Abstract

The requirements for selecting the initial scheme for a compact plastic zoom lens are formulated. The main stages of the initial scheme of the transformation, incorporating the diffractive lens and replacement of the lenses’ glasses by optical plastics, are presented. The efficiency of the suggested techniques of the optical layout process are demonstrated by using the example of the design and analysis of a zoom lens intended for use in security cameras for day or night vision.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Weng, X. Zhang, and X. Cong, “Design of zoom lens with binary optics,” Proc. SPIE 2539, 118–127 (1995).
    [CrossRef]
  2. H. Sato and S. Yamaguchi, “Optical design of digital camera zoom lenses employing plastic lens elements,” Proc. SPIE 6196, 61960D (2006).
    [CrossRef]
  3. K. Matsusaka, S. Ozawa, R. Yoshida, T. Yuasa, and Y. Souma, “Ultracompact optical zoom lens for mobile phone,” Proc. SPIE 6502, 650203 (2007).
    [CrossRef]
  4. G. Greisukh, E. Ezhov, A. Kalashnikov, and S. Stepanov, “Diffractive–refractive correction units for plastic compact zoom lenses,” Appl. Opt. 51, 4597–4604 (2012).
    [CrossRef]
  5. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2005), Section 5.5.3, p. 253.
  6. P. B. Catrysse and B. A. Wandell, “Optical efficiency of image sensor pixels,” J. Opt. Soc. Am. 19, 1610–1620 (2002).
    [CrossRef]
  7. OmniVision, “5-Megapixel image sensors,” http://www.ovt.com/products/category.php?id=11 .
  8. G. I. Greisukh, E. G. Ezhov, I. A. Levin, and S. A. Stepanov, “Design of achromatic and apochromatic plastic microobjectives,” Appl. Opt. 49, 4379–4384 (2010).
    [CrossRef]
  9. S.-M. Lin, C.-H. Lin, and S.-F. Cheng, “Miniature zoom lens,” U.S. patent8,218,244 (10July2012).
  10. Radiant Zemax, http://www.zemax.com .
  11. Santa Barbara Surveillance Systems, http://sbsurvco.com/ThermosCamera.html .
  12. G. Greisukh, E. Ezhov, A. Kalashnikov, I. Levin, and S. Stepanov, “The efficiency of relief-phase diffractive elements at a small number of Fresnel zones,” Opt. Spectrosc. 113, 425–430 (2012).
    [CrossRef]
  13. W. S. Beich, “Injection molded polymer optics in the 21st Century,” Proc. SPIE 5865, 58650J (2005).
    [CrossRef]
  14. D. Radtke and U. D. Zeitner, “Laser-lithography on non-planar surfaces,” Opt. Express 15, 1167–1174 (2007).
    [CrossRef]
  15. G-S Plastic Optics, http://www.gsoptics.com .
  16. Edmund Optics, http://www.edmundoptics.com .
  17. Digital Photography Review, “New Canon 400 mm f/4 DO IS USM,” http://www.dpreview.com/news/0009/00090604canon_400do.asp .
  18. V. Lukin, “Holographic optical elements,” J. Opt. Technol. 74, 65–70 (2007).
    [CrossRef]
  19. T. Nakai, “Diffractive optical element and optical system including the same,” U.S. patent7,301,702 (27November2007).
  20. B. H. Kleemann, M. Seesselberg, and J. Ruoff, “Design concepts for broadband high-efficiency DOEs,” J. Eur. Opt. Soc. 3, 08015 (2008).
    [CrossRef]
  21. G. I. Greisukh, E. A. Bezus, D. A. Bykov, E. G. Ezhov, and S. A. Stepanov, “Suppression of the spectral selectivity of two layer relief-phase diffraction structures,” Opt. Spectrosc. 106, 621–626 (2009).
    [CrossRef]

2012

G. Greisukh, E. Ezhov, A. Kalashnikov, I. Levin, and S. Stepanov, “The efficiency of relief-phase diffractive elements at a small number of Fresnel zones,” Opt. Spectrosc. 113, 425–430 (2012).
[CrossRef]

G. Greisukh, E. Ezhov, A. Kalashnikov, and S. Stepanov, “Diffractive–refractive correction units for plastic compact zoom lenses,” Appl. Opt. 51, 4597–4604 (2012).
[CrossRef]

2010

2009

G. I. Greisukh, E. A. Bezus, D. A. Bykov, E. G. Ezhov, and S. A. Stepanov, “Suppression of the spectral selectivity of two layer relief-phase diffraction structures,” Opt. Spectrosc. 106, 621–626 (2009).
[CrossRef]

2008

B. H. Kleemann, M. Seesselberg, and J. Ruoff, “Design concepts for broadband high-efficiency DOEs,” J. Eur. Opt. Soc. 3, 08015 (2008).
[CrossRef]

