovsky, “The use of the transport approximation and diffusion-based models in radiative transfer calculations,” Comput. Therm. Sci. 4, 297–315 (2012).

[CrossRef]

R. A. Taylor, P. E. Phelan, T. Otanicar, R. S. Prasher, and B. E. Phelan, “Socioeconomic impacts of heat transfer research,” Int. Commun. Heat Mass Transf. 39, 1467–1473 (2012).

[CrossRef]

S. Jain, D. G. Hirst, and J. M. O’Sullivan, “Gold nanoparticles as novel agents for cancer therapy,” Br. J. Radiol. 85, 101–113 (2012).

[CrossRef]

L. A. Dombrovsky, V. Timchenko, and M. Jackson, “Indirect heating strategy for laser induced hyperthermia: an advanced thermal model,” Int. J. Heat Mass Transfer 55, 4688–4700 (2012).

[CrossRef]

R. A. Taylor, T. Otanicar, and G. Rosengarten, “Nanofluid-based optical filter optimization for PV/T systems,” Light 1, 1–7 (2012).

[CrossRef]

A. Lenert and E. N. Wang, “Optimization of nanofluid volumetric receivers for solar thermal energy conversion,” Solar Energy 86, 253–265 (2012).

[CrossRef]

R. A. Taylor, P. E. Phelan, T. P. Otanicar, R. Adrian, and R. Prasher, “Nanofluid optical property characterization: towards efficient direct absorption solar collectors,” Nanoscale Res. Lett. 6, 225 (2011).

[CrossRef]

L. Jia and E. L. Thomas, “Optical forces and optical torques on various materials arising from optical lattices in the Lorentz–Mie regime,” Phys. Rev. B 84, 125128 (2011).

[CrossRef]

L. A. Dombrovsky, V. Timchenko, M. Jackson, and G. H. Yeoh, “A combined transient thermal model for laser hyperthermia of tumors with embedded gold nanoshells,” Int. J. Heat Mass Transfer 54, 5459–5469 (2011).

[CrossRef]

X. Huang and M. A. El-Sayed, “Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res. 1, 13–28 (2010).

[CrossRef]

T. P. Otanicar, P. E. Phelan, R. S. Prasher, G. Rosengarten, and R. A. Taylor, “Nanofluid-based direct absorption solar collector,” J. Renewable Sustainable Energy 2, 033102 (2010).

[CrossRef]

C. Nie, W. H. Marlow, and Y. A. Hassan, “Discussion of proposed mechanisms of thermal conductivity enhancement in nanofluids,” Int. J. Heat Mass Transfer 51, 1342–1348 (2008).

[CrossRef]

G. P. Peterson and C. H. Li, “Heat and mass transfer in fluids with nanoparticle suspensions,” Adv. Heat Transfer 39, 257–376 (2006).

[CrossRef]

S. W. Prescott and P. Mulvaney, “Gold nanorod extinction spectra,” J. Appl. Phys. 99, 123504 (2006).

[CrossRef]

L. Dombrovsky, J. Randrianalisoa, and D. Baillis, “Modified two-flux approximation for identification of radiative properties of absorbing and scattering media from directional-hemispherical measurements,” J. Opt. Soc. Am. A 23, 91–98 (2006).

[CrossRef]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).

[CrossRef]

S. K. Das, N. Putra, and W. Roetzel, “Pool boiling characteristics of nano-fluids,” Int. J. Heat Mass Transfer 46, 851–862 (2003).

[CrossRef]

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103, 3073–3077 (1999).

[CrossRef]

R. A. Taylor, P. E. Phelan, T. P. Otanicar, R. Adrian, and R. Prasher, “Nanofluid optical property characterization: towards efficient direct absorption solar collectors,” Nanoscale Res. Lett. 6, 225 (2011).

[CrossRef]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 2004).

S. K. Das, S. U. S. Choi, W. Yu, and T. Pradeep, Nanofluids: Science and Technology (Wiley, 2008).

R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, and H. Tyagi, “Small particles, big impacts: a review of the diverse applications of nanofluids,” J. Appl. Phys. 113, 011301 (2013).

