Abstract

The authors propose and numerically examine a two-component design for an optical nanocavity. Such a nanocavity consists, first, of a photonic crystal (PC) nanobeam, in which the PC unit cell is not changed. Second, the cavity contains a fragment of some supplementary material of the size of several or several tens of PC unit cells. When the two components are combined, a defect forms in which the resonant mode can be excited. The advantages of the proposed cavity model are reported, particularly the possibility of implementing electrically pumped light sources and amplifiers and the simplification of development of nanocavities with nonlinear properties. The fabrication tolerances of the proposed nanocavity were investigated. It has been found that existing structural layer alignment technologies can be used for fabricating the suggested cavity.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [CrossRef]
  2. G. Shambat, B. Ellis, J. Petykiewicz, M. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Nanobeam photonic crystal cavity light-emitting diodes,” Appl. Phys. Lett. 99, 071105 (2011).
    [CrossRef]
  3. F. Qin, Z.-M. Meng, X.-L. Zhong, Y. Liu, and Z.-Y. Li, “Fabrication of semiconductor-polymer compound nonlinear photonic crystal slab with highly uniform infiltration based on nanoimprint lithography technique,” Opt. Express 20, 13091–13099 (2012).
    [CrossRef]
  4. I. W. Frank, P. B. Deotare, M. W. McCutcheon, and M. Lončar, “Programmable photonic crystal nanobeam cavities,” Opt. Express 18, 8705–8712 (2010).
    [CrossRef]
  5. N.-V.-Q. Tran, S. Combrié, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101 (2009).
    [CrossRef]
  6. S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18, 16064–16073 (2010).
    [CrossRef]
  7. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214 (2005).
    [CrossRef]
  8. P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” New J. Phys. 8, 204 (2006).
    [CrossRef]
  9. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
    [CrossRef]
  10. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
    [CrossRef]
  11. L. W. Shive and B. L. Gilmore, “Impact of thermal processing on silicon wafer surface roughness,” ECS Trans. 16, 401–405 (2008).
    [CrossRef]
  12. Q. Quan and M. Loncar, “Deterministic design of high Q, small mode volume photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011).
    [CrossRef]
  13. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  14. B. H. Ahn, J. H. Kang, M. K. Kim, J. H. Song, B. Min, K. S. Kim, and Y. H. Lee, “One-dimensional parabolic beam photonic crystal laser,” Opt. Express 18, 5654–5660 (2010).
    [CrossRef]
  15. N. Li, W. Wu, and S. Y. Chou, “Sub-20 nm alignment in nanoimprint lithography using moiré fringe,” Nano Lett. 6, 2626–2629 (2006).
    [CrossRef]
  16. W. Wu, R. G. Walmsley, W.-D. Li, X. Li, and R. S. Williams, “Nanoimprint lithography with ≤60 nm overlay precision,” Appl. Phys. A 106, 767–772 (2012).
    [CrossRef]
  17. S.-H. Kim, J. Huang, and A. Scherer, “From vertical-cavities to hybrid metal/photonic-crystal nanocavities: towards high-efficiency nanolasers,” J. Opt. Soc. Am. B 29, 577–588 (2012).
    [CrossRef]

2012 (3)

2011 (2)

Q. Quan and M. Loncar, “Deterministic design of high Q, small mode volume photonic crystal nanobeam cavities,” Opt. Express 19, 18529–18542 (2011).
[CrossRef]

G. Shambat, B. Ellis, J. Petykiewicz, M. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Nanobeam photonic crystal cavity light-emitting diodes,” Appl. Phys. Lett. 99, 071105 (2011).
[CrossRef]

2010 (3)

2009 (1)

N.-V.-Q. Tran, S. Combrié, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101 (2009).
[CrossRef]

2008 (1)

L. W. Shive and B. L. Gilmore, “Impact of thermal processing on silicon wafer surface roughness,” ECS Trans. 16, 401–405 (2008).
[CrossRef]

2006 (2)

N. Li, W. Wu, and S. Y. Chou, “Sub-20 nm alignment in nanoimprint lithography using moiré fringe,” Nano Lett. 6, 2626–2629 (2006).
[CrossRef]

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” New J. Phys. 8, 204 (2006).
[CrossRef]

2005 (2)

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214 (2005).
[CrossRef]

2003 (2)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[CrossRef]

Ahn, B. H.

