Abstract

We present AlGaAs-InGaAs multiquantum wells photonic crystal surface-emitting lasers by using the transfer matrix method and coupled wave method to achieve a low-threshold operation. The extremely low-threshold gain is achieved by adopting an asymmetric cladding layer design to enhance both of the vertical optical confinement factors for the quantum wells and photonic crystal (PC). By modifying the composition of the AlGaAs layer to raise the refractive index in the p-type cladding, optical field distribution will obviously be shifted to the p side. Hence, it results in a significant coupling enhancement between the optical mode profile and the PC layer. The optimized value of the vertically optical confinement factor of the PC layer is 13.94%, and the corresponding threshold gain can be as low as 19.45cm1.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent 2-D lasing action in surface-emitting laser with triangular lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316–318 (1999).
    [CrossRef]
  2. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of 2-D photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001).
    [CrossRef]
  3. H. Y. Ryu, S. H. Kwon, Y. J. Lee, and J. S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80, 3476–3478 (2002).
    [CrossRef]
  4. G. A. Turnbull, P. Andrew, W. L. Barns, and I. D. W. Samuel, “Operating characteristics of a semiconducting polymer laser pumped by a microchip laser,” Appl. Phys. Lett. 82, 313–315 (2003).
    [CrossRef]
  5. T. C. Lu, S. W. Chen, L. F. Lin, T. T. Kao, C. C. Kao, P. C. Yu, H. C. Kuo, S. C. Wang, and S. H. Fan, “GaN-based 2-D surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. Phys. Lett. 92, 011129 (2008).
    [CrossRef]
  6. T. C. Lu, S. W. Chen, T. T. Kao, and T.-W. Liu, “Characteristics of GaN-based photonic crystal surface emitting lasers,” Appl. Phys. Lett. 93, 111111 (2008).
    [CrossRef]
  7. S. W. Chen, T. C. Lu, Y. J. Hou, T. C. Liu, H. C. Kuo, and S. C. Wang, “Lasing characteristics at different band edges in GaN photonic crystal surface emitting lasers,” Appl. Phys. Lett. 96, 071108 (2010).
    [CrossRef]
  8. E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Lasers producing tailored beams,” Nature 441, 946 (2006).
    [CrossRef]
  9. M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65, 195306 (2002).
    [CrossRef]
  10. M. Yokoyama and S. Noda, “Finite-difference time-domain simulation of two-dimensional photonic crystal surface-emitting laser,” Opt. Express 13, 2869–2880 (2005).
    [CrossRef]
  11. I. Vurgaftman and J. R. Meyer, “Design optimization for high-brightness surface-emitting photonic-crystal distributed-feedback lasers,” IEEE J. Quantum Electron. 39, 689–700 (2003).
    [CrossRef]
  12. H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335 (1972).
    [CrossRef]
  13. K. Sakai, E. Miyai, and S. Noda, “Coupled-wave theory for square lattice photonic crystal lasers with TE polarization,” IEEE J. Quantum Electron. 46, 788–795 (2010).
    [CrossRef]
  14. C. T. Hung, Y. C. Syu, T. T. Wu, and T. C. Lu, “Design of low-threshold photonic crystal surface-emitting lasers,” IEEE Photon. Technol. Lett. 24, 866–868 (2012).
    [CrossRef]

2012 (1)

C. T. Hung, Y. C. Syu, T. T. Wu, and T. C. Lu, “Design of low-threshold photonic crystal surface-emitting lasers,” IEEE Photon. Technol. Lett. 24, 866–868 (2012).
[CrossRef]

2010 (2)

K. Sakai, E. Miyai, and S. Noda, “Coupled-wave theory for square lattice photonic crystal lasers with TE polarization,” IEEE J. Quantum Electron. 46, 788–795 (2010).
[CrossRef]

S. W. Chen, T. C. Lu, Y. J. Hou, T. C. Liu, H. C. Kuo, and S. C. Wang, “Lasing characteristics at different band edges in GaN photonic crystal surface emitting lasers,” Appl. Phys. Lett. 96, 071108 (2010).
[CrossRef]

2008 (2)

T. C. Lu, S. W. Chen, L. F. Lin, T. T. Kao, C. C. Kao, P. C. Yu, H. C. Kuo, S. C. Wang, and S. H. Fan, “GaN-based 2-D surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. Phys. Lett. 92, 011129 (2008).
[CrossRef]

