Abstract

A 125 μm-diameter erbium–ytterbium-codoped single-mode fiber is reported. The utilization of depressed inner cladding guarantees the improvement of trade-off between the effective area and bending sensitivity compared to step-index profiles. Changes of cutoff wavelength, effective area, and macrobend loss under the influence of various structural parameters, and the balancing selection of core radius and subsidence layer width are investigated systematically. For the laboratory-made depressed inner cladding fiber, a macrobend loss of 0.06dB/loop for a bending radius as tight as 10 mm was achieved, while maintaining an effective area of 164.22μm2 with intact single-mode properties at 1550 nm. The maximum small signal gain was achieved at 40.9 dB, and the gain fluctuation was less than 1 dB at the C-band. The fiber is suitable for high-power, small, portable, and handy optical fiber devices.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Lees, D. Taverner, D. J. Richardson, L. Dong, and T. P. Newson, “Q-switched erbium doped fibre laser utilising a novel large mode area fibre,” Electron. Lett. 33, 393–394 (1997).
    [CrossRef]
  2. M.-J. Li, P. Tandon, S. R. Bickham, M. A. McDermott, R. B. Desorcie, D. A. Nolan, J. J. Johnson, K. A. Lewis, and J. J. Englebert, “Ultra-low bending loss single-mode fiber for FTTH,” J. Lightwave Technol. 27, 376–382 (2009).
    [CrossRef]
  3. K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and I. Sankawa, “Hole-assisted fiber design for small bending and splice losses,” IEEE Photon. Technol. Lett. 15, 1737–1739 (2003).
    [CrossRef]
  4. Y. Tsuchida, K. Saitoh, and M. Koshiba, “Design and characterization of single-mode holey fibers with low bending losses,” Opt. Express 13, 4770–4779 (2005).
    [CrossRef]
  5. P. R. Watekar, S. Ju, Y. S. Yoon, Y. S. Lee, and W.-T. Han, “Design of a trenched bend insensitive single mode optical fiber using spot size definitions,” Opt. Express 16, 13545–13551 (2008).
    [CrossRef]
  6. S. Matsuo, T. Nunome, T. Yoshita, T. Hamada, and K. Himeno, “Design optimization of trench index profile for the same dispersion characteristics with SMF,” in Optical Fiber Communication and the National Fiber Optic Engineers Conference (Optical Society of America, 2007), paper JWA2.
  7. P. R. Watekar, S. Ju, and W.-T. Han, “Design and development of a trenched optical fiber with ultra-low bending loss,” Opt. Express 17, 10350–10363 (2009).
    [CrossRef]
  8. P. R. Watekar, S. Ju, and W.-T. Han, “Optimized design of trenched optical fiber for ultralow bending loss at 5 mm of bending diameter,” Appl. Opt. 50, E97–E101 (2011).
    [CrossRef]
  9. A. Kumar and V. Rastogi, “Design and analysis of dual-shape-core large-mode-area optical fiber,” Appl. Opt. 50, E119–E124 (2011).
    [CrossRef]
  10. P. K. Bachmann, “Method of manufacturing fluorine-doped optical fibers,” U.S. patent4,468,413 (28August1984).
  11. J.-P. Berenge, “Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 127, 363–379 (1996).
    [CrossRef]
  12. L. Faustini and G. Martini, “Bend loss in single-mode fibers,” J. Lightwave Technol. 15, 671–679 (1997).
    [CrossRef]
  13. R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett. 5, 273–275 (1980).
    [CrossRef]
  14. Core Active, Er/Yb doped single clad fibers, http://www.coractive.com/ErYbSCF.html .