2007

2006

H. Sato and S. Yamaguchi, “Optical design of digital camera zoom lenses employing plastic lens elements,” Proc. SPIE 6196, 61960D (2006).
[CrossRef]

2005

W. S. Beich, “Injection molded polymer optics in the 21st Century,” Proc. SPIE 5865, 58650J (2005).
[CrossRef]

2002

P. B. Catrysse and B. A. Wandell, “Optical efficiency of image sensor pixels,” J. Opt. Soc. Am. 19, 1610–1620 (2002).
[CrossRef]

1995

Z. Weng, X. Zhang, and X. Cong, “Design of zoom lens with binary optics,” Proc. SPIE 2539, 118–127 (1995).
[CrossRef]

Beich, W. S.

W. S. Beich, “Injection molded polymer optics in the 21st Century,” Proc. SPIE 5865, 58650J (2005).
[CrossRef]

Bezus, E. A.

G. I. Greisukh, E. A. Bezus, D. A. Bykov, E. G. Ezhov, and S. A. Stepanov, “Suppression of the spectral selectivity of two layer relief-phase diffraction structures,” Opt. Spectrosc. 106, 621–626 (2009).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2005), Section 5.5.3, p. 253.

Bykov, D. A.

G. I. Greisukh, E. A. Bezus, D. A. Bykov, E. G. Ezhov, and S. A. Stepanov, “Suppression of the spectral selectivity of two layer relief-phase diffraction structures,” Opt. Spectrosc. 106, 621–626 (2009).
[CrossRef]

Catrysse, P. B.

P. B. Catrysse and B. A. Wandell, “Optical efficiency of image sensor pixels,” J. Opt. Soc. Am. 19, 1610–1620 (2002).
[CrossRef]

Cheng, S.-F.

S.-M. Lin, C.-H. Lin, and S.-F. Cheng, “Miniature zoom lens,” U.S. patent8,218,244 (10July2012).

Cong, X.

Z. Weng, X. Zhang, and X. Cong, “Design of zoom lens with binary optics,” Proc. SPIE 2539, 118–127 (1995).
[CrossRef]

Ezhov, E.

G. Greisukh, E. Ezhov, A. Kalashnikov, I. Levin, and S. Stepanov, “The efficiency of relief-phase diffractive elements at a small number of Fresnel zones,” Opt. Spectrosc. 113, 425–430 (2012).
[CrossRef]

G. Greisukh, E. Ezhov, A. Kalashnikov, and S. Stepanov, “Diffractive–refractive correction units for plastic compact zoom lenses,” Appl. Opt. 51, 4597–4604 (2012).
[CrossRef]

Ezhov, E. G.

G. I. Greisukh, E. G. Ezhov, I. A. Levin, and S. A. Stepanov, “Design of achromatic and apochromatic plastic microobjectives,” Appl. Opt. 49, 4379–4384 (2010).
[CrossRef]

G. I. Greisukh, E. A. Bezus, D. A. Bykov, E. G. Ezhov, and S. A. Stepanov, “Suppression of the spectral selectivity of two layer relief-phase diffraction structures,” Opt. Spectrosc. 106, 621–626 (2009).
[CrossRef]

Greisukh, G.

G. Greisukh, E. Ezhov, A. Kalashnikov, and S. Stepanov, “Diffractive–refractive correction units for plastic compact zoom lenses,” Appl. Opt. 51, 4597–4604 (2012).
[CrossRef]

G. Greisukh, E. Ezhov, A. Kalashnikov, I. Levin, and S. Stepanov, “The efficiency of relief-phase diffractive elements at a small number of Fresnel zones,” Opt. Spectrosc. 113, 425–430 (2012).
[CrossRef]

Greisukh, G. I.

G. I. Greisukh, E. G. Ezhov, I. A. Levin, and S. A. Stepanov, “Design of achromatic and apochromatic plastic microobjectives,” Appl. Opt. 49, 4379–4384 (2010).
[CrossRef]

G. I. Greisukh, E. A. Bezus, D. A. Bykov, E. G. Ezhov, and S. A. Stepanov, “Suppression of the spectral selectivity of two layer relief-phase diffraction structures,” Opt. Spectrosc. 106, 621–626 (2009).
[CrossRef]

Kalashnikov, A.

G. Greisukh, E. Ezhov, A. Kalashnikov, and S. Stepanov, “Diffractive–refractive correction units for plastic compact zoom lenses,” Appl. Opt. 51, 4597–4604 (2012).
[CrossRef]

G. Greisukh, E. Ezhov, A. Kalashnikov, I. Levin, and S. Stepanov, “The efficiency of relief-phase diffractive elements at a small number of Fresnel zones,” Opt. Spectrosc. 113, 425–430 (2012).
[CrossRef]

Kleemann, B. H.

