N. Valim, J. Brock, M. Leeser, and M. Niedre, “The effect of temporal impulse response on experimental reduction of photon scatter in time-resolved diffuse optical tomography,” Phys. Med. Biol. 58, 335–349 (2013).

[CrossRef]

X. Wang, B. Zhang, X. Cao, F. Liu, J. Luo, and J. Bai, “Acceleration of early photon fluorescence molecular tomography with graphics processing units,” Comput. Math. Methods Med. 2013, 297291 (2013).

[CrossRef]

S. Baldwin, “Compute Canada: advancing computational research,” J. Phys. 341, 012001 (2012).

[CrossRef]

Q. Fang and D. R. Kaeli, “Accelerating mesh-based Monte Carlo method on modern CPU architectures,” Biomed. Opt. Express 3, 3223–3230 (2012).

[CrossRef]

E. Lapointe, J. Pichette, and Y. Bérubé-Lauzière, “A multi-view time-domain noncontact diffuse optical tomography scanner with dual wavelength detection for intrinsic and fluorescence small animal imaging,” Rev. Sci. Instrum. 83, 063703 (2012).

[CrossRef]

R. W. Holt, K. M. Tichauer, H. Dehghani, B. W. Pogue, and F. Leblond, “Multiple-gate time domain diffuse fluorescence tomography allows more sparse tissue sampling without compromising image quality,” Opt. Lett. 37, 2559–2561 (2012).

[CrossRef]

A. A. Bogdanov, V. Metelev, S. Zhang, and A. T. N. Kumar, “Sensing of transcription factor binding via cyanine dye pair fluorescence lifetime changes,” Mol. BioSyst. 8, 2166–2173 (2012).

[CrossRef]

C. J. Goergen, H. H. Chen, A. Bogdanov, D. E. Sosnovik, and A. T. N. Kumar, “In vivo fluorescence lifetime detection of an activatable probe in infarcted myocardium,” J. Biomed. Opt. 17, 056001 (2012).

[CrossRef]

M. B. Aldrich, R. Guilliod, C. E. Fife, E. A. Maus, L. Smith, J. C. Rasmussen, and E. M. Sevick-Muraca, “Lymphatic abnormalities in the normal contralateral arms of subjects with breast cancer-related lymphedema as assessed by near-infrared fluorescent imaging,” Biomed. Opt. Express 3, 1256–1265 (2012).

[CrossRef]

J. Bouza Domínguez and Y. Bérubé-Lauzière, “Light propagation from fluorescent probes in biological tissues by coupled time-dependent parabolic simplified spherical harmonics equations,” Biomed. Opt. Express 2, 817–837 (2011).

[CrossRef]

A. D. Klose and T. Poschinger, “Excitation-resolved fluorescence tomography with simplified spherical harmonics equations,” Phys. Med. Biol. 56, 1443 (2011).

[CrossRef]

A. Liemert and A. Kienle, “Comparison between radiative transfer theory and the simplified spherical harmonics approximation for a semi-infinite geometry,” Opt. Lett. 36, 4041–4043 (2011).

[CrossRef]

J. Chen, V. Venugopal, and X. Intes, “Monte Carlo based method for fluorescence tomographic imaging with lifetime multiplexing using time gates,” Biomed. Opt. Express 2, 871–886 (2011).

[CrossRef]

B. Zhang, X. Cao, F. Liu, X. Liu, X. Wang, and J. Bai, “Early photon fluorescence tomography of a heterogeneous mouse model with the telegraph equation,” Appl. Opt. 50, 5397–5407 (2011).

[CrossRef]

L. Montejo, H.-K. K. Kim, and A. H. Hielscher, “A finite-volume algorithm for modeling light transport with the time-independent simplified spherical harmonics approximation to the equation of radiative transfer,” Proc. SPIE 7896, 78960J (2011).

[CrossRef]

M. Niedre and V. Ntziachristos, “Comparison of fluorescence tomographic imaging in mice with early arriving and quasi-continuous-wave photons,” Opt. Lett. 35, 369–371 (2010).

[CrossRef]

N. Valim, J. Brock, and M. Niedre, “Experimental measurement of time-dependant photon scatter for diffuse optical tomography,” J. Biomed. Opt. 15, 065006 (2010).

[CrossRef]

A. Da Silva, N. Djaker, N. Ducros, J.-M. Dinten, and P. Rizo, “Real time optical method for localization of inclusions embedded in turbid media,” Opt. Express 18, 7753–7762 (2010).

[CrossRef]

Q. Fang, “Mesh-based monte carlo method using fast ray-tracing in plucker coordinates,” Biomed. Opt. Express 1, 165–175 (2010).

[CrossRef]

J. Pichette, E. Lapointe, and Y. Bérubé-Lauzière, “Three-dimensional localization of discrete fluorescent inclusions from multiple tomographic projections in the time-domain,” Proc. SPIE 7174, 71741A (2009).

[CrossRef]

F. Leblond, H. Dehghani, D. Kepshire, and B. W. Pogue, “Early photon fluorescence tomography: spatial resolution improvements and noise stability considerations,” J. Opt. Soc. Am. A 26, 1444–1457 (2009).

[CrossRef]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25, 711–732 (2009).

[CrossRef]

R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14, 024004 (2009).

[CrossRef]

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7, 591–607 (2008).

[CrossRef]

M. J. Niedre, R. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. USA. 105, 19126–19131 (2008).

[CrossRef]

D. C. Comsa, T. J. Farrell, and M. S. Patterson, “Quantitative fluorescence imaging of point-like sources in small animals,” Phys. Med. Biol. 53, 5797–5814 (2008).

[CrossRef]

S.-H. Han and D. J. Hall, “Estimating the depth and lifetime of a fluorescent inclusion in a turbid medium using a simple time-domain optical method,” Opt. Lett. 33, 1035–1037 (2008).

[CrossRef]

V. Robichaud and Y. Bérubé-Lauzière, “A wavefront intersection algorithm for time-of-flight noncontact diffuse optical tomography of fluorescent inclusions in thick turbid media,” Proc. SPIE 6796, 67960T (2008).

[CrossRef]

J. Pichette, E. Lapointe, and Y. Bérubé-Lauzière, “Time-domain 3D localization of fluorescent inclusions in a thick scattering medium,” Proc. SPIE 7099, 709907 (2008).

[CrossRef]

A. Laidevant, A. Da Silva, M. Berger, J. Boutet, J.-M. Dinten, and A. Boccara, “Analytical method for localizing a fluorescent inclusion in a turbid medium,” Appl. Opt. 46, 2131–2137 (2007).

[CrossRef]

B. Dogdas, D. Stout, A. Chatziioannou, and R. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52, 577–587 (2007).

[CrossRef]

Y. Bérubé-Lauzière and V. Robichaud, “Time-of-flight noncontact fluorescence diffuse optical tomography with numerical constant fraction discrimination,” Proc. SPIE 6629, 66290Y (2007).

J. Rao, A. Dragulescu-Andrasi, and H. Yao, “Fluorescence imaging in vivo: recent advances,” Curr. Opin. Biotechnol. 18, 17–25 (2007).

[CrossRef]

A. Corlu, R. Choe, T. Durduran, M. Rosen, M. Schweiger, S. Arridge, M. Schnall, and A. Yodh, “Three dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696–6716 (2007).

[CrossRef]

V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8, 1–33 (2006).

[CrossRef]

A. Klose and E. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220, 441–470 (2006).

[CrossRef]

A. T. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, and B. J. Bacskai, “Time resolved fluorescence tomography of turbid media based on lifetime contrast,” Opt. Express 14, 12255–12270 (2006).

[CrossRef]

Y. Bérubé-Lauzière and V. Robichaud, “Time-resolved fluorescence measurements for diffuse optical tomography using ultrafast time-correlated single photon counting,” Proc. SPIE 6372, 637206 (2006).

[CrossRef]

A. Hielscher, “Optical tomographic imaging of small animals,” Curr. Opin. Biotechnol. 16, 79–88 (2005).

[CrossRef]

A. Klose, V. Ntziachristos, and A. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys. 202, 323–345 (2005).

[CrossRef]

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9, 123–128 (2003).

[CrossRef]

R. Rajagopalan, P. Uetrecht, J. Bugaj, S. Achilefu, and R. Dorshow, “Stabilization of the optical tracer agent indocyanine green using noncovalent interactions,” Photochem. Photobiol. 71, 347–350 (2000).

[CrossRef]

J. Wu, L. Perelman, R. Dasari, and M. Feld, “Fluorescence tomographic imaging in turbid media using early arriving photons and laplace transforms,” PNAS Med. Sci. 94, 8783–8788 (1997).

R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14, 024004 (2009).

[CrossRef]

R. Rajagopalan, P. Uetrecht, J. Bugaj, S. Achilefu, and R. Dorshow, “Stabilization of the optical tracer agent indocyanine green using noncovalent interactions,” Photochem. Photobiol. 71, 347–350 (2000).

[CrossRef]

M. J. Niedre, R. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. USA. 105, 19126–19131 (2008).

[CrossRef]

R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14, 024004 (2009).

[CrossRef]

A. Corlu, R. Choe, T. Durduran, M. Rosen, M. Schweiger, S. Arridge, M. Schnall, and A. Yodh, “Three dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696–6716 (2007).

[CrossRef]

X. Wang, B. Zhang, X. Cao, F. Liu, J. Luo, and J. Bai, “Acceleration of early photon fluorescence molecular tomography with graphics processing units,” Comput. Math. Methods Med. 2013, 297291 (2013).

[CrossRef]

B. Zhang, X. Cao, F. Liu, X. Liu, X. Wang, and J. Bai, “Early photon fluorescence tomography of a heterogeneous mouse model with the telegraph equation,” Appl. Opt. 50, 5397–5407 (2011).

[CrossRef]

S. Baldwin, “Compute Canada: advancing computational research,” J. Phys. 341, 012001 (2012).

[CrossRef]

W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, 2005).

W. Becker, The bh TCSPC Handbook, 5th ed. (Becker&Hickl GmbH, 2012).

E. Lapointe, J. Pichette, and Y. Bérubé-Lauzière, “A multi-view time-domain noncontact diffuse optical tomography scanner with dual wavelength detection for intrinsic and fluorescence small animal imaging,” Rev. Sci. Instrum. 83, 063703 (2012).

[CrossRef]

J. Bouza Domínguez and Y. Bérubé-Lauzière, “Light propagation from fluorescent probes in biological tissues by coupled time-dependent parabolic simplified spherical harmonics equations,” Biomed. Opt. Express 2, 817–837 (2011).

[CrossRef]

J. Pichette, E. Lapointe, and Y. Bérubé-Lauzière, “Three-dimensional localization of discrete fluorescent inclusions from multiple tomographic projections in the time-domain,” Proc. SPIE 7174, 71741A (2009).

[CrossRef]

J. Pichette, E. Lapointe, and Y. Bérubé-Lauzière, “Time-domain 3D localization of fluorescent inclusions in a thick scattering medium,” Proc. SPIE 7099, 709907 (2008).

[CrossRef]

V. Robichaud and Y. Bérubé-Lauzière, “A wavefront intersection algorithm for time-of-flight noncontact diffuse optical tomography of fluorescent inclusions in thick turbid media,” Proc. SPIE 6796, 67960T (2008).

[CrossRef]

Y. Bérubé-Lauzière and V. Robichaud, “Time-of-flight noncontact fluorescence diffuse optical tomography with numerical constant fraction discrimination,” Proc. SPIE 6629, 66290Y (2007).

Y. Bérubé-Lauzière and V. Robichaud, “Time-resolved fluorescence measurements for diffuse optical tomography using ultrafast time-correlated single photon counting,” Proc. SPIE 6372, 637206 (2006).