Akahane, Y.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[CrossRef]

Andreani, L. C.

Asano, T.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214 (2005).
[CrossRef]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[CrossRef]

Charvolin, T.

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” New J. Phys. 8, 204 (2006).
[CrossRef]

Chou, S. Y.

N. Li, W. Wu, and S. Y. Chou, “Sub-20 nm alignment in nanoimprint lithography using moiré fringe,” Nano Lett. 6, 2626–2629 (2006).
[CrossRef]

Combrié, S.

N.-V.-Q. Tran, S. Combrié, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101 (2009).
[CrossRef]

De Rossi, A.

N.-V.-Q. Tran, S. Combrié, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101 (2009).
[CrossRef]

Deotare, P. B.

Ellis, B.

G. Shambat, B. Ellis, J. Petykiewicz, M. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Nanobeam photonic crystal cavity light-emitting diodes,” Appl. Phys. Lett. 99, 071105 (2011).
[CrossRef]

Frank, I. W.

Galli, M.

Gerace, D.

Gilmore, B. L.

L. W. Shive and B. L. Gilmore, “Impact of thermal processing on silicon wafer surface roughness,” ECS Trans. 16, 401–405 (2008).
[CrossRef]

Hadji, E.

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” New J. Phys. 8, 204 (2006).
[CrossRef]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Haller, E. E.

G. Shambat, B. Ellis, J. Petykiewicz, M. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Nanobeam photonic crystal cavity light-emitting diodes,” Appl. Phys. Lett. 99, 071105 (2011).
[CrossRef]

Harris, J.

G. Shambat, B. Ellis, J. Petykiewicz, M. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Nanobeam photonic crystal cavity light-emitting diodes,” Appl. Phys. Lett. 99, 071105 (2011).
[CrossRef]

Huang, J.

Hugonin, J. P.

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” New J. Phys. 8, 204 (2006).
[CrossRef]

Kang, J. H.

Kim, K. S.

Kim, M. K.

Kim, S.-H.

Krauss, T. F.

Lalanne, P.

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” New J. Phys. 8, 204 (2006).
[CrossRef]

Lee, Y. H.

Li, N.

N. Li, W. Wu, and S. Y. Chou, “Sub-20 nm alignment in nanoimprint lithography using moiré fringe,” Nano Lett. 6, 2626–2629 (2006).
[CrossRef]

Li, W.-D.

W. Wu, R. G. Walmsley, W.-D. Li, X. Li, and R. S. Williams, “Nanoimprint lithography with ≤60 nm overlay precision,” Appl. Phys. A 106, 767–772 (2012).
[CrossRef]

Li, X.

W. Wu, R. G. Walmsley, W.-D. Li, X. Li, and R. S. Williams, “Nanoimprint lithography with ≤60 nm overlay precision,” Appl. Phys. A 106, 767–772 (2012).
[CrossRef]

Li, Z.-Y.

Liu, Y.

Loncar, M.

Mayer, M.

G. Shambat, B. Ellis, J. Petykiewicz, M. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Nanobeam photonic crystal cavity light-emitting diodes,” Appl. Phys. Lett. 99, 071105 (2011).
[CrossRef]

McCutcheon, M. W.

Meng, Z.-M.

Min, B.

Noda, S.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[CrossRef]

O’Faolain, L.

Petykiewicz, J.

G. Shambat, B. Ellis, J. Petykiewicz, M. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Nanobeam photonic crystal cavity light-emitting diodes,” Appl. Phys. Lett. 99, 071105 (2011).
[CrossRef]

Peyrade, D.

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” New J. Phys. 8, 204 (2006).
[CrossRef]

Picard, E.

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” New J. Phys. 8, 204 (2006).
[CrossRef]

Portalupi, S. L.

Qin, F.

Quan, Q.

Reardon, C.

Rodier, J. C.

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” New J. Phys. 8, 204 (2006).
[CrossRef]

Sarmiento, T.

G. Shambat, B. Ellis, J. Petykiewicz, M. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Nanobeam photonic crystal cavity light-emitting diodes,” Appl. Phys. Lett. 99, 071105 (2011).
[CrossRef]

Scherer, A.

Shambat, G.

G. Shambat, B. Ellis, J. Petykiewicz, M. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Nanobeam photonic crystal cavity light-emitting diodes,” Appl. Phys. Lett. 99, 071105 (2011).
[CrossRef]

Shive, L. W.