B. H. Kleemann, M. Seesselberg, and J. Ruoff, “Design concepts for broadband high-efficiency DOEs,” J. Eur. Opt. Soc. 3, 08015 (2008).
[CrossRef]

Levin, I.

G. Greisukh, E. Ezhov, A. Kalashnikov, I. Levin, and S. Stepanov, “The efficiency of relief-phase diffractive elements at a small number of Fresnel zones,” Opt. Spectrosc. 113, 425–430 (2012).
[CrossRef]

Levin, I. A.

Lin, C.-H.

S.-M. Lin, C.-H. Lin, and S.-F. Cheng, “Miniature zoom lens,” U.S. patent8,218,244 (10July2012).

Lin, S.-M.

S.-M. Lin, C.-H. Lin, and S.-F. Cheng, “Miniature zoom lens,” U.S. patent8,218,244 (10July2012).

Lukin, V.

Matsusaka, K.

K. Matsusaka, S. Ozawa, R. Yoshida, T. Yuasa, and Y. Souma, “Ultracompact optical zoom lens for mobile phone,” Proc. SPIE 6502, 650203 (2007).
[CrossRef]

Nakai, T.

T. Nakai, “Diffractive optical element and optical system including the same,” U.S. patent7,301,702 (27November2007).

Ozawa, S.

K. Matsusaka, S. Ozawa, R. Yoshida, T. Yuasa, and Y. Souma, “Ultracompact optical zoom lens for mobile phone,” Proc. SPIE 6502, 650203 (2007).
[CrossRef]

Radtke, D.

Ruoff, J.

B. H. Kleemann, M. Seesselberg, and J. Ruoff, “Design concepts for broadband high-efficiency DOEs,” J. Eur. Opt. Soc. 3, 08015 (2008).
[CrossRef]

Sato, H.

H. Sato and S. Yamaguchi, “Optical design of digital camera zoom lenses employing plastic lens elements,” Proc. SPIE 6196, 61960D (2006).
[CrossRef]

Seesselberg, M.

B. H. Kleemann, M. Seesselberg, and J. Ruoff, “Design concepts for broadband high-efficiency DOEs,” J. Eur. Opt. Soc. 3, 08015 (2008).
[CrossRef]

Souma, Y.

K. Matsusaka, S. Ozawa, R. Yoshida, T. Yuasa, and Y. Souma, “Ultracompact optical zoom lens for mobile phone,” Proc. SPIE 6502, 650203 (2007).
[CrossRef]

Stepanov, S.

G. Greisukh, E. Ezhov, A. Kalashnikov, I. Levin, and S. Stepanov, “The efficiency of relief-phase diffractive elements at a small number of Fresnel zones,” Opt. Spectrosc. 113, 425–430 (2012).
[CrossRef]

G. Greisukh, E. Ezhov, A. Kalashnikov, and S. Stepanov, “Diffractive–refractive correction units for plastic compact zoom lenses,” Appl. Opt. 51, 4597–4604 (2012).
[CrossRef]

Stepanov, S. A.

G. I. Greisukh, E. G. Ezhov, I. A. Levin, and S. A. Stepanov, “Design of achromatic and apochromatic plastic microobjectives,” Appl. Opt. 49, 4379–4384 (2010).
[CrossRef]

G. I. Greisukh, E. A. Bezus, D. A. Bykov, E. G. Ezhov, and S. A. Stepanov, “Suppression of the spectral selectivity of two layer relief-phase diffraction structures,” Opt. Spectrosc. 106, 621–626 (2009).
[CrossRef]

Wandell, B. A.

P. B. Catrysse and B. A. Wandell, “Optical efficiency of image sensor pixels,” J. Opt. Soc. Am. 19, 1610–1620 (2002).
[CrossRef]

Weng, Z.

Z. Weng, X. Zhang, and X. Cong, “Design of zoom lens with binary optics,” Proc. SPIE 2539, 118–127 (1995).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2005), Section 5.5.3, p. 253.

Yamaguchi, S.

H. Sato and S. Yamaguchi, “Optical design of digital camera zoom lenses employing plastic lens elements,” Proc. SPIE 6196, 61960D (2006).
[CrossRef]

Yoshida, R.

K. Matsusaka, S. Ozawa, R. Yoshida, T. Yuasa, and Y. Souma, “Ultracompact optical zoom lens for mobile phone,” Proc. SPIE 6502, 650203 (2007).
[CrossRef]

Yuasa, T.

K. Matsusaka, S. Ozawa, R. Yoshida, T. Yuasa, and Y. Souma, “Ultracompact optical zoom lens for mobile phone,” Proc. SPIE 6502, 650203 (2007).
[CrossRef]

Zeitner, U. D.

Zhang, X.

Z. Weng, X. Zhang, and X. Cong, “Design of zoom lens with binary optics,” Proc. SPIE 2539, 118–127 (1995).
[CrossRef]

Appl. Opt.