[CrossRef]

J. Bouza-Domínguez and Y. Bérubé-Lauzière, “Radiative transfer and optical imaging in biological media by low-order transport approximations: the simplified spherical polynomials (SP) approach,” in Light Scattering Reviews 8 (Springer/Praxis Publishing Ltd., 2013), Chap. 6, pp. 269–315.

A. T. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, and B. J. Bacskai, “Time resolved fluorescence tomography of turbid media based on lifetime contrast,” Opt. Express 14, 12255–12270 (2006).

[CrossRef]

Q. Fang and D. A. Boas, “Tetrahedral mesh generation from volumetric binary and gray-scale images,” in Proceedings of the Sixth IEEE International Conference on Symposium on Biomedical Imaging: From Nano to Macro (IEEE, 2009), pp. 1142–1145.

C. J. Goergen, H. H. Chen, A. Bogdanov, D. E. Sosnovik, and A. T. N. Kumar, “In vivo fluorescence lifetime detection of an activatable probe in infarcted myocardium,” J. Biomed. Opt. 17, 056001 (2012).

[CrossRef]

A. A. Bogdanov, V. Metelev, S. Zhang, and A. T. N. Kumar, “Sensing of transcription factor binding via cyanine dye pair fluorescence lifetime changes,” Mol. BioSyst. 8, 2166–2173 (2012).

[CrossRef]

J. Bouza-Domínguez and Y. Bérubé-Lauzière, “Radiative transfer and optical imaging in biological media by low-order transport approximations: the simplified spherical polynomials (SP) approach,” in Light Scattering Reviews 8 (Springer/Praxis Publishing Ltd., 2013), Chap. 6, pp. 269–315.

N. Valim, J. Brock, M. Leeser, and M. Niedre, “The effect of temporal impulse response on experimental reduction of photon scatter in time-resolved diffuse optical tomography,” Phys. Med. Biol. 58, 335–349 (2013).

[CrossRef]

N. Valim, J. Brock, and M. Niedre, “Experimental measurement of time-dependant photon scatter for diffuse optical tomography,” J. Biomed. Opt. 15, 065006 (2010).

[CrossRef]

R. Rajagopalan, P. Uetrecht, J. Bugaj, S. Achilefu, and R. Dorshow, “Stabilization of the optical tracer agent indocyanine green using noncovalent interactions,” Photochem. Photobiol. 71, 347–350 (2000).

[CrossRef]

X. Wang, B. Zhang, X. Cao, F. Liu, J. Luo, and J. Bai, “Acceleration of early photon fluorescence molecular tomography with graphics processing units,” Comput. Math. Methods Med. 2013, 297291 (2013).

[CrossRef]

B. Zhang, X. Cao, F. Liu, X. Liu, X. Wang, and J. Bai, “Early photon fluorescence tomography of a heterogeneous mouse model with the telegraph equation,” Appl. Opt. 50, 5397–5407 (2011).

[CrossRef]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25, 711–732 (2009).

[CrossRef]

B. Dogdas, D. Stout, A. Chatziioannou, and R. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52, 577–587 (2007).

[CrossRef]

C. J. Goergen, H. H. Chen, A. Bogdanov, D. E. Sosnovik, and A. T. N. Kumar, “In vivo fluorescence lifetime detection of an activatable probe in infarcted myocardium,” J. Biomed. Opt. 17, 056001 (2012).

[CrossRef]

A. Corlu, R. Choe, T. Durduran, M. Rosen, M. Schweiger, S. Arridge, M. Schnall, and A. Yodh, “Three dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696–6716 (2007).

[CrossRef]

D. C. Comsa, T. J. Farrell, and M. S. Patterson, “Quantitative fluorescence imaging of point-like sources in small animals,” Phys. Med. Biol. 53, 5797–5814 (2008).

[CrossRef]

A. Corlu, R. Choe, T. Durduran, M. Rosen, M. Schweiger, S. Arridge, M. Schnall, and A. Yodh, “Three dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696–6716 (2007).

[CrossRef]

R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14, 024004 (2009).

[CrossRef]

A. Da Silva, N. Djaker, N. Ducros, J.-M. Dinten, and P. Rizo, “Real time optical method for localization of inclusions embedded in turbid media,” Opt. Express 18, 7753–7762 (2010).

[CrossRef]

A. Laidevant, A. Da Silva, M. Berger, J. Boutet, J.-M. Dinten, and A. Boccara, “Analytical method for localizing a fluorescent inclusion in a turbid medium,” Appl. Opt. 46, 2131–2137 (2007).

[CrossRef]

J. Wu, L. Perelman, R. Dasari, and M. Feld, “Fluorescence tomographic imaging in turbid media using early arriving photons and laplace transforms,” PNAS Med. Sci. 94, 8783–8788 (1997).

J. Wu, Y. Wang, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Time-resolved multichannel imaging of fluorescent objects embedded in turbid media,” Opt. Lett. 20, 489–491 (1995).

[CrossRef]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25, 711–732 (2009).

[CrossRef]

M. J. Niedre, R. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. USA. 105, 19126–19131 (2008).

[CrossRef]

R. W. Holt, K. M. Tichauer, H. Dehghani, B. W. Pogue, and F. Leblond, “Multiple-gate time domain diffuse fluorescence tomography allows more sparse tissue sampling without compromising image quality,” Opt. Lett. 37, 2559–2561 (2012).

[CrossRef]

F. Leblond, H. Dehghani, D. Kepshire, and B. W. Pogue, “Early photon fluorescence tomography: spatial resolution improvements and noise stability considerations,” J. Opt. Soc. Am. A 26, 1444–1457 (2009).

[CrossRef]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25, 711–732 (2009).

[CrossRef]

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and Other Diffusive Media: Theory, Solutions, and Software (SPIE, 2009).

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7, 591–607 (2008).

[CrossRef]

A. Da Silva, N. Djaker, N. Ducros, J.-M. Dinten, and P. Rizo, “Real time optical method for localization of inclusions embedded in turbid media,” Opt. Express 18, 7753–7762 (2010).