[CrossRef]

S. K. Das, N. Putra, and W. Roetzel, “Pool boiling characteristics of nano-fluids,” Int. J. Heat Mass Transfer 46, 851–862 (2003).

[CrossRef]

S. K. Das, S. U. S. Choi, W. Yu, and T. Pradeep, Nanofluids: Science and Technology (Wiley, 2008).

L. A. Dombrovsky, “The use of the transport approximation and diffusion-based models in radiative transfer calculations,” Comput. Therm. Sci. 4, 297–315 (2012).

[CrossRef]

L. A. Dombrovsky, V. Timchenko, and M. Jackson, “Indirect heating strategy for laser induced hyperthermia: an advanced thermal model,” Int. J. Heat Mass Transfer 55, 4688–4700 (2012).

[CrossRef]

L. A. Dombrovsky, V. Timchenko, M. Jackson, and G. H. Yeoh, “A combined transient thermal model for laser hyperthermia of tumors with embedded gold nanoshells,” Int. J. Heat Mass Transfer 54, 5459–5469 (2011).

[CrossRef]

L. A. Dombrovsky, Radiation Heat Transfer in Disperse Systems (Begell House, 1996).

L. A. Dombrovsky and D. Baillis, Thermal Radiation in Disperse Systems: An Engineering Approach (Begell House, 2010).

Y. L. Hewakuruppu, L. A. Dombrovsky, V. Timchenko, G. H. Yeoh, X. C. Jiang, and R. A. Taylor, “Optimisation of metallic nanoshell suspensions for radiation experiments,” Int. J. Trans. Phenomena13, 233–244 (2013).

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).

[CrossRef]

X. Huang and M. A. El-Sayed, “Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res. 1, 13–28 (2010).

[CrossRef]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).

[CrossRef]

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103, 3073–3077 (1999).

[CrossRef]

R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, and H. Tyagi, “Small particles, big impacts: a review of the diverse applications of nanofluids,” J. Appl. Phys. 113, 011301 (2013).

[CrossRef]

C. Nie, W. H. Marlow, and Y. A. Hassan, “Discussion of proposed mechanisms of thermal conductivity enhancement in nanofluids,” Int. J. Heat Mass Transfer 51, 1342–1348 (2008).

[CrossRef]

Y. L. Hewakuruppu, L. A. Dombrovsky, V. Timchenko, G. H. Yeoh, X. C. Jiang, and R. A. Taylor, “Optimisation of metallic nanoshell suspensions for radiation experiments,” Int. J. Trans. Phenomena13, 233–244 (2013).

S. Jain, D. G. Hirst, and J. M. O’Sullivan, “Gold nanoparticles as novel agents for cancer therapy,” Br. J. Radiol. 85, 101–113 (2012).

[CrossRef]

X. Huang and M. A. El-Sayed, “Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res. 1, 13–28 (2010).

[CrossRef]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 2004).

L. A. Dombrovsky, V. Timchenko, and M. Jackson, “Indirect heating strategy for laser induced hyperthermia: an advanced thermal model,” Int. J. Heat Mass Transfer 55, 4688–4700 (2012).

[CrossRef]

L. A. Dombrovsky, V. Timchenko, M. Jackson, and G. H. Yeoh, “A combined transient thermal model for laser hyperthermia of tumors with embedded gold nanoshells,” Int. J. Heat Mass Transfer 54, 5459–5469 (2011).

[CrossRef]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).

[CrossRef]

S. Jain, D. G. Hirst, and J. M. O’Sullivan, “Gold nanoparticles as novel agents for cancer therapy,” Br. J. Radiol. 85, 101–113 (2012).

[CrossRef]

Y. L. Hewakuruppu, L. A. Dombrovsky, V. Timchenko, G. H. Yeoh, X. C. Jiang, and R. A. Taylor, “Optimisation of metallic nanoshell suspensions for radiation experiments,” Int. J. Trans. Phenomena13, 233–244 (2013).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

S. Soni, H. Tyagi, R. A. Taylor, and A. Kumar, “Role of optical coefficients and healthy tissue-sparing characteristics in gold nanorod-assisted thermal therapy,” Int. J. Hyperthermia 29, 87–97 (2013).