2011

2009

2008

2005

2003

K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and I. Sankawa, “Hole-assisted fiber design for small bending and splice losses,” IEEE Photon. Technol. Lett. 15, 1737–1739 (2003).
[CrossRef]

1997

G. P. Lees, D. Taverner, D. J. Richardson, L. Dong, and T. P. Newson, “Q-switched erbium doped fibre laser utilising a novel large mode area fibre,” Electron. Lett. 33, 393–394 (1997).
[CrossRef]

L. Faustini and G. Martini, “Bend loss in single-mode fibers,” J. Lightwave Technol. 15, 671–679 (1997).
[CrossRef]

1996

J.-P. Berenge, “Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 127, 363–379 (1996).
[CrossRef]

1980

Bachmann, P. K.

P. K. Bachmann, “Method of manufacturing fluorine-doped optical fibers,” U.S. patent4,468,413 (28August1984).

Berenge, J.-P.

J.-P. Berenge, “Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 127, 363–379 (1996).
[CrossRef]

Bickham, S. R.

Desorcie, R. B.

Dong, L.

G. P. Lees, D. Taverner, D. J. Richardson, L. Dong, and T. P. Newson, “Q-switched erbium doped fibre laser utilising a novel large mode area fibre,” Electron. Lett. 33, 393–394 (1997).
[CrossRef]

Eickhoff, W.

Englebert, J. J.

Faustini, L.

L. Faustini and G. Martini, “Bend loss in single-mode fibers,” J. Lightwave Technol. 15, 671–679 (1997).
[CrossRef]

Hamada, T.

S. Matsuo, T. Nunome, T. Yoshita, T. Hamada, and K. Himeno, “Design optimization of trench index profile for the same dispersion characteristics with SMF,” in Optical Fiber Communication and the National Fiber Optic Engineers Conference (Optical Society of America, 2007), paper JWA2.

Han, W.-T.

Himeno, K.

S. Matsuo, T. Nunome, T. Yoshita, T. Hamada, and K. Himeno, “Design optimization of trench index profile for the same dispersion characteristics with SMF,” in Optical Fiber Communication and the National Fiber Optic Engineers Conference (Optical Society of America, 2007), paper JWA2.

Hogari, K.

K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and I. Sankawa, “Hole-assisted fiber design for small bending and splice losses,” IEEE Photon. Technol. Lett. 15, 1737–1739 (2003).
[CrossRef]

Johnson, J. J.

Ju, S.

Koshiba, M.

Kumar, A.

Lee, Y. S.

Lees, G. P.

G. P. Lees, D. Taverner, D. J. Richardson, L. Dong, and T. P. Newson, “Q-switched erbium doped fibre laser utilising a novel large mode area fibre,” Electron. Lett. 33, 393–394 (1997).
[CrossRef]

Lewis, K. A.

Li, M.-J.

Martini, G.

L. Faustini and G. Martini, “Bend loss in single-mode fibers,” J. Lightwave Technol. 15, 671–679 (1997).
[CrossRef]

Matsuo, S.

S. Matsuo, T. Nunome, T. Yoshita, T. Hamada, and K. Himeno, “Design optimization of trench index profile for the same dispersion characteristics with SMF,” in Optical Fiber Communication and the National Fiber Optic Engineers Conference (Optical Society of America, 2007), paper JWA2.

McDermott, M. A.

Nakajima, K.

K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and I. Sankawa, “Hole-assisted fiber design for small bending and splice losses,” IEEE Photon. Technol. Lett. 15, 1737–1739 (2003).
[CrossRef]

Newson, T. P.

G. P. Lees, D. Taverner, D. J. Richardson, L. Dong, and T. P. Newson, “Q-switched erbium doped fibre laser utilising a novel large mode area fibre,” Electron. Lett. 33, 393–394 (1997).
[CrossRef]

Nolan, D. A.

Nunome, T.

S. Matsuo, T. Nunome, T. Yoshita, T. Hamada, and K. Himeno, “Design optimization of trench index profile for the same dispersion characteristics with SMF,” in Optical Fiber Communication and the National Fiber Optic Engineers Conference (Optical Society of America, 2007), paper JWA2.

Rashleigh, S. C.

Rastogi, V.

Richardson, D. J.

G. P. Lees, D. Taverner, D. J. Richardson, L. Dong, and T. P. Newson, “Q-switched erbium doped fibre laser utilising a novel large mode area fibre,” Electron. Lett. 33, 393–394 (1997).
[CrossRef]

Saitoh, K.

Sankawa, I.

K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and I. Sankawa, “Hole-assisted fiber design for small bending and splice losses,” IEEE Photon. Technol. Lett. 15, 1737–1739 (2003).
[CrossRef]

Tajima, K.

K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and I. Sankawa, “Hole-assisted fiber design for small bending and splice losses,” IEEE Photon. Technol. Lett. 15, 1737–1739 (2003).
[CrossRef]

Tandon, P.

Taverner, D.

G. P. Lees, D. Taverner, D. J. Richardson, L. Dong, and T. P. Newson, “Q-switched erbium doped fibre laser utilising a novel large mode area fibre,” Electron. Lett. 33, 393–394 (1997).
[CrossRef]

Tsuchida, Y.

Ulrich, R.

Watekar, P. R.

Yoon, Y. S.

Yoshita, T.

S. Matsuo, T. Nunome, T. Yoshita, T. Hamada, and K. Himeno, “Design optimization of trench index profile for the same dispersion characteristics with SMF,” in Optical Fiber Communication and the National Fiber Optic Engineers Conference (Optical Society of America, 2007), paper JWA2.

Zhou, J.

K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and I. Sankawa, “Hole-assisted fiber design for small bending and splice losses,” IEEE Photon. Technol. Lett. 15, 1737–1739 (2003).
[CrossRef]

Appl. Opt.

Electron. Lett.

G. P. Lees, D. Taverner, D. J. Richardson, L. Dong, and T. P. Newson, “Q-switched erbium doped fibre laser utilising a novel large mode area fibre,” Electron. Lett. 33, 393–394 (1997).
[CrossRef]

IEEE Photon. Technol. Lett.

K. Nakajima, K. Hogari, J. Zhou, K. Tajima, and I. Sankawa, “Hole-assisted fiber design for small bending and splice losses,” IEEE Photon. Technol. Lett. 15, 1737–1739 (2003).
[CrossRef]

J. Comput. Phys.

J.-P. Berenge, “Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 127, 363–379 (1996).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Other

Core Active, Er/Yb doped single clad fibers, http://www.coractive.com/ErYbSCF.html .

S. Matsuo, T. Nunome, T. Yoshita, T. Hamada, and K. Himeno, “Design optimization of trench index profile for the same dispersion characteristics with SMF,” in Optical Fiber Communication and the National Fiber Optic Engineers Conference (Optical Society of America, 2007), paper JWA2.

P. K. Bachmann, “Method of manufacturing fluorine-doped optical fibers,” U.S. patent4,468,413 (28August1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Fiber refractive index profile.

Fig. 2.
Fig. 2.

Effect of d and Δn2 of DICF on cutoff wavelength λc.

Fig. 3.
Fig. 3.

(a) Core radius a as a function of d; Δn1 and Δn2 with fixed cutoff wavelength λc=1350nm. (b) Corresponding effective area Aeff.

Fig. 4.
Fig. 4.

Dependence of bending loss on (a) d and (b) Δn2 for different R.

Fig. 5.
Fig. 5.

Bending loss versus the effective area of DICF compared to a step-index fiber.

Fig. 6.
Fig. 6.

SEM picture of a DICF cross section.

Fig. 7.
Fig. 7.

Measured refractive index profile of the DICF.

Fig. 8.
Fig. 8.

(a) Comparison of measured and calculated bending losses for different bending radii at wavelength 1550 nm. (b) Measured macrobend loss spectra of DICF at 5 and 10 mm bending radii.

Fig. 9.
Fig. 9.

Small signal gain spectrum of the DICF.

Tables (1)

Tables Icon

Table 1. Attributes of DICF, EYCF, and SMF-28

Metrics