Abstract

The paper presents results of investigation of wide angle acousto-optic (AO) diffraction based on light beams propagating in birefringent crystals far away from optical axes and also close to the optical axes. A comparison of the two cases of wide angle interaction in tellurium dioxide crystal is carried out. Advantages and drawbacks of the far-off axis (FOA) diffraction are examined in the paper. Possibility of application of the FOA diffraction in imaging AO filters is discussed. Results of theoretical consideration of the problem are experimentally confirmed in a paratellurite filter using a slow shear acoustic wave propagating in the (11¯0) plane of the crystal at the angle α=10° relative to the axis [110].

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Xu and R. Stroud, Acousto-Optic Devices (Wiley, 1992).
  2. A. Goutzoulis and D. Pape, Design and Fabrication of Acousto-Optic Devices (Marcel Dekker, 1994).
  3. C. Chang, “Tunable acousto-optic filters: an overview,” Proc. SPIE 90, 12–22 (1976).
    [CrossRef]
  4. G. D. Georgiev, D. A. Glenar, and J. J. Hillman, “Spectral characterization of tunable acousto-optic filters used in imaging spectroscopy,” Appl. Opt. 41, 209–217 (2002).
    [CrossRef]
  5. V. B. Voloshinov and N. Gupta, “Investigation of magnesium fluoride crystals for imaging acousto-optic tunable filter applications,” Appl. Opt. 45, 3127–3135 (2006).
    [CrossRef]
  6. N. Gupta, D. R. Suhre, and M. Gottlieb, “LWIR spectral imager with an 8 cm-1 passband acousto-optic tunable filter,” Opt. Eng. 44, 094601 (2005).
    [CrossRef]
  7. V. I. Balakshy and V. B. Voloshinov, “Acousto-optic image processing in coherent light,” Quantum Electron. 35, 85–90 (2005).
    [CrossRef]
  8. V. B. Voloshinov and J. C. Mosquera, “Wide-aperture acousto-optic interaction in birefringent crystals,” Opt. Spectrosc. 101, 635–641 (2006).
    [CrossRef]
  9. N. Gupta and V. B. Voloshinov, “Development and characterization of two-transducer imaging tunable acousto-optic filters with extended tuning range,” Appl. Opt. 46, 1081–1088 (2007).
    [CrossRef]
  10. N. Gupta, V. B. Voloshinov, G. A. Knyazev, and L. A. Kulakova, “Tunable wide angle acousto-optic filter applying single crystal tellurium,” J. Opt. 14, 035502 (2012).
    [CrossRef]
  11. J. A. Kusters, D. A. Wilson, and D. L. Hammond, “Optimum crystal orientation for acoustically tuned optic filters,” J. Opt. Soc. Am. 64, 434–440 (1974).
    [CrossRef]
  12. D. R. Suhre, M. Gottlieb, R. Taylor, and N. T. Melamed, “Spatial resolution of imaging non-collinear acousto-optic filters,” Opt. Eng. 43, 2118–2121 (1993).
  13. D. A. Glenar, J. J. Hillman, B. Saif, and J. Bergstralh, “Acoustooptic imaging spectropolarimetry for remote sensing,” Appl. Opt. 33, 7412–7424 (1994).
    [CrossRef]
  14. N. Gupta and V. B. Voloshinov, “Hyperspectral imaging performance of a TeO2 imaging acousto-optic tunable filter in the ultraviolet region,” Opt. Lett. 30, 985–987 (2005).
    [CrossRef]
  15. V. Voloshinov and N. Gupta, “Ultraviolet-visible imaging acousto-optic tunable filters in KDP,” Appl. Opt. 43, 3901–3909 (2004).
    [CrossRef]
  16. V. B. Voloshinov and D. B. Bogomolov, “Acousto-optic processing of images in ultraviolet, visible and infrared regions of spectrum,” Proc. SPIE 5953, 59530G (2005).
    [CrossRef]
  17. K. B. Yushkov, S. Dupont, J.-C. Kastelik, and V. B. Voloshinov, “Polarization-independent imaging with acousto-optic tandem system,” Opt. Lett. 35, 1416–1418 (2010).
    [CrossRef]
  18. T. M. Babkina and V. B. Voloshinov, “A new method of acousto-optic image processing and edge enhancement,” J. Opt. A 3, S54–S61 (2001).
    [CrossRef]
  19. V. M. Epikhin, F. L. Fizen, N. V. Nikitin, and Yu. K. Kalinnikov, “Non-collinear acousto-optic filter with optimal angle characteristics,” J. Tech. Phys. 52, 2405–2410 (1982).
  20. N. Gupta, “Investigation of a mercurous chloride acousto-optic cell based on longitudinal acoustic mode,” Appl. Opt. 48, C151–C158 (2009).
    [CrossRef]

2012

N. Gupta, V. B. Voloshinov, G. A. Knyazev, and L. A. Kulakova, “Tunable wide angle acousto-optic filter applying single crystal tellurium,” J. Opt. 14, 035502 (2012).
[CrossRef]

2010

2009

2007

2006

V. B. Voloshinov and J. C. Mosquera, “Wide-aperture acousto-optic interaction in birefringent crystals,” Opt. Spectrosc. 101, 635–641 (2006).
[CrossRef]

V. B. Voloshinov and N. Gupta, “Investigation of magnesium fluoride crystals for imaging acousto-optic tunable filter applications,” Appl. Opt. 45, 3127–3135 (2006).
[CrossRef]

2005

N. Gupta, D. R. Suhre, and M. Gottlieb, “LWIR spectral imager with an 8 cm-1 passband acousto-optic tunable filter,” Opt. Eng. 44, 094601 (2005).
[CrossRef]

V. I. Balakshy and V. B. Voloshinov, “Acousto-optic image processing in coherent light,” Quantum Electron. 35, 85–90 (2005).
[CrossRef]

V. B. Voloshinov and D. B. Bogomolov, “Acousto-optic processing of images in ultraviolet, visible and infrared regions of spectrum,” Proc. SPIE 5953, 59530G (2005).
[CrossRef]

N. Gupta and V. B. Voloshinov, “Hyperspectral imaging performance of a TeO2 imaging acousto-optic tunable filter in the ultraviolet region,” Opt. Lett. 30, 985–987 (2005).
[CrossRef]

2004

2002

2001

T. M. Babkina and V. B. Voloshinov, “A new method of acousto-optic image processing and edge enhancement,” J. Opt. A 3, S54–S61 (2001).
[CrossRef]

1994

1993

D. R. Suhre, M. Gottlieb, R. Taylor, and N. T. Melamed, “Spatial resolution of imaging non-collinear acousto-optic filters,” Opt. Eng. 43, 2118–2121 (1993).

1982

V. M. Epikhin, F. L. Fizen, N. V. Nikitin, and Yu. K. Kalinnikov, “Non-collinear acousto-optic filter with optimal angle characteristics,” J. Tech. Phys. 52, 2405–2410 (1982).

1976

C. Chang, “Tunable acousto-optic filters: an overview,” Proc. SPIE 90, 12–22 (1976).
[CrossRef]

1974

Babkina, T. M.

T. M. Babkina and V. B. Voloshinov, “A new method of acousto-optic image processing and edge enhancement,” J. Opt. A 3, S54–S61 (2001).
[CrossRef]

Balakshy, V. I.

V. I. Balakshy and V. B. Voloshinov, “Acousto-optic image processing in coherent light,” Quantum Electron. 35, 85–90 (2005).
[CrossRef]

Bergstralh, J.

Bogomolov, D. B.

V. B. Voloshinov and D. B. Bogomolov, “Acousto-optic processing of images in ultraviolet, visible and infrared regions of spectrum,” Proc. SPIE 5953, 59530G (2005).
[CrossRef]

Chang, C.

C. Chang, “Tunable acousto-optic filters: an overview,” Proc. SPIE 90, 12–22 (1976).
[CrossRef]

Dupont, S.

Epikhin, V. M.

V. M. Epikhin, F. L. Fizen, N. V. Nikitin, and Yu. K. Kalinnikov, “Non-collinear acousto-optic filter with optimal angle characteristics,” J. Tech. Phys. 52, 2405–2410 (1982).

Fizen, F. L.

V. M. Epikhin, F. L. Fizen, N. V. Nikitin, and Yu. K. Kalinnikov, “Non-collinear acousto-optic filter with optimal angle characteristics,” J. Tech. Phys. 52, 2405–2410 (1982).

Georgiev, G. D.

Glenar, D. A.

Gottlieb, M.

N. Gupta, D. R. Suhre, and M. Gottlieb, “LWIR spectral imager with an 8 cm-1 passband acousto-optic tunable filter,” Opt. Eng. 44, 094601 (2005).
[CrossRef]

D. R. Suhre, M. Gottlieb, R. Taylor, and N. T. Melamed, “Spatial resolution of imaging non-collinear acousto-optic filters,” Opt. Eng. 43, 2118–2121 (1993).

Goutzoulis, A.

A. Goutzoulis and D. Pape, Design and Fabrication of Acousto-Optic Devices (Marcel Dekker, 1994).

Gupta, N.

Hammond, D. L.

Hillman, J. J.