T. C. Lu, S. W. Chen, T. T. Kao, and T.-W. Liu, “Characteristics of GaN-based photonic crystal surface emitting lasers,” Appl. Phys. Lett. 93, 111111 (2008).
[CrossRef]

2006 (1)

E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Lasers producing tailored beams,” Nature 441, 946 (2006).
[CrossRef]

2005 (1)

2003 (2)

I. Vurgaftman and J. R. Meyer, “Design optimization for high-brightness surface-emitting photonic-crystal distributed-feedback lasers,” IEEE J. Quantum Electron. 39, 689–700 (2003).
[CrossRef]

G. A. Turnbull, P. Andrew, W. L. Barns, and I. D. W. Samuel, “Operating characteristics of a semiconducting polymer laser pumped by a microchip laser,” Appl. Phys. Lett. 82, 313–315 (2003).
[CrossRef]

2002 (2)

H. Y. Ryu, S. H. Kwon, Y. J. Lee, and J. S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80, 3476–3478 (2002).
[CrossRef]

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65, 195306 (2002).
[CrossRef]

2001 (1)

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of 2-D photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001).
[CrossRef]

1999 (1)

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent 2-D lasing action in surface-emitting laser with triangular lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316–318 (1999).
[CrossRef]

1972 (1)

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335 (1972).
[CrossRef]

Andrew, P.

G. A. Turnbull, P. Andrew, W. L. Barns, and I. D. W. Samuel, “Operating characteristics of a semiconducting polymer laser pumped by a microchip laser,” Appl. Phys. Lett. 82, 313–315 (2003).
[CrossRef]

Barns, W. L.

G. A. Turnbull, P. Andrew, W. L. Barns, and I. D. W. Samuel, “Operating characteristics of a semiconducting polymer laser pumped by a microchip laser,” Appl. Phys. Lett. 82, 313–315 (2003).
[CrossRef]

Chen, S. W.

S. W. Chen, T. C. Lu, Y. J. Hou, T. C. Liu, H. C. Kuo, and S. C. Wang, “Lasing characteristics at different band edges in GaN photonic crystal surface emitting lasers,” Appl. Phys. Lett. 96, 071108 (2010).
[CrossRef]

T. C. Lu, S. W. Chen, T. T. Kao, and T.-W. Liu, “Characteristics of GaN-based photonic crystal surface emitting lasers,” Appl. Phys. Lett. 93, 111111 (2008).
[CrossRef]

T. C. Lu, S. W. Chen, L. F. Lin, T. T. Kao, C. C. Kao, P. C. Yu, H. C. Kuo, S. C. Wang, and S. H. Fan, “GaN-based 2-D surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. Phys. Lett. 92, 011129 (2008).
[CrossRef]

Chutinan, A.

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65, 195306 (2002).
[CrossRef]

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of 2-D photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001).
[CrossRef]

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent 2-D lasing action in surface-emitting laser with triangular lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316–318 (1999).
[CrossRef]

Fan, S. H.

T. C. Lu, S. W. Chen, L. F. Lin, T. T. Kao, C. C. Kao, P. C. Yu, H. C. Kuo, S. C. Wang, and S. H. Fan, “GaN-based 2-D surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. Phys. Lett. 92, 011129 (2008).
[CrossRef]

Hou, Y. J.

S. W. Chen, T. C. Lu, Y. J. Hou, T. C. Liu, H. C. Kuo, and S. C. Wang, “Lasing characteristics at different band edges in GaN photonic crystal surface emitting lasers,” Appl. Phys. Lett. 96, 071108 (2010).
[CrossRef]

Hung, C. T.

C. T. Hung, Y. C. Syu, T. T. Wu, and T. C. Lu, “Design of low-threshold photonic crystal surface-emitting lasers,” IEEE Photon. Technol. Lett. 24, 866–868 (2012).
[CrossRef]

Imada, M.

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65, 195306 (2002).
[CrossRef]

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of 2-D photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001).
[CrossRef]

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent 2-D lasing action in surface-emitting laser with triangular lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316–318 (1999).
[CrossRef]

Kao, C. C.

T. C. Lu, S. W. Chen, L. F. Lin, T. T. Kao, C. C. Kao, P. C. Yu, H. C. Kuo, S. C. Wang, and S. H. Fan, “GaN-based 2-D surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. Phys. Lett. 92, 011129 (2008).
[CrossRef]

Kao, T. T.

T. C. Lu, S. W. Chen, T. T. Kao, and T.-W. Liu, “Characteristics of GaN-based photonic crystal surface emitting lasers,” Appl. Phys. Lett. 93, 111111 (2008).
[CrossRef]

T. C. Lu, S. W. Chen, L. F. Lin, T. T. Kao, C. C. Kao, P. C. Yu, H. C. Kuo, S. C. Wang, and S. H. Fan, “GaN-based 2-D surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. Phys. Lett. 92, 011129 (2008).
[CrossRef]

Kim, J. S.

H. Y. Ryu, S. H. Kwon, Y. J. Lee, and J. S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80, 3476–3478 (2002).
[CrossRef]

Kogelnik, H.

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335 (1972).
[CrossRef]

Kunishi, W.

E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Lasers producing tailored beams,” Nature 441, 946 (2006).
[CrossRef]

Kuo, H. C.

S. W. Chen, T. C. Lu, Y. J. Hou, T. C. Liu, H. C. Kuo, and S. C. Wang, “Lasing characteristics at different band edges in GaN photonic crystal surface emitting lasers,” Appl. Phys. Lett. 96, 071108 (2010).
[CrossRef]

T. C. Lu, S. W. Chen, L. F. Lin, T. T. Kao, C. C. Kao, P. C. Yu, H. C. Kuo, S. C. Wang, and S. H. Fan, “GaN-based 2-D surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. Phys. Lett. 92, 011129 (2008).
[CrossRef]

Kwon, S. H.

H. Y. Ryu, S. H. Kwon, Y. J. Lee, and J. S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80, 3476–3478 (2002).
[CrossRef]

Lee, Y. J.

H. Y. Ryu, S. H. Kwon, Y. J. Lee, and J. S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80, 3476–3478 (2002).
[CrossRef]

Lin, L. F.

T. C. Lu, S. W. Chen, L. F. Lin, T. T. Kao, C. C. Kao, P. C. Yu, H. C. Kuo, S. C. Wang, and S. H. Fan, “GaN-based 2-D surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. Phys. Lett. 92, 011129 (2008).
[CrossRef]

Liu, T. C.

S. W. Chen, T. C. Lu, Y. J. Hou, T. C. Liu, H. C. Kuo, and S. C. Wang, “Lasing characteristics at different band edges in GaN photonic crystal surface emitting lasers,” Appl. Phys. Lett. 96, 071108 (2010).
[CrossRef]

Liu, T.-W.

T. C. Lu, S. W. Chen, T. T. Kao, and T.-W. Liu, “Characteristics of GaN-based photonic crystal surface emitting lasers,” Appl. Phys. Lett. 93, 111111 (2008).
[CrossRef]

Lu, T. C.

C. T. Hung, Y. C. Syu, T. T. Wu, and T. C. Lu, “Design of low-threshold photonic crystal surface-emitting lasers,” IEEE Photon. Technol. Lett. 24, 866–868 (2012).
[CrossRef]

S. W. Chen, T. C. Lu, Y. J. Hou, T. C. Liu, H. C. Kuo, and S. C. Wang, “Lasing characteristics at different band edges in GaN photonic crystal surface emitting lasers,” Appl. Phys. Lett. 96, 071108 (2010).
[CrossRef]

T. C. Lu, S. W. Chen, T. T. Kao, and T.-W. Liu, “Characteristics of GaN-based photonic crystal surface emitting lasers,” Appl. Phys. Lett. 93, 111111 (2008).
[CrossRef]

T. C. Lu, S. W. Chen, L. F. Lin, T. T. Kao, C. C. Kao, P. C. Yu, H. C. Kuo, S. C. Wang, and S. H. Fan, “GaN-based 2-D surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. Phys. Lett. 92, 011129 (2008).
[CrossRef]

Meyer, J. R.

I. Vurgaftman and J. R. Meyer, “Design optimization for high-brightness surface-emitting photonic-crystal distributed-feedback lasers,” IEEE J. Quantum Electron. 39, 689–700 (2003).
[CrossRef]

Miyai, E.

K. Sakai, E. Miyai, and S. Noda, “Coupled-wave theory for square lattice photonic crystal lasers with TE polarization,” IEEE J. Quantum Electron. 46, 788–795 (2010).
[CrossRef]

E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Lasers producing tailored beams,” Nature 441, 946 (2006).
[CrossRef]

Mochizuki, M.

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65, 195306 (2002).
[CrossRef]

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of 2-D photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001).
[CrossRef]

Murata, M.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent 2-D lasing action in surface-emitting laser with triangular lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316–318 (1999).
[CrossRef]

Noda, S.

K. Sakai, E. Miyai, and S. Noda, “Coupled-wave theory for square lattice photonic crystal lasers with TE polarization,” IEEE J. Quantum Electron. 46, 788–795 (2010).
[CrossRef]

E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Lasers producing tailored beams,” Nature 441, 946 (2006).
[CrossRef]

M. Yokoyama and S. Noda, “Finite-difference time-domain simulation of two-dimensional photonic crystal surface-emitting laser,” Opt. Express 13, 2869–2880 (2005).
[CrossRef]

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65, 195306 (2002).
[CrossRef]

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of 2-D photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001).
[CrossRef]

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent 2-D lasing action in surface-emitting laser with triangular lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316–318 (1999).
[CrossRef]

Ohnishi, D.

E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Lasers producing tailored beams,” Nature 441, 946 (2006).
[CrossRef]

Okano, T.

E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Lasers producing tailored beams,” Nature 441, 946 (2006).
[CrossRef]

Ryu, H. Y.

H. Y. Ryu, S. H. Kwon, Y. J. Lee, and J. S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80, 3476–3478 (2002).
[CrossRef]

Sakai, K.

K. Sakai, E. Miyai, and S. Noda, “Coupled-wave theory for square lattice photonic crystal lasers with TE polarization,” IEEE J. Quantum Electron. 46, 788–795 (2010).
[CrossRef]

E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Lasers producing tailored beams,” Nature 441, 946 (2006).
[CrossRef]

Samuel, I. D. W.

G. A. Turnbull, P. Andrew, W. L. Barns, and I. D. W. Samuel, “Operating characteristics of a semiconducting polymer laser pumped by a microchip laser,” Appl. Phys. Lett. 82, 313–315 (2003).
[CrossRef]

Sasaki, G.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent 2-D lasing action in surface-emitting laser with triangular lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316–318 (1999).
[CrossRef]

Shank, C. V.

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335 (1972).
[CrossRef]

Syu, Y. C.

C. T. Hung, Y. C. Syu, T. T. Wu, and T. C. Lu, “Design of low-threshold photonic crystal surface-emitting lasers,” IEEE Photon. Technol. Lett. 24, 866–868 (2012).
[CrossRef]

Tokuda, T.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent 2-D lasing action in surface-emitting laser with triangular lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316–318 (1999).
[CrossRef]

Turnbull, G. A.

G. A. Turnbull, P. Andrew, W. L. Barns, and I. D. W. Samuel, “Operating characteristics of a semiconducting polymer laser pumped by a microchip laser,” Appl. Phys. Lett. 82, 313–315 (2003).
[CrossRef]

Vurgaftman, I.

I. Vurgaftman and J. R. Meyer, “Design optimization for high-brightness surface-emitting photonic-crystal distributed-feedback lasers,” IEEE J. Quantum Electron. 39, 689–700 (2003).
[CrossRef]

Wang, S. C.

S. W. Chen, T. C. Lu, Y. J. Hou, T. C. Liu, H. C. Kuo, and S. C. Wang, “Lasing characteristics at different band edges in GaN photonic crystal surface emitting lasers,” Appl. Phys. Lett. 96, 071108 (2010).
[CrossRef]

T. C. Lu, S. W. Chen, L. F. Lin, T. T. Kao, C. C. Kao, P. C. Yu, H. C. Kuo, S. C. Wang, and S. H. Fan, “GaN-based 2-D surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. Phys. Lett. 92, 011129 (2008).
[CrossRef]

Wu, T. T.

C. T. Hung, Y. C. Syu, T. T. Wu, and T. C. Lu, “Design of low-threshold photonic crystal surface-emitting lasers,” IEEE Photon. Technol. Lett. 24, 866–868 (2012).
[CrossRef]

Yokoyama, M.

M. Yokoyama and S. Noda, “Finite-difference time-domain simulation of two-dimensional photonic crystal surface-emitting laser,” Opt. Express 13, 2869–2880 (2005).
[CrossRef]

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of 2-D photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001).
[CrossRef]

Yu, P. C.

T. C. Lu, S. W. Chen, L. F. Lin, T. T. Kao, C. C. Kao, P. C. Yu, H. C. Kuo, S. C. Wang, and S. H. Fan, “GaN-based 2-D surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. Phys. Lett. 92, 011129 (2008).
[CrossRef]

Appl. Phys. Lett. (6)

H. Y. Ryu, S. H. Kwon, Y. J. Lee, and J. S. Kim, “Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80, 3476–3478 (2002).
[CrossRef]

G. A. Turnbull, P. Andrew, W. L. Barns, and I. D. W. Samuel, “Operating characteristics of a semiconducting polymer laser pumped by a microchip laser,” Appl. Phys. Lett. 82, 313–315 (2003).
[CrossRef]

T. C. Lu, S. W. Chen, L. F. Lin, T. T. Kao, C. C. Kao, P. C. Yu, H. C. Kuo, S. C. Wang, and S. H. Fan, “GaN-based 2-D surface-emitting photonic crystal lasers with AlN/GaN distributed Bragg reflector,” Appl. Phys. Lett. 92, 011129 (2008).
[CrossRef]

T. C. Lu, S. W. Chen, T. T. Kao, and T.-W. Liu, “Characteristics of GaN-based photonic crystal surface emitting lasers,” Appl. Phys. Lett. 93, 111111 (2008).
[CrossRef]

S. W. Chen, T. C. Lu, Y. J. Hou, T. C. Liu, H. C. Kuo, and S. C. Wang, “Lasing characteristics at different band edges in GaN photonic crystal surface emitting lasers,” Appl. Phys. Lett. 96, 071108 (2010).
[CrossRef]

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent 2-D lasing action in surface-emitting laser with triangular lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316–318 (1999).
[CrossRef]

IEEE J. Quantum Electron. (2)

I. Vurgaftman and J. R. Meyer, “Design optimization for high-brightness surface-emitting photonic-crystal distributed-feedback lasers,” IEEE J. Quantum Electron. 39, 689–700 (2003).
[CrossRef]

K. Sakai, E. Miyai, and S. Noda, “Coupled-wave theory for square lattice photonic crystal lasers with TE polarization,” IEEE J. Quantum Electron. 46, 788–795 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. T. Hung, Y. C. Syu, T. T. Wu, and T. C. Lu, “Design of low-threshold photonic crystal surface-emitting lasers,” IEEE Photon. Technol. Lett. 24, 866–868 (2012).
[CrossRef]

J. Appl. Phys. (1)

H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335 (1972).
[CrossRef]

Nature (1)

E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Lasers producing tailored beams,” Nature 441, 946 (2006).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (1)

M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65, 195306 (2002).
[CrossRef]

Science (1)

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of 2-D photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

The full structure of an AlGaAs-InGaAs PCSEL, which contains a GaAs substrate, an n-type AlGaAs bottom cladding layer, InGaAs-GaAs MQWs surrounded by two AlGaAs optical confinement layers, a PC layer followed by a p-type AlGaAs top cladding layer, and a p-type GaAs cap layer.

Fig. 2.
Fig. 2.

Optical profile of the device in the vertical direction. The black and blue lines represent the optical field distribution and the refractive index in the structure, respectively.

Fig. 3.
Fig. 3.

Confinement factors of the PC layer and quantum wells decrease with increasing the filling factor of the PC.

Fig. 4.
Fig. 4.

Threshold gain and confinement factor as a function of the p-cladding Al composition.

Fig. 5.
Fig. 5.

Optical profile of the device in the vertical direction. The black and blue lines represent the distribution of the optical mode profile and the corresponding refractive index under the design of the PC structure, respectively. The optical profile obviously moves toward the p-cladding layer and enhances the overlap with the PC layer.

Fig. 6.
Fig. 6.

The relationship between the threshold gain and the filling factor utilized in the optimal p-cladding Al composition shown in Fig. 4.

Fig. 7.
Fig. 7.

Threshold gain as a function of the PC filling factor and Al content of the p-type AlGaAs cladding layer whose variation is indicated by the color alteration.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

(αk0iδ)RxxRx=i4k12β0Rx+(ik3k0)Sx+i2k12β0Sy+i2k12β0Ry,(αk0iδ)Sx+xSx=i4k12β0Sx+(ik3k0)Rx+i2k12β0Sy+i2k12β0Ry,(αk0iδ)RyyRy=i4k12β0Ry+(ik3k0)Sy+i2k12β0Sx+i2k12β0Rx,(αk0iδ)Sy+ySy=i4k12β0Sy+(ik3k0)Ry+i2k12β0Sx+i2k12β0Rx.

Metrics