[CrossRef]

A. Laidevant, A. Da Silva, M. Berger, J. Boutet, J.-M. Dinten, and A. Boccara, “Analytical method for localizing a fluorescent inclusion in a turbid medium,” Appl. Opt. 46, 2131–2137 (2007).

[CrossRef]

B. Dogdas, D. Stout, A. Chatziioannou, and R. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52, 577–587 (2007).

[CrossRef]

R. Rajagopalan, P. Uetrecht, J. Bugaj, S. Achilefu, and R. Dorshow, “Stabilization of the optical tracer agent indocyanine green using noncovalent interactions,” Photochem. Photobiol. 71, 347–350 (2000).

[CrossRef]

J. Rao, A. Dragulescu-Andrasi, and H. Yao, “Fluorescence imaging in vivo: recent advances,” Curr. Opin. Biotechnol. 18, 17–25 (2007).

[CrossRef]

A. Corlu, R. Choe, T. Durduran, M. Rosen, M. Schweiger, S. Arridge, M. Schnall, and A. Yodh, “Three dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696–6716 (2007).

[CrossRef]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25, 711–732 (2009).

[CrossRef]

Q. Fang and D. R. Kaeli, “Accelerating mesh-based Monte Carlo method on modern CPU architectures,” Biomed. Opt. Express 3, 3223–3230 (2012).

[CrossRef]

Q. Fang, “Mesh-based monte carlo method using fast ray-tracing in plucker coordinates,” Biomed. Opt. Express 1, 165–175 (2010).

[CrossRef]

Q. Fang, “Mesh-based Monte Carlo (MMC),” mcx.sourceforge.net/cgi-bin/index.cgi?MMC (last consulted in December 2012).

Q. Fang and D. A. Boas, “Tetrahedral mesh generation from volumetric binary and gray-scale images,” in Proceedings of the Sixth IEEE International Conference on Symposium on Biomedical Imaging: From Nano to Macro (IEEE, 2009), pp. 1142–1145.

D. C. Comsa, T. J. Farrell, and M. S. Patterson, “Quantitative fluorescence imaging of point-like sources in small animals,” Phys. Med. Biol. 53, 5797–5814 (2008).

[CrossRef]

J. Wu, L. Perelman, R. Dasari, and M. Feld, “Fluorescence tomographic imaging in turbid media using early arriving photons and laplace transforms,” PNAS Med. Sci. 94, 8783–8788 (1997).

J. Wu, Y. Wang, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Time-resolved multichannel imaging of fluorescent objects embedded in turbid media,” Opt. Lett. 20, 489–491 (1995).

[CrossRef]

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7, 591–607 (2008).

[CrossRef]

C. J. Goergen, H. H. Chen, A. Bogdanov, D. E. Sosnovik, and A. T. N. Kumar, “In vivo fluorescence lifetime detection of an activatable probe in infarcted myocardium,” J. Biomed. Opt. 17, 056001 (2012).

[CrossRef]

A. Hielscher, “Optical tomographic imaging of small animals,” Curr. Opin. Biotechnol. 16, 79–88 (2005).

[CrossRef]

A. Klose, V. Ntziachristos, and A. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys. 202, 323–345 (2005).

[CrossRef]

L. Montejo, H.-K. K. Kim, and A. H. Hielscher, “A finite-volume algorithm for modeling light transport with the time-independent simplified spherical harmonics approximation to the equation of radiative transfer,” Proc. SPIE 7896, 78960J (2011).

[CrossRef]

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and Other Diffusive Media: Theory, Solutions, and Software (SPIE, 2009).

L. Montejo, H.-K. K. Kim, and A. H. Hielscher, “A finite-volume algorithm for modeling light transport with the time-independent simplified spherical harmonics approximation to the equation of radiative transfer,” Proc. SPIE 7896, 78960J (2011).

[CrossRef]

M. J. Niedre, R. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. USA. 105, 19126–19131 (2008).

[CrossRef]

A. Klose and E. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220, 441–470 (2006).

[CrossRef]

A. Klose, V. Ntziachristos, and A. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys. 202, 323–345 (2005).

[CrossRef]

A. D. Klose and T. Poschinger, “Excitation-resolved fluorescence tomography with simplified spherical harmonics equations,” Phys. Med. Biol. 56, 1443 (2011).

[CrossRef]

A. D. Klose, “Radiative transfer of luminescence light in biological tissue,” in Light Scattering Reviews 4: Single Light Scattering and Radiative Transfer (Springer, 2009), Chap. 6, pp. 293–345.

C. J. Goergen, H. H. Chen, A. Bogdanov, D. E. Sosnovik, and A. T. N. Kumar, “In vivo fluorescence lifetime detection of an activatable probe in infarcted myocardium,” J. Biomed. Opt. 17, 056001 (2012).

[CrossRef]

A. A. Bogdanov, V. Metelev, S. Zhang, and A. T. N. Kumar, “Sensing of transcription factor binding via cyanine dye pair fluorescence lifetime changes,” Mol. BioSyst. 8, 2166–2173 (2012).

[CrossRef]

J. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).

E. Lapointe, J. Pichette, and Y. Bérubé-Lauzière, “A multi-view time-domain noncontact diffuse optical tomography scanner with dual wavelength detection for intrinsic and fluorescence small animal imaging,” Rev. Sci. Instrum. 83, 063703 (2012).

[CrossRef]

J. Pichette, E. Lapointe, and Y. Bérubé-Lauzière, “Three-dimensional localization of discrete fluorescent inclusions from multiple tomographic projections in the time-domain,” Proc. SPIE 7174, 71741A (2009).

[CrossRef]

J. Pichette, E. Lapointe, and Y. Bérubé-Lauzière, “Time-domain 3D localization of fluorescent inclusions in a thick scattering medium,” Proc. SPIE 7099, 709907 (2008).

