Abstract

Using a simultaneous phase sensor, the proposed instrument performs highly repeatable measurements over an extended range in the presence of vibration common to a laboratory setting. Measurement of a 4.5 μm step standard in the presence of vibration amplitudes of 40 nm produces a repeatability of 1.5 nm RMS with vertical scanning data acquired at 400 nm intervals. The outlined method demonstrates the potential to tolerate larger vibration amplitudes up to or beyond a quarter wavelength and to increase the data acquisition step size to that approaching the depth of field of standard microscope imaging systems.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription