Abstract

We have developed a silicon depletion-mode modulator featuring a novel U-type PN junction that enables a substantial improvement in electro-optical modulation efficiency. Through electrical, optical, and manufacturing process simulations, an ultralow VπL of 0.63  V·cm is exhibited with 3 V reverse bias. The high modulation efficiency enables a high extinction ratio (ER) of >17  dB with only a 1 mm phase shifter when the excess loss at the “on” state is 2 dB. The ER can maintain >12  dB at ∼28  GHz operation with a 3 V peak-to-peak voltage due to the small voltage attenuation of the short phase shifter.

© 2013 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Jalali and S. Fathpour, “Silicon photonics,” IEEE J. Lightwave Technol. 24, 4600–4615 (2006).
  2. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
    [CrossRef]
  3. L. Kimerling, D. Ahn, A. Apsel, M. Beals, D. Carothers, Y. Chen, T. Conway, D. Gill, M. Grove, and C. Hong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006).
  4. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
    [CrossRef]
  5. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
    [CrossRef]
  6. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
    [CrossRef]
  7. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430–436 (2007).
    [CrossRef]
  8. S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator,” in Proceedings of IEEE Conference on Lasers and Electro-Optics Society (IEEE, 2007), pp. 537–538.
  9. W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach–Zehnder modulator,” Opt. Express 15, 17106–17113 (2007).
    [CrossRef]
  10. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17, 22484–22490 (2009).
    [CrossRef]
  11. F. Y. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J. M. Fedeli, P. Dumon, L. Vivien, T. F. Krauss, G. T. Reed, and J. Martí, “High-speed modulation of a compact silicon ring resonator based on a reverse-biased PN diode,” Opt. Express 17, 21986–21991 (2009).
    [CrossRef]
  12. P. Dong, S. Liao, H. Liang, W. Qian, X. Wang, R. Shafiiha, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “High-speed and compact silicon modulator based on a racetrack resonator with a 1 V drive voltage,” Opt. Lett. 35, 3246–3248 (2010).
    [CrossRef]
  13. G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25 Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19, 20435–20443 (2011).
    [CrossRef]
  14. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
    [CrossRef]
  15. D. Marris-Morini, L. Vivien, J. M. Fedeli, E. Cassan, P. Lyan, and S. Laval, “Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure,” Opt. Express 16, 334–339 (2008).
    [CrossRef]
  16. K. Ogawa, K. Goi, Y. T. Tan, T. Liow, X. Tu, Q. Fang, G. Lo, and D.-L. Kwon, “Silicon Mach–Zehnder modulator of extinction ratio beyond 10 dB at 10.0–12.5 Gbps,” Opt. Express 19, B26–B31 (2011).
    [CrossRef]
  17. N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 1.4 V cm V(π)L integrated on 0.25 micron silicon-on-insulator waveguides,” Opt. Express 18, 7994–7999 (2010).
    [CrossRef]
  18. D. Thomson, F. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50 Gbit/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
    [CrossRef]
  19. P. Dong, L. Chen, and Y.-K. Chen, “High-speed low-voltage single-drive push-pull silicon Mach–Zehnder modulators,” Opt. Express 20, 6163–6169 (2012).
    [CrossRef]
  20. J. Ding, H. T. Chen, L. Yang, L. Zhang, R. Q. Ji, Y. Tian, W. Zhu, Y. Lu, P. Zhou, and R. Min, “Low-voltage, high-extinction-ratio, Mach–Zehnder silicon optical modulator for CMOS-compatible integration,” Opt. Express 20, 3209–3218 (2012).
    [CrossRef]
  21. J. W. Park, J. B. You, I. G. Kim, and G. Kim, “High-modulation efficiency silicon Mach–Zehnder optical modulator based on carrier depletion in a PN diode,” Opt. Express 17, 15520–15524 (2009).
    [CrossRef]
  22. Z. Li, D. Xu, W. R. McKinnon, S. Janz, J. H. Schmid, P. Cheben, and J. Yu, “Silicon waveguide modulator based on carrier depletion in periodically interleaved PN junctions,” Opt. Express 17, 15947–15958 (2009).
    [CrossRef]
  23. H. Xu, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “High speed silicon Mach–Zehnder modulator based on interleaved PN junctions,” Opt. Express 20, 15093–15099 (2012).
    [CrossRef]
  24. M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 16, 159–164 (2010).
    [CrossRef]
  25. FIMMWAVE/FIMMPROP, Version 4.6, Photon Design Ltd, http://www.photond.com .
  26. SILVACO International, Santa Clara, Calif., http://www.silvaco.com .
  27. G. P. Agrawal, Fiber-Optic Communication Systems, 2nd ed. (Wiley, 1997).
  28. J. Lindhard, M. Scharff, and H. E. Schiott, “Range concepts and heavy ion ranges,” K. Dan. Vidensk. Selsk. Skr. 33, 1–42 (1963).
  29. A. F. Tasch, “An improved approach to accurately model shallow B and BF2 implants in silicone,” J. Electrochem. Soc. 136, 810 (1989).
    [CrossRef]
  30. Y. R. Kwon, V. M. Hietala, and K. S. Champlin, “Quasi-TEM analysis of ‘slow-wave’ mode propagation on coplanar microstructure MIS transmission lines,” IEEE Trans. Microw. Theory Tech. 35, 545–551 (1987).
  31. V. Milanovic, M. Ozgur, D. C. DeGroot, J. A. Jargon, M. Gaitan, and M. E. Zaghloul, “Characterization of broad-band transmission for coplanar waveguides on CMOS silicon substrates,” IEEE Trans. Microw. Theory Tech. 46, 632–640 (1998).
  32. H. Xu, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “High speed silicon Mach–Zehnder modulator with circuit model analysis,” in Asia Communications and Photonics Conference (Optical Society of America, 2012), paper AS3B.
  33. J. F. Ding, H. T. Chen, L. Yang, L. Zhang, R. Q. Ji, Y. H. Tian, W. W. Zhu, Y. Y. Lu, P. Zhou, and R. Min, “Low-voltage, high-extinction-ratio, Mach–Zehnder silicon optical modulator for CMOS-compatible integration,” Opt. Express 20, 3209–3218 (2012).
    [CrossRef]

2012 (5)

2011 (2)

2010 (4)

2009 (4)

2008 (1)

2007 (3)

2006 (3)

B. Jalali and S. Fathpour, “Silicon photonics,” IEEE J. Lightwave Technol. 24, 4600–4615 (2006).

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[CrossRef]

L. Kimerling, D. Ahn, A. Apsel, M. Beals, D. Carothers, Y. Chen, T. Conway, D. Gill, M. Grove, and C. Hong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006).

2005 (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[CrossRef]

1998 (1)

V. Milanovic, M. Ozgur, D. C. DeGroot, J. A. Jargon, M. Gaitan, and M. E. Zaghloul, “Characterization of broad-band transmission for coplanar waveguides on CMOS silicon substrates,” IEEE Trans. Microw. Theory Tech. 46, 632–640 (1998).

1989 (1)

A. F. Tasch, “An improved approach to accurately model shallow B and BF2 implants in silicone,” J. Electrochem. Soc. 136, 810 (1989).
[CrossRef]

1987 (2)

Y. R. Kwon, V. M. Hietala, and K. S. Champlin, “Quasi-TEM analysis of ‘slow-wave’ mode propagation on coplanar microstructure MIS transmission lines,” IEEE Trans. Microw. Theory Tech. 35, 545–551 (1987).

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[CrossRef]

1963 (1)

J. Lindhard, M. Scharff, and H. E. Schiott, “Range concepts and heavy ion ranges,” K. Dan. Vidensk. Selsk. Skr. 33, 1–42 (1963).

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems, 2nd ed. (Wiley, 1997).

Ahn, D.

L. Kimerling, D. Ahn, A. Apsel, M. Beals, D. Carothers, Y. Chen, T. Conway, D. Gill, M. Grove, and C. Hong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006).

Alic, N.

D. Thomson, F. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50 Gbit/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[CrossRef]

Apsel, A.

L. Kimerling, D. Ahn, A. Apsel, M. Beals, D. Carothers, Y. Chen, T. Conway, D. Gill, M. Grove, and C. Hong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006).

Asghari, M.

Beals, M.

L. Kimerling, D. Ahn, A. Apsel, M. Beals, D. Carothers, Y. Chen, T. Conway, D. Gill, M. Grove, and C. Hong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006).

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[CrossRef]

Brimont, A.

Carothers, D.

L. Kimerling, D. Ahn, A. Apsel, M. Beals, D. Carothers, Y. Chen, T. Conway, D. Gill, M. Grove, and C. Hong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006).

Cassan, E.

Champlin, K. S.

Y. R. Kwon, V. M. Hietala, and K. S. Champlin, “Quasi-TEM analysis of ‘slow-wave’ mode propagation on coplanar microstructure MIS transmission lines,” IEEE Trans. Microw. Theory Tech. 35, 545–551 (1987).

Cheben, P.

Chen, H. T.

Chen, L.

Chen, Y.

L. Kimerling, D. Ahn, A. Apsel, M. Beals, D. Carothers, Y. Chen, T. Conway, D. Gill, M. Grove, and C. Hong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006).

Chen, Y.-K.

Chetrit, Y.

Chu, T.

H. Xu, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “High speed silicon Mach–Zehnder modulator based on interleaved PN junctions,” Opt. Express 20, 15093–15099 (2012).
[CrossRef]

H. Xu, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “High speed silicon Mach–Zehnder modulator with circuit model analysis,” in Asia Communications and Photonics Conference (Optical Society of America, 2012), paper AS3B.

Ciftcioglu, B.

Conway, T.

L. Kimerling, D. Ahn, A. Apsel, M. Beals, D. Carothers, Y. Chen, T. Conway, D. Gill, M. Grove, and C. Hong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006).

Cunningham, J. E.

DeGroot, D. C.

V. Milanovic, M. Ozgur, D. C. DeGroot, J. A. Jargon, M. Gaitan, and M. E. Zaghloul, “Characterization of broad-band transmission for coplanar waveguides on CMOS silicon substrates,” IEEE Trans. Microw. Theory Tech. 46, 632–640 (1998).

Ding, J.

Ding, J. F.

Dong, F.

Dong, P.

Dumon, P.

Fang, Q.

Fathpour, S.

B. Jalali and S. Fathpour, “Silicon photonics,” IEEE J. Lightwave Technol. 24, 4600–4615 (2006).

Fedeli, J.

D. Thomson, F. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50 Gbit/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[CrossRef]

Fedeli, J. M.

Feng, D.

Feng, N.

Gaitan, M.

V. Milanovic, M. Ozgur, D. C. DeGroot, J. A. Jargon, M. Gaitan, and M. E. Zaghloul, “Characterization of broad-band transmission for coplanar waveguides on CMOS silicon substrates,” IEEE Trans. Microw. Theory Tech. 46, 632–640 (1998).

Gardes, F.

D. Thomson, F. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50 Gbit/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[CrossRef]

Gardes, F. Y.

Gill, D.

L. Kimerling, D. Ahn, A. Apsel, M. Beals, D. Carothers, Y. Chen, T. Conway, D. Gill, M. Grove, and C. Hong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006).

Goi, K.

Green, W. M.

Grove, M.

L. Kimerling, D. Ahn, A. Apsel, M. Beals, D. Carothers, Y. Chen, T. Conway, D. Gill, M. Grove, and C. Hong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006).

Hietala, V. M.

Y. R. Kwon, V. M. Hietala, and K. S. Champlin, “Quasi-TEM analysis of ‘slow-wave’ mode propagation on coplanar microstructure MIS transmission lines,” IEEE Trans. Microw. Theory Tech. 35, 545–551 (1987).

Hong, C.

L. Kimerling, D. Ahn, A. Apsel, M. Beals, D. Carothers, Y. Chen, T. Conway, D. Gill, M. Grove, and C. Hong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006).

Hu, Y.

D. Thomson, F. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50 Gbit/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[CrossRef]

H. Xu, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “High speed silicon Mach–Zehnder modulator based on interleaved PN junctions,” Opt. Express 20, 15093–15099 (2012).
[CrossRef]

H. Xu, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “High speed silicon Mach–Zehnder modulator with circuit model analysis,” in Asia Communications and Photonics Conference (Optical Society of America, 2012), paper AS3B.

Izhaky, N.

Jalali, B.

B. Jalali and S. Fathpour, “Silicon photonics,” IEEE J. Lightwave Technol. 24, 4600–4615 (2006).

Janz, S.

Jargon, J. A.

V. Milanovic, M. Ozgur, D. C. DeGroot, J. A. Jargon, M. Gaitan, and M. E. Zaghloul, “Characterization of broad-band transmission for coplanar waveguides on CMOS silicon substrates,” IEEE Trans. Microw. Theory Tech. 46, 632–640 (1998).

Ji, R. Q.

Kim, G.

Kim, I. G.