[CrossRef]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).

[CrossRef]

A. Lenert and E. N. Wang, “Optimization of nanofluid volumetric receivers for solar thermal energy conversion,” Solar Energy 86, 253–265 (2012).

[CrossRef]

G. P. Peterson and C. H. Li, “Heat and mass transfer in fluids with nanoparticle suspensions,” Adv. Heat Transfer 39, 257–376 (2006).

[CrossRef]

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103, 3073–3077 (1999).

[CrossRef]

R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, and H. Tyagi, “Small particles, big impacts: a review of the diverse applications of nanofluids,” J. Appl. Phys. 113, 011301 (2013).

[CrossRef]

C. Nie, W. H. Marlow, and Y. A. Hassan, “Discussion of proposed mechanisms of thermal conductivity enhancement in nanofluids,” Int. J. Heat Mass Transfer 51, 1342–1348 (2008).

[CrossRef]

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103, 3073–3077 (1999).

[CrossRef]

S. W. Prescott and P. Mulvaney, “Gold nanorod extinction spectra,” J. Appl. Phys. 99, 123504 (2006).

[CrossRef]

C. Nie, W. H. Marlow, and Y. A. Hassan, “Discussion of proposed mechanisms of thermal conductivity enhancement in nanofluids,” Int. J. Heat Mass Transfer 51, 1342–1348 (2008).

[CrossRef]

S. Jain, D. G. Hirst, and J. M. O’Sullivan, “Gold nanoparticles as novel agents for cancer therapy,” Br. J. Radiol. 85, 101–113 (2012).

[CrossRef]

R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, and H. Tyagi, “Small particles, big impacts: a review of the diverse applications of nanofluids,” J. Appl. Phys. 113, 011301 (2013).

[CrossRef]

R. A. Taylor, P. E. Phelan, T. Otanicar, R. S. Prasher, and B. E. Phelan, “Socioeconomic impacts of heat transfer research,” Int. Commun. Heat Mass Transf. 39, 1467–1473 (2012).

[CrossRef]

R. A. Taylor, T. Otanicar, and G. Rosengarten, “Nanofluid-based optical filter optimization for PV/T systems,” Light 1, 1–7 (2012).

[CrossRef]

R. A. Taylor, P. E. Phelan, T. P. Otanicar, R. Adrian, and R. Prasher, “Nanofluid optical property characterization: towards efficient direct absorption solar collectors,” Nanoscale Res. Lett. 6, 225 (2011).

[CrossRef]

T. P. Otanicar, P. E. Phelan, R. S. Prasher, G. Rosengarten, and R. A. Taylor, “Nanofluid-based direct absorption solar collector,” J. Renewable Sustainable Energy 2, 033102 (2010).

[CrossRef]

G. P. Peterson and C. H. Li, “Heat and mass transfer in fluids with nanoparticle suspensions,” Adv. Heat Transfer 39, 257–376 (2006).

[CrossRef]

R. A. Taylor, P. E. Phelan, T. Otanicar, R. S. Prasher, and B. E. Phelan, “Socioeconomic impacts of heat transfer research,” Int. Commun. Heat Mass Transf. 39, 1467–1473 (2012).

[CrossRef]

R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, and H. Tyagi, “Small particles, big impacts: a review of the diverse applications of nanofluids,” J. Appl. Phys. 113, 011301 (2013).

[CrossRef]

R. A. Taylor, P. E. Phelan, T. Otanicar, R. S. Prasher, and B. E. Phelan, “Socioeconomic impacts of heat transfer research,” Int. Commun. Heat Mass Transf. 39, 1467–1473 (2012).

[CrossRef]

R. A. Taylor, P. E. Phelan, T. P. Otanicar, R. Adrian, and R. Prasher, “Nanofluid optical property characterization: towards efficient direct absorption solar collectors,” Nanoscale Res. Lett. 6, 225 (2011).

[CrossRef]

T. P. Otanicar, P. E. Phelan, R. S. Prasher, G. Rosengarten, and R. A. Taylor, “Nanofluid-based direct absorption solar collector,” J. Renewable Sustainable Energy 2, 033102 (2010).

[CrossRef]

R. A. Taylor and P. E. Phelan, “Pool boiling of nanofluids: comprehensive review of existing data and limited new data,” Int. J. Heat Mass Transfer 52, 5339–5347 (2009).

[CrossRef]

S. K. Das, S. U. S. Choi, W. Yu, and T. Pradeep, Nanofluids: Science and Technology (Wiley, 2008).

R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, and H. Tyagi, “Small particles, big impacts: a review of the diverse applications of nanofluids,” J. Appl. Phys. 113, 011301 (2013).

[CrossRef]

R. A. Taylor, P. E. Phelan, T. P. Otanicar, R. Adrian, and R. Prasher, “Nanofluid optical property characterization: towards efficient direct absorption solar collectors,” Nanoscale Res. Lett. 6, 225 (2011).

[CrossRef]

R. A. Taylor, P. E. Phelan, T. Otanicar, R. S. Prasher, and B. E. Phelan, “Socioeconomic impacts of heat transfer research,” Int. Commun. Heat Mass Transf. 39, 1467–1473 (2012).

[CrossRef]

T. P. Otanicar, P. E. Phelan, R. S. Prasher, G. Rosengarten, and R. A. Taylor, “Nanofluid-based direct absorption solar collector,” J. Renewable Sustainable Energy 2, 033102 (2010).

[CrossRef]

S. W. Prescott and P. Mulvaney, “Gold nanorod extinction spectra,” J. Appl. Phys. 99, 123504 (2006).

[CrossRef]

S. K. Das, N. Putra, and W. Roetzel, “Pool boiling characteristics of nano-fluids,” Int. J. Heat Mass Transfer 46, 851–862 (2003).

[CrossRef]

S. K. Das, N. Putra, and W. Roetzel, “Pool boiling characteristics of nano-fluids,” Int. J. Heat Mass Transfer 46, 851–862 (2003).

[CrossRef]

R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, and H. Tyagi, “Small particles, big impacts: a review of the diverse applications of nanofluids,” J. Appl. Phys. 113, 011301 (2013).

[CrossRef]

R. A. Taylor, T. Otanicar, and G. Rosengarten, “Nanofluid-based optical filter optimization for PV/T systems,” Light 1, 1–7 (2012).

[CrossRef]

T. P. Otanicar, P. E. Phelan, R. S. Prasher, G. Rosengarten, and R. A. Taylor, “Nanofluid-based direct absorption solar collector,” J. Renewable Sustainable Energy 2, 033102 (2010).

[CrossRef]

R. Siegel and C. M. Spuckler, “Approximate solution methods for spectral radiative transfer in high refractive index layers,” Int. J. Heat Mass Transfer 37, 403–413 (1994).

[CrossRef]

S. Soni, H. Tyagi, R. A. Taylor, and A. Kumar, “Role of optical coefficients and healthy tissue-sparing characteristics in gold nanorod-assisted thermal therapy,” Int. J. Hyperthermia 29, 87–97 (2013).

[CrossRef]

R. Siegel and C. M. Spuckler, “Approximate solution methods for spectral radiative transfer in high refractive index layers,” Int. J. Heat Mass Transfer 37, 403–413 (1994).

[CrossRef]

R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, and H. Tyagi, “Small particles, big impacts: a review of the diverse applications of nanofluids,” J. Appl. Phys. 113, 011301 (2013).

[CrossRef]

S. Soni, H. Tyagi, R. A. Taylor, and A. Kumar, “Role of optical coefficients and healthy tissue-sparing characteristics in gold nanorod-assisted thermal therapy,” Int. J. Hyperthermia 29, 87–97 (2013).

[CrossRef]

R. A. Taylor, P. E. Phelan, T. Otanicar, R. S. Prasher, and B. E. Phelan, “Socioeconomic impacts of heat transfer research,” Int. Commun. Heat Mass Transf. 39, 1467–1473 (2012).

[CrossRef]

R. A. Taylor, T. Otanicar, and G. Rosengarten, “Nanofluid-based optical filter optimization for PV/T systems,” Light 1, 1–7 (2012).

[CrossRef]

R. A. Taylor, P. E. Phelan, T. P. Otanicar, R. Adrian, and R. Prasher, “Nanofluid optical property characterization: towards efficient direct absorption solar collectors,” Nanoscale Res. Lett. 6, 225 (2011).

[CrossRef]

T. P. Otanicar, P. E. Phelan, R. S. Prasher, G. Rosengarten, and R. A. Taylor, “Nanofluid-based direct absorption solar collector,” J. Renewable Sustainable Energy 2, 033102 (2010).

[CrossRef]

R. A. Taylor and P. E. Phelan, “Pool boiling of nanofluids: comprehensive review of existing data and limited new data,” Int. J. Heat Mass Transfer 52, 5339–5347 (2009).

[CrossRef]

Y. L. Hewakuruppu, L. A. Dombrovsky, V. Timchenko, G. H. Yeoh, X. C. Jiang, and R. A. Taylor, “Optimisation of metallic nanoshell suspensions for radiation experiments,” Int. J. Trans. Phenomena13, 233–244 (2013).

L. A. Dombrovsky, V. Timchenko, and M. Jackson, “Indirect heating strategy for laser induced hyperthermia: an advanced thermal model,” Int. J. Heat Mass Transfer 55, 4688–4700 (2012).

[CrossRef]

L. A. Dombrovsky, V. Timchenko, M. Jackson, and G. H. Yeoh, “A combined transient thermal model for laser hyperthermia of tumors with embedded gold nanoshells,” Int. J. Heat Mass Transfer 54, 5459–5469 (2011).

[CrossRef]

Y. L. Hewakuruppu, L. A. Dombrovsky, V. Timchenko, G. H. Yeoh, X. C. Jiang, and R. A. Taylor, “Optimisation of metallic nanoshell suspensions for radiation experiments,” Int. J. Trans. Phenomena13, 233–244 (2013).

S. Soni, H. Tyagi, R. A. Taylor, and A. Kumar, “Role of optical coefficients and healthy tissue-sparing characteristics in gold nanorod-assisted thermal therapy,” Int. J. Hyperthermia 29, 87–97 (2013).

[CrossRef]

R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, and H. Tyagi, “Small particles, big impacts: a review of the diverse applications of nanofluids,” J. Appl. Phys. 113, 011301 (2013).

[CrossRef]

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

A. Lenert and E. N. Wang, “Optimization of nanofluid volumetric receivers for solar thermal energy conversion,” Solar Energy 86, 253–265 (2012).

[CrossRef]

L. A. Dombrovsky, V. Timchenko, M. Jackson, and G. H. Yeoh, “A combined transient thermal model for laser hyperthermia of tumors with embedded gold nanoshells,” Int. J. Heat Mass Transfer 54, 5459–5469 (2011).

[CrossRef]

Y. L. Hewakuruppu, L. A. Dombrovsky, V. Timchenko, G. H. Yeoh, X. C. Jiang, and R. A. Taylor, “Optimisation of metallic nanoshell suspensions for radiation experiments,” Int. J. Trans. Phenomena13, 233–244 (2013).

S. K. Das, S. U. S. Choi, W. Yu, and T. Pradeep, Nanofluids: Science and Technology (Wiley, 2008).

G. P. Peterson and C. H. Li, “Heat and mass transfer in fluids with nanoparticle suspensions,” Adv. Heat Transfer 39, 257–376 (2006).

[CrossRef]

S. Jain, D. G. Hirst, and J. M. O’Sullivan, “Gold nanoparticles as novel agents for cancer therapy,” Br. J. Radiol. 85, 101–113 (2012).

[CrossRef]

L. A. Dombrovsky, “The use of the transport approximation and diffusion-based models in radiative transfer calculations,” Comput. Therm. Sci. 4, 297–315 (2012).

[CrossRef]

R. A. Taylor, P. E. Phelan, T. Otanicar, R. S. Prasher, and B. E. Phelan, “Socioeconomic impacts of heat transfer research,” Int. Commun. Heat Mass Transf. 39, 1467–1473 (2012).

[CrossRef]

C. Nie, W. H. Marlow, and Y. A. Hassan, “Discussion of proposed mechanisms of thermal conductivity enhancement in nanofluids,” Int. J. Heat Mass Transfer 51, 1342–1348 (2008).

[CrossRef]

R. A. Taylor and P. E. Phelan, “Pool boiling of nanofluids: comprehensive review of existing data and limited new data,” Int. J. Heat Mass Transfer 52, 5339–5347 (2009).

[CrossRef]

L. A. Dombrovsky, V. Timchenko, M. Jackson, and G. H. Yeoh, “A combined transient thermal model for laser hyperthermia of tumors with embedded gold nanoshells,” Int. J. Heat Mass Transfer 54, 5459–5469 (2011).

[CrossRef]

L. A. Dombrovsky, V. Timchenko, and M. Jackson, “Indirect heating strategy for laser induced hyperthermia: an advanced thermal model,” Int. J. Heat Mass Transfer 55, 4688–4700 (2012).

[CrossRef]

R. Siegel and C. M. Spuckler, “Approximate solution methods for spectral radiative transfer in high refractive index layers,” Int. J. Heat Mass Transfer 37, 403–413 (1994).

[CrossRef]

S. K. Das, N. Putra, and W. Roetzel, “Pool boiling characteristics of nano-fluids,” Int. J. Heat Mass Transfer 46, 851–862 (2003).

[CrossRef]

S. Soni, H. Tyagi, R. A. Taylor, and A. Kumar, “Role of optical coefficients and healthy tissue-sparing characteristics in gold nanorod-assisted thermal therapy,” Int. J. Hyperthermia 29, 87–97 (2013).

[CrossRef]

X. Huang and M. A. El-Sayed, “Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res. 1, 13–28 (2010).

[CrossRef]

R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, and H. Tyagi, “Small particles, big impacts: a review of the diverse applications of nanofluids,” J. Appl. Phys. 113, 011301 (2013).

[CrossRef]

S. W. Prescott and P. Mulvaney, “Gold nanorod extinction spectra,” J. Appl. Phys. 99, 123504 (2006).

[CrossRef]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006).

[CrossRef]

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103, 3073–3077 (1999).

[CrossRef]

T. P. Otanicar, P. E. Phelan, R. S. Prasher, G. Rosengarten, and R. A. Taylor, “Nanofluid-based direct absorption solar collector,” J. Renewable Sustainable Energy 2, 033102 (2010).

[CrossRef]

R. A. Taylor, T. Otanicar, and G. Rosengarten, “Nanofluid-based optical filter optimization for PV/T systems,” Light 1, 1–7 (2012).

[CrossRef]

R. A. Taylor, P. E. Phelan, T. P. Otanicar, R. Adrian, and R. Prasher, “Nanofluid optical property characterization: towards efficient direct absorption solar collectors,” Nanoscale Res. Lett. 6, 225 (2011).

[CrossRef]

L. Jia and E. L. Thomas, “Optical forces and optical torques on various materials arising from optical lattices in the Lorentz–Mie regime,” Phys. Rev. B 84, 125128 (2011).

[CrossRef]

A. Lenert and E. N. Wang, “Optimization of nanofluid volumetric receivers for solar thermal energy conversion,” Solar Energy 86, 253–265 (2012).

[CrossRef]

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Y. L. Hewakuruppu, L. A. Dombrovsky, V. Timchenko, G. H. Yeoh, X. C. Jiang, and R. A. Taylor, “Optimisation of metallic nanoshell suspensions for radiation experiments,” Int. J. Trans. Phenomena13, 233–244 (2013).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 2004).

S. K. Das, S. U. S. Choi, W. Yu, and T. Pradeep, Nanofluids: Science and Technology (Wiley, 2008).

Nanopartz Inc., “Nanopartz: the gold nanoparticles for nanotechnology,” https://www.nanopartz.com/ .

L. A. Dombrovsky and D. Baillis, Thermal Radiation in Disperse Systems: An Engineering Approach (Begell House, 2010).

L. A. Dombrovsky, Radiation Heat Transfer in Disperse Systems (Begell House, 1996).