Kalinnikov, Yu. K.

V. M. Epikhin, F. L. Fizen, N. V. Nikitin, and Yu. K. Kalinnikov, “Non-collinear acousto-optic filter with optimal angle characteristics,” J. Tech. Phys. 52, 2405–2410 (1982).

Kastelik, J.-C.

Knyazev, G. A.

N. Gupta, V. B. Voloshinov, G. A. Knyazev, and L. A. Kulakova, “Tunable wide angle acousto-optic filter applying single crystal tellurium,” J. Opt. 14, 035502 (2012).
[CrossRef]

Kulakova, L. A.

N. Gupta, V. B. Voloshinov, G. A. Knyazev, and L. A. Kulakova, “Tunable wide angle acousto-optic filter applying single crystal tellurium,” J. Opt. 14, 035502 (2012).
[CrossRef]

Kusters, J. A.

Melamed, N. T.

D. R. Suhre, M. Gottlieb, R. Taylor, and N. T. Melamed, “Spatial resolution of imaging non-collinear acousto-optic filters,” Opt. Eng. 43, 2118–2121 (1993).

Mosquera, J. C.

V. B. Voloshinov and J. C. Mosquera, “Wide-aperture acousto-optic interaction in birefringent crystals,” Opt. Spectrosc. 101, 635–641 (2006).
[CrossRef]

Nikitin, N. V.

V. M. Epikhin, F. L. Fizen, N. V. Nikitin, and Yu. K. Kalinnikov, “Non-collinear acousto-optic filter with optimal angle characteristics,” J. Tech. Phys. 52, 2405–2410 (1982).

Pape, D.

A. Goutzoulis and D. Pape, Design and Fabrication of Acousto-Optic Devices (Marcel Dekker, 1994).

Saif, B.

Stroud, R.

J. Xu and R. Stroud, Acousto-Optic Devices (Wiley, 1992).

Suhre, D. R.

N. Gupta, D. R. Suhre, and M. Gottlieb, “LWIR spectral imager with an 8 cm-1 passband acousto-optic tunable filter,” Opt. Eng. 44, 094601 (2005).
[CrossRef]

D. R. Suhre, M. Gottlieb, R. Taylor, and N. T. Melamed, “Spatial resolution of imaging non-collinear acousto-optic filters,” Opt. Eng. 43, 2118–2121 (1993).

Taylor, R.

D. R. Suhre, M. Gottlieb, R. Taylor, and N. T. Melamed, “Spatial resolution of imaging non-collinear acousto-optic filters,” Opt. Eng. 43, 2118–2121 (1993).

Voloshinov, V.

Voloshinov, V. B.

N. Gupta, V. B. Voloshinov, G. A. Knyazev, and L. A. Kulakova, “Tunable wide angle acousto-optic filter applying single crystal tellurium,” J. Opt. 14, 035502 (2012).
[CrossRef]

K. B. Yushkov, S. Dupont, J.-C. Kastelik, and V. B. Voloshinov, “Polarization-independent imaging with acousto-optic tandem system,” Opt. Lett. 35, 1416–1418 (2010).
[CrossRef]

N. Gupta and V. B. Voloshinov, “Development and characterization of two-transducer imaging tunable acousto-optic filters with extended tuning range,” Appl. Opt. 46, 1081–1088 (2007).
[CrossRef]

V. B. Voloshinov and J. C. Mosquera, “Wide-aperture acousto-optic interaction in birefringent crystals,” Opt. Spectrosc. 101, 635–641 (2006).
[CrossRef]

V. B. Voloshinov and N. Gupta, “Investigation of magnesium fluoride crystals for imaging acousto-optic tunable filter applications,” Appl. Opt. 45, 3127–3135 (2006).
[CrossRef]

V. I. Balakshy and V. B. Voloshinov, “Acousto-optic image processing in coherent light,” Quantum Electron. 35, 85–90 (2005).
[CrossRef]

N. Gupta and V. B. Voloshinov, “Hyperspectral imaging performance of a TeO2 imaging acousto-optic tunable filter in the ultraviolet region,” Opt. Lett. 30, 985–987 (2005).
[CrossRef]

V. B. Voloshinov and D. B. Bogomolov, “Acousto-optic processing of images in ultraviolet, visible and infrared regions of spectrum,” Proc. SPIE 5953, 59530G (2005).
[CrossRef]

T. M. Babkina and V. B. Voloshinov, “A new method of acousto-optic image processing and edge enhancement,” J. Opt. A 3, S54–S61 (2001).
[CrossRef]

Wilson, D. A.

Xu, J.

J. Xu and R. Stroud, Acousto-Optic Devices (Wiley, 1992).

Yushkov, K. B.

Appl. Opt.

J. Opt.

N. Gupta, V. B. Voloshinov, G. A. Knyazev, and L. A. Kulakova, “Tunable wide angle acousto-optic filter applying single crystal tellurium,” J. Opt. 14, 035502 (2012).
[CrossRef]

J. Opt. A

T. M. Babkina and V. B. Voloshinov, “A new method of acousto-optic image processing and edge enhancement,” J. Opt. A 3, S54–S61 (2001).
[CrossRef]

J. Opt. Soc. Am.

J. Tech. Phys.

V. M. Epikhin, F. L. Fizen, N. V. Nikitin, and Yu. K. Kalinnikov, “Non-collinear acousto-optic filter with optimal angle characteristics,” J. Tech. Phys. 52, 2405–2410 (1982).

Opt. Eng.

D. R. Suhre, M. Gottlieb, R. Taylor, and N. T. Melamed, “Spatial resolution of imaging non-collinear acousto-optic filters,” Opt. Eng. 43, 2118–2121 (1993).

N. Gupta, D. R. Suhre, and M. Gottlieb, “LWIR spectral imager with an 8 cm-1 passband acousto-optic tunable filter,” Opt. Eng. 44, 094601 (2005).
[CrossRef]

Opt. Lett.

Opt. Spectrosc.

V. B. Voloshinov and J. C. Mosquera, “Wide-aperture acousto-optic interaction in birefringent crystals,” Opt. Spectrosc. 101, 635–641 (2006).
[CrossRef]

Proc. SPIE

C. Chang, “Tunable acousto-optic filters: an overview,” Proc. SPIE 90, 12–22 (1976).
[CrossRef]

V. B. Voloshinov and D. B. Bogomolov, “Acousto-optic processing of images in ultraviolet, visible and infrared regions of spectrum,” Proc. SPIE 5953, 59530G (2005).
[CrossRef]

Quantum Electron.

V. I. Balakshy and V. B. Voloshinov, “Acousto-optic image processing in coherent light,” Quantum Electron. 35, 85–90 (2005).
[CrossRef]

Other

J. Xu and R. Stroud, Acousto-Optic Devices (Wiley, 1992).

A. Goutzoulis and D. Pape, Design and Fabrication of Acousto-Optic Devices (Marcel Dekker, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Wave vector diagram for two cases of wide angle interaction in TeO2 crystal, (a) close to optical axis interaction and (b) far-off optical axis interaction.

Fig. 2.
Fig. 2.

Bragg angle dependence on frequency of ultrasound at cut angle α=10°.

Fig. 3.
Fig. 3.

Bandwidth dependence on cut angle. Solid line, filter with geometry of interaction close to optical axis; dash and dot line, filter with geometry of interaction FOA.

Fig. 4.
Fig. 4.

AO figure of merit dependence on cut angle of crystal. Solid line, geometry of interaction close to optical axis; dash and dot line, geometry of interaction FOA.

Fig. 5.
Fig. 5.

Angular aperture dependence on cut angle of crystal. Solid line, geometry of interaction close to optical axis; dashed and dot line, geometry of interaction FOA.

Fig. 6.
Fig. 6.

Bragg angle dependence on frequency of ultrasound for three different cut angles of TeO2 crystals. Solid line, α=2°; dash line, α=10°; dash and dot line, α=18°.

Fig. 7.
Fig. 7.

Scheme of the filter with wide angle geometry of interaction. (a) Light propagates close to optical axis and (b) light propagates far from optical axis.

Fig. 8.
Fig. 8.

Experimental dependence of Bragg angle on acoustic frequency. Solid line, theoretical dependence. Circles correspond to maximal diffraction efficiency; triangle and squares correspond to half-maximum efficiency.

Tables (1)

Tables Icon

Table 1. Comparison of Performance Characteristic in Two Types of Filters

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ki1+K1=kd1,ki2+K2=kd2,
f=(V/λ)[nisinθino2ni2cos2θi],
nicosθi=nocosθd.
nino+Δnsin2(θi+α).
fΔnVsin2(θi+α)λsinθi.
tanθi=2tanα1±18tan2α.
Δθ=(Δn/no)sin2(θi+α)ctgθi.
δλ0.8λVfcos2(θdψ)l1cos2ψsinθd,
Δλ=0.8λ2cosθiΔnl1sin2(θi+α)(1+tanθitanψ).
M2=peff2no3ni3ρV3.
peff=0.5(p12p11)cosαcos(θi+α)p44sinαsin(θi+α),
T=100%II0=100%sin2(πλM2Pal12dcosψcos(ψθi)),

Metrics