[CrossRef]

A. Klose and E. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220, 441–470 (2006).

[CrossRef]

B. Dogdas, D. Stout, A. Chatziioannou, and R. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52, 577–587 (2007).

[CrossRef]

R. W. Holt, K. M. Tichauer, H. Dehghani, B. W. Pogue, and F. Leblond, “Multiple-gate time domain diffuse fluorescence tomography allows more sparse tissue sampling without compromising image quality,” Opt. Lett. 37, 2559–2561 (2012).

[CrossRef]

F. Leblond, H. Dehghani, D. Kepshire, and B. W. Pogue, “Early photon fluorescence tomography: spatial resolution improvements and noise stability considerations,” J. Opt. Soc. Am. A 26, 1444–1457 (2009).

[CrossRef]

N. Valim, J. Brock, M. Leeser, and M. Niedre, “The effect of temporal impulse response on experimental reduction of photon scatter in time-resolved diffuse optical tomography,” Phys. Med. Biol. 58, 335–349 (2013).

[CrossRef]

X. Wang, B. Zhang, X. Cao, F. Liu, J. Luo, and J. Bai, “Acceleration of early photon fluorescence molecular tomography with graphics processing units,” Comput. Math. Methods Med. 2013, 297291 (2013).

[CrossRef]

B. Zhang, X. Cao, F. Liu, X. Liu, X. Wang, and J. Bai, “Early photon fluorescence tomography of a heterogeneous mouse model with the telegraph equation,” Appl. Opt. 50, 5397–5407 (2011).

[CrossRef]

X. Wang, B. Zhang, X. Cao, F. Liu, J. Luo, and J. Bai, “Acceleration of early photon fluorescence molecular tomography with graphics processing units,” Comput. Math. Methods Med. 2013, 297291 (2013).

[CrossRef]

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and Other Diffusive Media: Theory, Solutions, and Software (SPIE, 2009).

A. A. Bogdanov, V. Metelev, S. Zhang, and A. T. N. Kumar, “Sensing of transcription factor binding via cyanine dye pair fluorescence lifetime changes,” Mol. BioSyst. 8, 2166–2173 (2012).

[CrossRef]

L. Montejo, H.-K. K. Kim, and A. H. Hielscher, “A finite-volume algorithm for modeling light transport with the time-independent simplified spherical harmonics approximation to the equation of radiative transfer,” Proc. SPIE 7896, 78960J (2011).

[CrossRef]

N. Valim, J. Brock, M. Leeser, and M. Niedre, “The effect of temporal impulse response on experimental reduction of photon scatter in time-resolved diffuse optical tomography,” Phys. Med. Biol. 58, 335–349 (2013).

[CrossRef]

N. Valim, J. Brock, and M. Niedre, “Experimental measurement of time-dependant photon scatter for diffuse optical tomography,” J. Biomed. Opt. 15, 065006 (2010).

[CrossRef]

M. Niedre and V. Ntziachristos, “Comparison of fluorescence tomographic imaging in mice with early arriving and quasi-continuous-wave photons,” Opt. Lett. 35, 369–371 (2010).

[CrossRef]

M. J. Niedre, R. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. USA. 105, 19126–19131 (2008).

[CrossRef]

R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14, 024004 (2009).

[CrossRef]

M. Niedre and V. Ntziachristos, “Comparison of fluorescence tomographic imaging in mice with early arriving and quasi-continuous-wave photons,” Opt. Lett. 35, 369–371 (2010).

[CrossRef]

M. J. Niedre, R. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. USA. 105, 19126–19131 (2008).

[CrossRef]

V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8, 1–33 (2006).

[CrossRef]

A. Klose, V. Ntziachristos, and A. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys. 202, 323–345 (2005).

[CrossRef]

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9, 123–128 (2003).

[CrossRef]

J. Ripoll, M. Nieto-Vesperinas, R. Weissleder, and V. Ntziachristos, “Fast analytical approximation for arbitrary geometries in diffuse optical tomography,” Opt. Lett. 27, 527–529 (2002).

[CrossRef]

V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized born approximation,” Opt. Lett. 26, 893–895 (2001).

[CrossRef]

M. A. O’Leary, “Imaging with diffuse photon density waves,” Ph.D. thesis, University of Pennsylvania (1996).

D. C. Comsa, T. J. Farrell, and M. S. Patterson, “Quantitative fluorescence imaging of point-like sources in small animals,” Phys. Med. Biol. 53, 5797–5814 (2008).

[CrossRef]

R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14, 024004 (2009).

[CrossRef]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25, 711–732 (2009).

[CrossRef]

J. Wu, L. Perelman, R. Dasari, and M. Feld, “Fluorescence tomographic imaging in turbid media using early arriving photons and laplace transforms,” PNAS Med. Sci. 94, 8783–8788 (1997).

J. Wu, Y. Wang, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Time-resolved multichannel imaging of fluorescent objects embedded in turbid media,” Opt. Lett. 20, 489–491 (1995).

[CrossRef]

E. Lapointe, J. Pichette, and Y. Bérubé-Lauzière, “A multi-view time-domain noncontact diffuse optical tomography scanner with dual wavelength detection for intrinsic and fluorescence small animal imaging,” Rev. Sci. Instrum. 83, 063703 (2012).

[CrossRef]

J. Pichette, E. Lapointe, and Y. Bérubé-Lauzière, “Three-dimensional localization of discrete fluorescent inclusions from multiple tomographic projections in the time-domain,” Proc. SPIE 7174, 71741A (2009).

[CrossRef]

J. Pichette, E. Lapointe, and Y. Bérubé-Lauzière, “Time-domain 3D localization of fluorescent inclusions in a thick scattering medium,” Proc. SPIE 7099, 709907 (2008).

[CrossRef]

R. W. Holt, K. M. Tichauer, H. Dehghani, B. W. Pogue, and F. Leblond, “Multiple-gate time domain diffuse fluorescence tomography allows more sparse tissue sampling without compromising image quality,” Opt. Lett. 37, 2559–2561 (2012).

[CrossRef]

F. Leblond, H. Dehghani, D. Kepshire, and B. W. Pogue, “Early photon fluorescence tomography: spatial resolution improvements and noise stability considerations,” J. Opt. Soc. Am. A 26, 1444–1457 (2009).

[CrossRef]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25, 711–732 (2009).

[CrossRef]

A. D. Klose and T. Poschinger, “Excitation-resolved fluorescence tomography with simplified spherical harmonics equations,” Phys. Med. Biol. 56, 1443 (2011).

[CrossRef]

R. Rajagopalan, P. Uetrecht, J. Bugaj, S. Achilefu, and R. Dorshow, “Stabilization of the optical tracer agent indocyanine green using noncovalent interactions,” Photochem. Photobiol. 71, 347–350 (2000).

[CrossRef]

J. Rao, A. Dragulescu-Andrasi, and H. Yao, “Fluorescence imaging in vivo: recent advances,” Curr. Opin. Biotechnol. 18, 17–25 (2007).

[CrossRef]

V. Robichaud and Y. Bérubé-Lauzière, “A wavefront intersection algorithm for time-of-flight noncontact diffuse optical tomography of fluorescent inclusions in thick turbid media,” Proc. SPIE 6796, 67960T (2008).

[CrossRef]

Y. Bérubé-Lauzière and V. Robichaud, “Time-of-flight noncontact fluorescence diffuse optical tomography with numerical constant fraction discrimination,” Proc. SPIE 6629, 66290Y (2007).

Y. Bérubé-Lauzière and V. Robichaud, “Time-resolved fluorescence measurements for diffuse optical tomography using ultrafast time-correlated single photon counting,” Proc. SPIE 6372, 637206 (2006).

[CrossRef]

A. Corlu, R. Choe, T. Durduran, M. Rosen, M. Schweiger, S. Arridge, M. Schnall, and A. Yodh, “Three dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696–6716 (2007).

[CrossRef]

A. Corlu, R. Choe, T. Durduran, M. Rosen, M. Schweiger, S. Arridge, M. Schnall, and A. Yodh, “Three dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696–6716 (2007).

[CrossRef]

A. Corlu, R. Choe, T. Durduran, M. Rosen, M. Schweiger, S. Arridge, M. Schnall, and A. Yodh, “Three dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696–6716 (2007).

[CrossRef]

C. J. Goergen, H. H. Chen, A. Bogdanov, D. E. Sosnovik, and A. T. N. Kumar, “In vivo fluorescence lifetime detection of an activatable probe in infarcted myocardium,” J. Biomed. Opt. 17, 056001 (2012).

[CrossRef]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25, 711–732 (2009).

[CrossRef]

B. Dogdas, D. Stout, A. Chatziioannou, and R. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52, 577–587 (2007).

[CrossRef]

R. Rajagopalan, P. Uetrecht, J. Bugaj, S. Achilefu, and R. Dorshow, “Stabilization of the optical tracer agent indocyanine green using noncovalent interactions,” Photochem. Photobiol. 71, 347–350 (2000).

[CrossRef]

N. Valim, J. Brock, M. Leeser, and M. Niedre, “The effect of temporal impulse response on experimental reduction of photon scatter in time-resolved diffuse optical tomography,” Phys. Med. Biol. 58, 335–349 (2013).

[CrossRef]

N. Valim, J. Brock, and M. Niedre, “Experimental measurement of time-dependant photon scatter for diffuse optical tomography,” J. Biomed. Opt. 15, 065006 (2010).

[CrossRef]

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7, 591–607 (2008).

[CrossRef]

L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley Interscience, 2007).

X. Wang, B. Zhang, X. Cao, F. Liu, J. Luo, and J. Bai, “Acceleration of early photon fluorescence molecular tomography with graphics processing units,” Comput. Math. Methods Med. 2013, 297291 (2013).

[CrossRef]

B. Zhang, X. Cao, F. Liu, X. Liu, X. Wang, and J. Bai, “Early photon fluorescence tomography of a heterogeneous mouse model with the telegraph equation,” Appl. Opt. 50, 5397–5407 (2011).

[CrossRef]

D. J. Hall, G. Ma, F. Lesage, and Y. Wang, “Simple time-domain optical method for estimating the depth and concentration of a fluorescent inclusion in a turbid medium,” Opt. Lett. 29, 2258–2260 (2004).

[CrossRef]

J. Wu, Y. Wang, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Time-resolved multichannel imaging of fluorescent objects embedded in turbid media,” Opt. Lett. 20, 489–491 (1995).

[CrossRef]

M. J. Niedre, R. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. USA. 105, 19126–19131 (2008).

[CrossRef]

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9, 123–128 (2003).

[CrossRef]

J. Ripoll, M. Nieto-Vesperinas, R. Weissleder, and V. Ntziachristos, “Fast analytical approximation for arbitrary geometries in diffuse optical tomography,” Opt. Lett. 27, 527–529 (2002).

[CrossRef]

V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized born approximation,” Opt. Lett. 26, 893–895 (2001).

[CrossRef]

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7, 591–607 (2008).

[CrossRef]

L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley Interscience, 2007).

J. Wu, L. Perelman, R. Dasari, and M. Feld, “Fluorescence tomographic imaging in turbid media using early arriving photons and laplace transforms,” PNAS Med. Sci. 94, 8783–8788 (1997).

J. Wu, Y. Wang, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Time-resolved multichannel imaging of fluorescent objects embedded in turbid media,” Opt. Lett. 20, 489–491 (1995).

[CrossRef]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25, 711–732 (2009).

[CrossRef]

J. Rao, A. Dragulescu-Andrasi, and H. Yao, “Fluorescence imaging in vivo: recent advances,” Curr. Opin. Biotechnol. 18, 17–25 (2007).

[CrossRef]

R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14, 024004 (2009).

[CrossRef]

A. Corlu, R. Choe, T. Durduran, M. Rosen, M. Schweiger, S. Arridge, M. Schnall, and A. Yodh, “Three dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696–6716 (2007).

[CrossRef]

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and Other Diffusive Media: Theory, Solutions, and Software (SPIE, 2009).

X. Wang, B. Zhang, X. Cao, F. Liu, J. Luo, and J. Bai, “Acceleration of early photon fluorescence molecular tomography with graphics processing units,” Comput. Math. Methods Med. 2013, 297291 (2013).

[CrossRef]

B. Zhang, X. Cao, F. Liu, X. Liu, X. Wang, and J. Bai, “Early photon fluorescence tomography of a heterogeneous mouse model with the telegraph equation,” Appl. Opt. 50, 5397–5407 (2011).

[CrossRef]

A. A. Bogdanov, V. Metelev, S. Zhang, and A. T. N. Kumar, “Sensing of transcription factor binding via cyanine dye pair fluorescence lifetime changes,” Mol. BioSyst. 8, 2166–2173 (2012).

[CrossRef]

V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8, 1–33 (2006).

[CrossRef]

B. Zhang, X. Cao, F. Liu, X. Liu, X. Wang, and J. Bai, “Early photon fluorescence tomography of a heterogeneous mouse model with the telegraph equation,” Appl. Opt. 50, 5397–5407 (2011).

[CrossRef]

A. Laidevant, A. Da Silva, M. Berger, J. Boutet, J.-M. Dinten, and A. Boccara, “Analytical method for localizing a fluorescent inclusion in a turbid medium,” Appl. Opt. 46, 2131–2137 (2007).

[CrossRef]

X. Li, M. O’Leary, D. Boas, and B. Chance, “Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications,” Appl. Opt. 35, 3746–3758 (1996).

[CrossRef]

Q. Fang, “Mesh-based monte carlo method using fast ray-tracing in plucker coordinates,” Biomed. Opt. Express 1, 165–175 (2010).

[CrossRef]

Q. Fang and D. R. Kaeli, “Accelerating mesh-based Monte Carlo method on modern CPU architectures,” Biomed. Opt. Express 3, 3223–3230 (2012).

[CrossRef]

J. Chen, V. Venugopal, and X. Intes, “Monte Carlo based method for fluorescence tomographic imaging with lifetime multiplexing using time gates,” Biomed. Opt. Express 2, 871–886 (2011).

[CrossRef]

M. B. Aldrich, R. Guilliod, C. E. Fife, E. A. Maus, L. Smith, J. C. Rasmussen, and E. M. Sevick-Muraca, “Lymphatic abnormalities in the normal contralateral arms of subjects with breast cancer-related lymphedema as assessed by near-infrared fluorescent imaging,” Biomed. Opt. Express 3, 1256–1265 (2012).

[CrossRef]

J. Bouza Domínguez and Y. Bérubé-Lauzière, “Light propagation from fluorescent probes in biological tissues by coupled time-dependent parabolic simplified spherical harmonics equations,” Biomed. Opt. Express 2, 817–837 (2011).

[CrossRef]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng. 25, 711–732 (2009).

[CrossRef]

X. Wang, B. Zhang, X. Cao, F. Liu, J. Luo, and J. Bai, “Acceleration of early photon fluorescence molecular tomography with graphics processing units,” Comput. Math. Methods Med. 2013, 297291 (2013).

[CrossRef]

A. Hielscher, “Optical tomographic imaging of small animals,” Curr. Opin. Biotechnol. 16, 79–88 (2005).

[CrossRef]

J. Rao, A. Dragulescu-Andrasi, and H. Yao, “Fluorescence imaging in vivo: recent advances,” Curr. Opin. Biotechnol. 18, 17–25 (2007).

[CrossRef]

R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14, 024004 (2009).

[CrossRef]

C. J. Goergen, H. H. Chen, A. Bogdanov, D. E. Sosnovik, and A. T. N. Kumar, “In vivo fluorescence lifetime detection of an activatable probe in infarcted myocardium,” J. Biomed. Opt. 17, 056001 (2012).

[CrossRef]

N. Valim, J. Brock, and M. Niedre, “Experimental measurement of time-dependant photon scatter for diffuse optical tomography,” J. Biomed. Opt. 15, 065006 (2010).

[CrossRef]

A. Klose, V. Ntziachristos, and A. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys. 202, 323–345 (2005).

[CrossRef]

A. Klose and E. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220, 441–470 (2006).

[CrossRef]

S. Baldwin, “Compute Canada: advancing computational research,” J. Phys. 341, 012001 (2012).

[CrossRef]

A. A. Bogdanov, V. Metelev, S. Zhang, and A. T. N. Kumar, “Sensing of transcription factor binding via cyanine dye pair fluorescence lifetime changes,” Mol. BioSyst. 8, 2166–2173 (2012).

[CrossRef]

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9, 123–128 (2003).

[CrossRef]

J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov. 7, 591–607 (2008).

[CrossRef]

A. Corlu, R. Choe, T. Durduran, M. Rosen, M. Schweiger, S. Arridge, M. Schnall, and A. Yodh, “Three dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696–6716 (2007).

[CrossRef]

A. T. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, and B. J. Bacskai, “Time resolved fluorescence tomography of turbid media based on lifetime contrast,” Opt. Express 14, 12255–12270 (2006).

[CrossRef]

A. Da Silva, N. Djaker, N. Ducros, J.-M. Dinten, and P. Rizo, “Real time optical method for localization of inclusions embedded in turbid media,” Opt. Express 18, 7753–7762 (2010).

[CrossRef]

J. Wu, Y. Wang, L. Perelman, I. Itzkan, R. Dasari, and M. Feld, “Time-resolved multichannel imaging of fluorescent objects embedded in turbid media,” Opt. Lett. 20, 489–491 (1995).

[CrossRef]

D. J. Hall, G. Ma, F. Lesage, and Y. Wang, “Simple time-domain optical method for estimating the depth and concentration of a fluorescent inclusion in a turbid medium,” Opt. Lett. 29, 2258–2260 (2004).

[CrossRef]

J. Ripoll, M. Nieto-Vesperinas, R. Weissleder, and V. Ntziachristos, “Fast analytical approximation for arbitrary geometries in diffuse optical tomography,” Opt. Lett. 27, 527–529 (2002).