Kimerling, L.

L. Kimerling, D. Ahn, A. Apsel, M. Beals, D. Carothers, Y. Chen, T. Conway, D. Gill, M. Grove, and C. Hong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006).

Krauss, T. F.

Krishnamoorthy, A. V.

Kung, C.-C.

Kuo, B.

D. Thomson, F. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50 Gbit/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[CrossRef]

Kwon, D.-L.

Kwon, Y. R.

Y. R. Kwon, V. M. Hietala, and K. S. Champlin, “Quasi-TEM analysis of ‘slow-wave’ mode propagation on coplanar microstructure MIS transmission lines,” IEEE Trans. Microw. Theory Tech. 35, 545–551 (1987).

Laval, S.

Lentine, A. L.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 16, 159–164 (2010).
[CrossRef]

Li, G.

Li, X.

H. Xu, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “High speed silicon Mach–Zehnder modulator based on interleaved PN junctions,” Opt. Express 20, 15093–15099 (2012).
[CrossRef]

H. Xu, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “High speed silicon Mach–Zehnder modulator with circuit model analysis,” in Asia Communications and Photonics Conference (Optical Society of America, 2012), paper AS3B.

Li, Z.

Liang, H.

Liao, L.

Liao, S.

Lindhard, J.

J. Lindhard, M. Scharff, and H. E. Schiott, “Range concepts and heavy ion ranges,” K. Dan. Vidensk. Selsk. Skr. 33, 1–42 (1963).

Liow, T.

Lipson, M.

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430–436 (2007).
[CrossRef]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[CrossRef]

S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator,” in Proceedings of IEEE Conference on Lasers and Electro-Optics Society (IEEE, 2007), pp. 537–538.

Liu, A.

Lo, G.

Lu, Y.

Lu, Y. Y.

Luo, Y.

Lyan, P.

Manipatruni, S.

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430–436 (2007).
[CrossRef]

S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator,” in Proceedings of IEEE Conference on Lasers and Electro-Optics Society (IEEE, 2007), pp. 537–538.

Marris-Morini, D.

Martí, J.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[CrossRef]

Mashanovich, G. Z.

D. Thomson, F. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50 Gbit/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[CrossRef]

McKinnon, W. R.

Milanovic, V.

V. Milanovic, M. Ozgur, D. C. DeGroot, J. A. Jargon, M. Gaitan, and M. E. Zaghloul, “Characterization of broad-band transmission for coplanar waveguides on CMOS silicon substrates,” IEEE Trans. Microw. Theory Tech. 46, 632–640 (1998).

Min, R.

Myslivets, E.

D. Thomson, F. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50 Gbit/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[CrossRef]

Nguyen, H.

O’Faolain, L.

Ogawa, K.

Ozgur, M.

V. Milanovic, M. Ozgur, D. C. DeGroot, J. A. Jargon, M. Gaitan, and M. E. Zaghloul, “Characterization of broad-band transmission for coplanar waveguides on CMOS silicon substrates,” IEEE Trans. Microw. Theory Tech. 46, 632–640 (1998).

Paniccia, M.

Park, J. W.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[CrossRef]

Qian, W.

Radic, S.

D. Thomson, F. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50 Gbit/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[CrossRef]

Raj, K.

Rasigade, G.

Reed, G. T.

D. Thomson, F. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50 Gbit/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[CrossRef]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[CrossRef]

F. Y. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J. M. Fedeli, P. Dumon, L. Vivien, T. F. Krauss, G. T. Reed, and J. Martí, “High-speed modulation of a compact silicon ring resonator based on a reverse-biased PN diode,” Opt. Express 17, 21986–21991 (2009).
[CrossRef]

Rooks, M. J.

Rubin, D.

Sanchis, P.

Scharff, M.

J. Lindhard, M. Scharff, and H. E. Schiott, “Range concepts and heavy ion ranges,” K. Dan. Vidensk. Selsk. Skr. 33, 1–42 (1963).

Schiott, H. E.

J. Lindhard, M. Scharff, and H. E. Schiott, “Range concepts and heavy ion ranges,” K. Dan. Vidensk. Selsk. Skr. 33, 1–42 (1963).

Schmid, J. H.

Schmidt, B.

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430–436 (2007).
[CrossRef]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[CrossRef]

S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator,” in Proceedings of IEEE Conference on Lasers and Electro-Optics Society (IEEE, 2007), pp. 537–538.