L. W. Shive and B. L. Gilmore, “Impact of thermal processing on silicon wafer surface roughness,” ECS Trans. 16, 401–405 (2008).
[CrossRef]

Song, B. S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[CrossRef]

Song, B.-S.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214 (2005).
[CrossRef]

Song, J. H.

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Tran, N.-V.-Q.

N.-V.-Q. Tran, S. Combrié, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101 (2009).
[CrossRef]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef]

Velha, P.

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” New J. Phys. 8, 204 (2006).
[CrossRef]

Vuckovic, J.

G. Shambat, B. Ellis, J. Petykiewicz, M. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Nanobeam photonic crystal cavity light-emitting diodes,” Appl. Phys. Lett. 99, 071105 (2011).
[CrossRef]

Walmsley, R. G.

W. Wu, R. G. Walmsley, W.-D. Li, X. Li, and R. S. Williams, “Nanoimprint lithography with ≤60 nm overlay precision,” Appl. Phys. A 106, 767–772 (2012).
[CrossRef]

Williams, R. S.

W. Wu, R. G. Walmsley, W.-D. Li, X. Li, and R. S. Williams, “Nanoimprint lithography with ≤60 nm overlay precision,” Appl. Phys. A 106, 767–772 (2012).
[CrossRef]

Wu, W.

W. Wu, R. G. Walmsley, W.-D. Li, X. Li, and R. S. Williams, “Nanoimprint lithography with ≤60 nm overlay precision,” Appl. Phys. A 106, 767–772 (2012).
[CrossRef]

N. Li, W. Wu, and S. Y. Chou, “Sub-20 nm alignment in nanoimprint lithography using moiré fringe,” Nano Lett. 6, 2626–2629 (2006).
[CrossRef]

Zhong, X.-L.

Appl. Phys. A (1)

W. Wu, R. G. Walmsley, W.-D. Li, X. Li, and R. S. Williams, “Nanoimprint lithography with ≤60 nm overlay precision,” Appl. Phys. A 106, 767–772 (2012).
[CrossRef]

Appl. Phys. Lett. (1)

G. Shambat, B. Ellis, J. Petykiewicz, M. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vuckovic, “Nanobeam photonic crystal cavity light-emitting diodes,” Appl. Phys. Lett. 99, 071105 (2011).
[CrossRef]

ECS Trans. (1)

L. W. Shive and B. L. Gilmore, “Impact of thermal processing on silicon wafer surface roughness,” ECS Trans. 16, 401–405 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

N. Li, W. Wu, and S. Y. Chou, “Sub-20 nm alignment in nanoimprint lithography using moiré fringe,” Nano Lett. 6, 2626–2629 (2006).
[CrossRef]

Nat. Mater. (1)

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

Nature (2)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[CrossRef]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[CrossRef]

New J. Phys. (1)

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” New J. Phys. 8, 204 (2006).
[CrossRef]

Opt. Express (6)

Phys. Rev. B (1)

N.-V.-Q. Tran, S. Combrié, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101 (2009).
[CrossRef]

Other (1)

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Geometry of the resonator calculated by (a) top view and (b) a side view. PC nanobeam (n=3.46) lies on the substrate (n=1.45). PC nanobeam width is d=0.5μm, thickness tw=0.26μm. Circular holes have a radius of R=75nm and are filled with air; the distance between holes a=0.34μm. The elliptical shape (ellipse parameters A and B, n=3.46) lies on the substrate (n=1.45). Thickness of ellipse te=100nm.

Fig. 2.
Fig. 2.

(a) Distribution of Hz in the vertical plane passing through the axis of the waveguide and (b) the distribution of Hz in the horizontal plane just above the elliptical fragment (in quartz). (c) Dotted line, Hz values along the line of intersection of the planes of (a) and (b); dashed line, Hz values just below the PC nanobeam (in quartz); solid line, function cos(πx/a)exp(σx2) for σ=0.23, a=0.34μm.

Fig. 3.
Fig. 3.

Dependence of (a) Q factor and (b) the resonance frequency on the ellipse parameter A for different values of B.

Fig. 4.
Fig. 4.

Dependence of the Q factor for several values of A on transverse and longitudinal displacement of the two components of the cavity.

Fig. 5.
Fig. 5.

Example of geometry (not to scale) for (left) P-type and (right) N-type doping regions.

Metrics