[CrossRef]

A. Liemert and A. Kienle, “Comparison between radiative transfer theory and the simplified spherical harmonics approximation for a semi-infinite geometry,” Opt. Lett. 36, 4041–4043 (2011).

[CrossRef]

V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized born approximation,” Opt. Lett. 26, 893–895 (2001).

[CrossRef]

M. Niedre and V. Ntziachristos, “Comparison of fluorescence tomographic imaging in mice with early arriving and quasi-continuous-wave photons,” Opt. Lett. 35, 369–371 (2010).

[CrossRef]

R. W. Holt, K. M. Tichauer, H. Dehghani, B. W. Pogue, and F. Leblond, “Multiple-gate time domain diffuse fluorescence tomography allows more sparse tissue sampling without compromising image quality,” Opt. Lett. 37, 2559–2561 (2012).

[CrossRef]

S.-H. Han and D. J. Hall, “Estimating the depth and lifetime of a fluorescent inclusion in a turbid medium using a simple time-domain optical method,” Opt. Lett. 33, 1035–1037 (2008).

[CrossRef]

R. Rajagopalan, P. Uetrecht, J. Bugaj, S. Achilefu, and R. Dorshow, “Stabilization of the optical tracer agent indocyanine green using noncovalent interactions,” Photochem. Photobiol. 71, 347–350 (2000).

[CrossRef]

B. Dogdas, D. Stout, A. Chatziioannou, and R. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52, 577–587 (2007).

[CrossRef]

D. C. Comsa, T. J. Farrell, and M. S. Patterson, “Quantitative fluorescence imaging of point-like sources in small animals,” Phys. Med. Biol. 53, 5797–5814 (2008).

[CrossRef]

N. Valim, J. Brock, M. Leeser, and M. Niedre, “The effect of temporal impulse response on experimental reduction of photon scatter in time-resolved diffuse optical tomography,” Phys. Med. Biol. 58, 335–349 (2013).

[CrossRef]

A. D. Klose and T. Poschinger, “Excitation-resolved fluorescence tomography with simplified spherical harmonics equations,” Phys. Med. Biol. 56, 1443 (2011).

[CrossRef]

J. Wu, L. Perelman, R. Dasari, and M. Feld, “Fluorescence tomographic imaging in turbid media using early arriving photons and laplace transforms,” PNAS Med. Sci. 94, 8783–8788 (1997).

M. J. Niedre, R. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. USA. 105, 19126–19131 (2008).

[CrossRef]

L. Montejo, H.-K. K. Kim, and A. H. Hielscher, “A finite-volume algorithm for modeling light transport with the time-independent simplified spherical harmonics approximation to the equation of radiative transfer,” Proc. SPIE 7896, 78960J (2011).

[CrossRef]

Y. Bérubé-Lauzière and V. Robichaud, “Time-resolved fluorescence measurements for diffuse optical tomography using ultrafast time-correlated single photon counting,” Proc. SPIE 6372, 637206 (2006).

[CrossRef]

V. Robichaud and Y. Bérubé-Lauzière, “A wavefront intersection algorithm for time-of-flight noncontact diffuse optical tomography of fluorescent inclusions in thick turbid media,” Proc. SPIE 6796, 67960T (2008).

[CrossRef]

Y. Bérubé-Lauzière and V. Robichaud, “Time-of-flight noncontact fluorescence diffuse optical tomography with numerical constant fraction discrimination,” Proc. SPIE 6629, 66290Y (2007).

J. Pichette, E. Lapointe, and Y. Bérubé-Lauzière, “Time-domain 3D localization of fluorescent inclusions in a thick scattering medium,” Proc. SPIE 7099, 709907 (2008).

[CrossRef]

J. Pichette, E. Lapointe, and Y. Bérubé-Lauzière, “Three-dimensional localization of discrete fluorescent inclusions from multiple tomographic projections in the time-domain,” Proc. SPIE 7174, 71741A (2009).

[CrossRef]

E. Lapointe, J. Pichette, and Y. Bérubé-Lauzière, “A multi-view time-domain noncontact diffuse optical tomography scanner with dual wavelength detection for intrinsic and fluorescence small animal imaging,” Rev. Sci. Instrum. 83, 063703 (2012).

[CrossRef]

W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, 2005).

W. Becker, The bh TCSPC Handbook, 5th ed. (Becker&Hickl GmbH, 2012).

Q. Fang, “Mesh-based Monte Carlo (MMC),” mcx.sourceforge.net/cgi-bin/index.cgi?MMC (last consulted in December 2012).

D. Boas, “Diffuse photon probes of structural and dynamical properties of turbid media: theory and biomedical applications,” Ph.D. thesis (University of Pennsylvania, 1996).

Q. Fang and D. A. Boas, “Tetrahedral mesh generation from volumetric binary and gray-scale images,” in Proceedings of the Sixth IEEE International Conference on Symposium on Biomedical Imaging: From Nano to Macro (IEEE, 2009), pp. 1142–1145.

J. Ripoll, “Light diffusion in turbid media with biomedical application,” Ph.D. thesis (Universidad Autonoma de Madrid, 2000).

L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging (Wiley Interscience, 2007).

J. Bouza-Domínguez and Y. Bérubé-Lauzière, “Radiative transfer and optical imaging in biological media by low-order transport approximations: the simplified spherical polynomials (SP) approach,” in Light Scattering Reviews 8 (Springer/Praxis Publishing Ltd., 2013), Chap. 6, pp. 269–315.

J. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).

F. Martelli, S. Del Bianco, A. Ismaelli, and G. Zaccanti, Light Propagation through Biological Tissue and Other Diffusive Media: Theory, Solutions, and Software (SPIE, 2009).

M. A. O’Leary, “Imaging with diffuse photon density waves,” Ph.D. thesis, University of Pennsylvania (1996).

A. D. Klose, “Radiative transfer of luminescence light in biological tissue,” in Light Scattering Reviews 4: Single Light Scattering and Radiative Transfer (Springer, 2009), Chap. 6, pp. 293–345.