Sekaric, L.

Shafiiha, R.

Shakya, J.

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430–436 (2007).
[CrossRef]

S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator,” in Proceedings of IEEE Conference on Lasers and Electro-Optics Society (IEEE, 2007), pp. 537–538.

Shubin, I.

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[CrossRef]

Soref, R. A.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[CrossRef]

Tan, Y. T.

Tasch, A. F.

A. F. Tasch, “An improved approach to accurately model shallow B and BF2 implants in silicone,” J. Electrochem. Soc. 136, 810 (1989).
[CrossRef]

Thacker, H.

Thomson, D.

D. Thomson, F. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50 Gbit/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[CrossRef]

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[CrossRef]

Tian, Y.

Tian, Y. H.

Trotter, D. C.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 16, 159–164 (2010).
[CrossRef]

Tu, X.

Vivien, L.

Vlasov, Y. A.

Wang, X.

Watts, M. R.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 16, 159–164 (2010).
[CrossRef]

Xiao, X.

H. Xu, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “High speed silicon Mach–Zehnder modulator based on interleaved PN junctions,” Opt. Express 20, 15093–15099 (2012).
[CrossRef]

H. Xu, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “High speed silicon Mach–Zehnder modulator with circuit model analysis,” in Asia Communications and Photonics Conference (Optical Society of America, 2012), paper AS3B.

Xu, D.

Xu, H.

H. Xu, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “High speed silicon Mach–Zehnder modulator based on interleaved PN junctions,” Opt. Express 20, 15093–15099 (2012).
[CrossRef]

H. Xu, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “High speed silicon Mach–Zehnder modulator with circuit model analysis,” in Asia Communications and Photonics Conference (Optical Society of America, 2012), paper AS3B.

Xu, Q.

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430–436 (2007).
[CrossRef]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[CrossRef]

S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator,” in Proceedings of IEEE Conference on Lasers and Electro-Optics Society (IEEE, 2007), pp. 537–538.

Yang, L.

Yao, J.

You, J. B.

Young, R. W.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 16, 159–164 (2010).
[CrossRef]

Yu, J.

Yu, Y.

H. Xu, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “High speed silicon Mach–Zehnder modulator based on interleaved PN junctions,” Opt. Express 20, 15093–15099 (2012).
[CrossRef]

H. Xu, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “High speed silicon Mach–Zehnder modulator with circuit model analysis,” in Asia Communications and Photonics Conference (Optical Society of America, 2012), paper AS3B.

Zaghloul, M. E.

V. Milanovic, M. Ozgur, D. C. DeGroot, J. A. Jargon, M. Gaitan, and M. E. Zaghloul, “Characterization of broad-band transmission for coplanar waveguides on CMOS silicon substrates,” IEEE Trans. Microw. Theory Tech. 46, 632–640 (1998).

Zhang, L.

Zheng, D.

Zheng, X.

Zhou, P.

Zhu, W.

Zhu, W. W.

Zlatanovic, S.

D. Thomson, F. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50 Gbit/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[CrossRef]

Zortman, W. A.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 16, 159–164 (2010).
[CrossRef]

IEEE J. Lightwave Technol. (1)

B. Jalali and S. Fathpour, “Silicon photonics,” IEEE J. Lightwave Technol. 24, 4600–4615 (2006).

IEEE J. Quantum Electron. (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[CrossRef]

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 16, 159–164 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. Thomson, F. Gardes, J. Fedeli, S. Zlatanovic, Y. Hu, B. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50 Gbit/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24, 234–236 (2012).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (2)

Y. R. Kwon, V. M. Hietala, and K. S. Champlin, “Quasi-TEM analysis of ‘slow-wave’ mode propagation on coplanar microstructure MIS transmission lines,” IEEE Trans. Microw. Theory Tech. 35, 545–551 (1987).

V. Milanovic, M. Ozgur, D. C. DeGroot, J. A. Jargon, M. Gaitan, and M. E. Zaghloul, “Characterization of broad-band transmission for coplanar waveguides on CMOS silicon substrates,” IEEE Trans. Microw. Theory Tech. 46, 632–640 (1998).

J. Electrochem. Soc. (1)

A. F. Tasch, “An improved approach to accurately model shallow B and BF2 implants in silicone,” J. Electrochem. Soc. 136, 810 (1989).
[CrossRef]

K. Dan. Vidensk. Selsk. Skr. (1)

J. Lindhard, M. Scharff, and H. E. Schiott, “Range concepts and heavy ion ranges,” K. Dan. Vidensk. Selsk. Skr. 33, 1–42 (1963).