J. Eur. Opt. Soc.

B. H. Kleemann, M. Seesselberg, and J. Ruoff, “Design concepts for broadband high-efficiency DOEs,” J. Eur. Opt. Soc. 3, 08015 (2008).
[CrossRef]

J. Opt. Soc. Am.

P. B. Catrysse and B. A. Wandell, “Optical efficiency of image sensor pixels,” J. Opt. Soc. Am. 19, 1610–1620 (2002).
[CrossRef]

J. Opt. Technol.

Opt. Express

Opt. Spectrosc.

G. I. Greisukh, E. A. Bezus, D. A. Bykov, E. G. Ezhov, and S. A. Stepanov, “Suppression of the spectral selectivity of two layer relief-phase diffraction structures,” Opt. Spectrosc. 106, 621–626 (2009).
[CrossRef]

G. Greisukh, E. Ezhov, A. Kalashnikov, I. Levin, and S. Stepanov, “The efficiency of relief-phase diffractive elements at a small number of Fresnel zones,” Opt. Spectrosc. 113, 425–430 (2012).
[CrossRef]

Proc. SPIE

W. S. Beich, “Injection molded polymer optics in the 21st Century,” Proc. SPIE 5865, 58650J (2005).
[CrossRef]

Z. Weng, X. Zhang, and X. Cong, “Design of zoom lens with binary optics,” Proc. SPIE 2539, 118–127 (1995).
[CrossRef]

H. Sato and S. Yamaguchi, “Optical design of digital camera zoom lenses employing plastic lens elements,” Proc. SPIE 6196, 61960D (2006).
[CrossRef]

K. Matsusaka, S. Ozawa, R. Yoshida, T. Yuasa, and Y. Souma, “Ultracompact optical zoom lens for mobile phone,” Proc. SPIE 6502, 650203 (2007).
[CrossRef]

Other

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2005), Section 5.5.3, p. 253.

OmniVision, “5-Megapixel image sensors,” http://www.ovt.com/products/category.php?id=11 .

S.-M. Lin, C.-H. Lin, and S.-F. Cheng, “Miniature zoom lens,” U.S. patent8,218,244 (10July2012).

Radiant Zemax, http://www.zemax.com .

Santa Barbara Surveillance Systems, http://sbsurvco.com/ThermosCamera.html .

G-S Plastic Optics, http://www.gsoptics.com .

Edmund Optics, http://www.edmundoptics.com .

Digital Photography Review, “New Canon 400 mm f/4 DO IS USM,” http://www.dpreview.com/news/0009/00090604canon_400do.asp .

T. Nakai, “Diffractive optical element and optical system including the same,” U.S. patent7,301,702 (27November2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Plastic diffractive–refractive compact zoom lens. (a) Wide-angle configuration, corresponding to fmin=3.413mm, (b) intermediate configuration, corresponding to fmid=5.18mm, and (c) telephoto configuration, corresponding to fmax=8.194mm. DL, diffractive lens; STO, aperture stop; SW, sensor window.

Fig. 2.
Fig. 2.

Axial color for (a) wide-angle, (b) intermediate, and (c) telephoto configurations of the plastic zoom lens.

Fig. 3.
Fig. 3.

Field aberration plots for (a) wide-angle, (b) intermediate, and (c) telephoto configurations of the plastic zoom lens. Left, astigmatic field curvature at λ=0.69μm (solid curves, sagittal shift; dashed curves, tangential shift). Right, distortion at λ=0.69μm.

Fig. 4.
Fig. 4.

Distribution of wavefront aberration within the exit pupil for (a) wide-angle, (b) intermediate, and (c) telephoto configurations of the plastic zoom lens. Solid curves, at λ=λF; dotted curves, at λ=0.69μm; dashed curves, at λ=0.9μm.

Fig. 5.
Fig. 5.

Polychromatic diffraction MTF for (a) wide-angle, (b) intermediate, and (c) telephoto configurations of the plastic zoom lens. Curve 1 at 0; curves 2 at 1.25 mm image height; curves 3 at 2.5 mm image height (dotted curves, sagittal; dashed curves, tangential).

Fig. 6.
Fig. 6.

Distribution of DL phase delay.

Tables (5)

Tables Icon

Table 1. Lens Listing for Designed Plastic Zoom Lens

Tables Icon

Table 2. Multiconfiguration Data

Tables Icon

Table 3. Data of Even Aspheric Surfaces

Tables Icon

Table 4. Polychromatic Resolution of Designed Plastic Zoom Lens

Tables Icon

Table 5. DL Parameters of Designed Plastic Zoom Lens

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ψ=mp=1Apρ2p,
φ=A1λm/π,
z=cρ21+1(1+k)c2ρ2+l=2αlρ2l,

Metrics