Nat. Photonics (1)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[CrossRef]

Nature (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[CrossRef]

Opt. Express (15)

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430–436 (2007).
[CrossRef]

W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach–Zehnder modulator,” Opt. Express 15, 17106–17113 (2007).
[CrossRef]

P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17, 22484–22490 (2009).
[CrossRef]

F. Y. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J. M. Fedeli, P. Dumon, L. Vivien, T. F. Krauss, G. T. Reed, and J. Martí, “High-speed modulation of a compact silicon ring resonator based on a reverse-biased PN diode,” Opt. Express 17, 21986–21991 (2009).
[CrossRef]

P. Dong, L. Chen, and Y.-K. Chen, “High-speed low-voltage single-drive push-pull silicon Mach–Zehnder modulators,” Opt. Express 20, 6163–6169 (2012).
[CrossRef]

J. Ding, H. T. Chen, L. Yang, L. Zhang, R. Q. Ji, Y. Tian, W. Zhu, Y. Lu, P. Zhou, and R. Min, “Low-voltage, high-extinction-ratio, Mach–Zehnder silicon optical modulator for CMOS-compatible integration,” Opt. Express 20, 3209–3218 (2012).
[CrossRef]

J. W. Park, J. B. You, I. G. Kim, and G. Kim, “High-modulation efficiency silicon Mach–Zehnder optical modulator based on carrier depletion in a PN diode,” Opt. Express 17, 15520–15524 (2009).
[CrossRef]

Z. Li, D. Xu, W. R. McKinnon, S. Janz, J. H. Schmid, P. Cheben, and J. Yu, “Silicon waveguide modulator based on carrier depletion in periodically interleaved PN junctions,” Opt. Express 17, 15947–15958 (2009).
[CrossRef]

H. Xu, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “High speed silicon Mach–Zehnder modulator based on interleaved PN junctions,” Opt. Express 20, 15093–15099 (2012).
[CrossRef]

G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25 Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19, 20435–20443 (2011).
[CrossRef]

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
[CrossRef]

D. Marris-Morini, L. Vivien, J. M. Fedeli, E. Cassan, P. Lyan, and S. Laval, “Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure,” Opt. Express 16, 334–339 (2008).
[CrossRef]

K. Ogawa, K. Goi, Y. T. Tan, T. Liow, X. Tu, Q. Fang, G. Lo, and D.-L. Kwon, “Silicon Mach–Zehnder modulator of extinction ratio beyond 10 dB at 10.0–12.5 Gbps,” Opt. Express 19, B26–B31 (2011).
[CrossRef]

N. Feng, S. Liao, D. Feng, P. Dong, D. Zheng, H. Liang, R. Shafiiha, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “High speed carrier-depletion modulators with 1.4 V cm V(π)L integrated on 0.25 micron silicon-on-insulator waveguides,” Opt. Express 18, 7994–7999 (2010).
[CrossRef]

J. F. Ding, H. T. Chen, L. Yang, L. Zhang, R. Q. Ji, Y. H. Tian, W. W. Zhu, Y. Y. Lu, P. Zhou, and R. Min, “Low-voltage, high-extinction-ratio, Mach–Zehnder silicon optical modulator for CMOS-compatible integration,” Opt. Express 20, 3209–3218 (2012).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

L. Kimerling, D. Ahn, A. Apsel, M. Beals, D. Carothers, Y. Chen, T. Conway, D. Gill, M. Grove, and C. Hong, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE 6125, 612502 (2006).

Other (5)

FIMMWAVE/FIMMPROP, Version 4.6, Photon Design Ltd, http://www.photond.com .

SILVACO International, Santa Clara, Calif., http://www.silvaco.com .

G. P. Agrawal, Fiber-Optic Communication Systems, 2nd ed. (Wiley, 1997).

H. Xu, X. Xiao, X. Li, Y. Hu, Z. Li, T. Chu, Y. Yu, and J. Yu, “High speed silicon Mach–Zehnder modulator with circuit model analysis,” in Asia Communications and Photonics Conference (Optical Society of America, 2012), paper AS3B.

S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator,” in Proceedings of IEEE Conference on Lasers and Electro-Optics Society (IEEE, 2007), pp. 537–538.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics