Abstract

We present theoretical and experimental demonstration of two designs to achieve group velocity insensitive coupling of light from a ridge waveguide to a photonic crystal waveguide. We demonstrate an average improvement of 62% in coupling to low group velocity modes and an average coupling enhancement of 11.5% at large group velocities.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [CrossRef]
  3. J. Li, T. White, L. O’Faolain, A. Gomez-Iglesias, and T. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
    [CrossRef]
  4. M. Askari, S. Yegnanarayanan, and A. Adibi, “Photonic crystal waveguide based sensor,” Proc. SPIE 7946, 794614 (2011).
  5. J. McMillan, X. Yang, N. Panoiu, R. Osgood, and C. Wong, “Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides,” Opt. Lett. 31, 1235–1237 (2006).
    [CrossRef]
  6. A. Petrov and M. Eich, “Dispersion compensation with photonic crystal line-defect waveguides,” IEEE J. Select. Areas Commun. 23, 1396–1401 (2005).
    [CrossRef]
  7. T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16, 9245–9253 (2008).
    [CrossRef]
  8. R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photon. News 17(4), 18–23 (2006).
    [CrossRef]
  9. M. Soljacic and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
    [CrossRef]
  10. Y. Jiang, W. Jiang, X. Chen, L. Gu, B. Howley, and R. T. Chen, “Nano-photonic crystal waveguides for ultra-compact tunable true time delay lines,” in Photonics Europe (International Society for Optics and Photonics, 2005), pp. 166–175.
  11. T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, “Wavelength-division demultiplexing using photonic crystal waveguides,” IEEE Photon. Technol. Lett. 18, 226–228 (2006).
    [CrossRef]
  12. Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862–865 (2007).
    [CrossRef]
  13. S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11, 2927–2939 (2003).
    [CrossRef]
  14. Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004).
    [CrossRef]
  15. M. Gnan, I. Ntakis, P. Pottier, R. de La Rue, and P. Bassi, “Systematic investigation of misalignment effects at junctions between feeder waveguide and photonic crystal channel waveguide,” J. Opt. Netw. 6, 90–101 (2007).
    [CrossRef]
  16. P. Bienstman, S. Assefa, S. Johnson, J. Joannopoulos, G. Petrich, and L. Kolodziejski, “Taper structures for coupling into photonic crystal slab waveguides,” J. Opt. Soc. Am. B 20, 1817–1821 (2003).
    [CrossRef]
  17. A. Talneau, P. Lalanne, M. Agio, and C. Soukoulis, “Low-reflection photonic-crystal taper for efficient coupling between guide sections of arbitrary widths,” Opt. Lett. 27, 1522–1524 (2002).
    [CrossRef]
  18. S. Schulz, L. O’Faolain, D. Beggs, T. White, A. Melloni, and T. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
    [CrossRef]
  19. C. Lin, X. Wang, S. Chakravarty, B. Lee, W. Lai, and R. Chen, “Wideband group velocity independent coupling into slow light silicon photonic crystal wavegiude,” Appl. Phys. Lett. 97, 183302 (2010).
    [CrossRef]
  20. L. Yang, A. V. Lavrinenko, L. H. Frandsen, P. I. Borel, A. Têtu, and J. Fage-Pedersen, “Topology optimisation of slow light coupling to photonic crystal waveguides,” Electron. Lett. 43, 923–924 (2007).
    [CrossRef]
  21. N. Ozaki, Y. Kitagawa, Y. Takata, N. Ikeda, Y. Watanabe, A. Mizutani, Y. Sugimoto, and K. Asakawa, “High transmission recovery of slow light in a photonic crystal waveguide using a hetero group velocity waveguide,” Opt. Express 15, 7974–7983 (2007).
    [CrossRef]
  22. Y. Vlasov and S. McNab, “Coupling into the slow light mode in slab-type photonic crystal waveguides,” Opt. Lett. 31, 50–52 (2006).
    [CrossRef]
  23. M. Askari, B. Momeni, S. Yegnanarayanan, A. Eftekhar, and A. Adibi, “Efficient coupling of light into the planar photonic crystal waveguides in the slow group velocity regime,” Proc. SPIE 6901, 69011A (2008).
    [CrossRef]
  24. C. Pollock, Fundamentals of Optoelectronics (Irwin, 1995).
  25. K. S. Yee, “Numerical solution of initial boundary value problems involving maxwells equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
  26. M. Askari, B. Momeni, C. M. Reinke, and A. Adibi, “Absorbing boundary conditions for low group velocity electromagnetic waves in photonic crystals,” Appl. Opt. 50, 1266–1271 (2011).
    [CrossRef]
  27. D. Merewether, R. Fisher, and F. Smith, “On implementing a numeric Huygen’s source scheme in a finite difference program to illuminate scattering bodies,” IEEE Trans. Nucl. Sci. 27, 1829–1833 (1980).
    [CrossRef]
  28. J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 2005).
  29. M. Askari and A. Adibi, “Systematically designed PCW bends with very large bandwith and high transmission: an experimental demonstration,” IEEE Photon. Technol. Lett. 24, 2250–2253 (2012).
    [CrossRef]
  30. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
    [CrossRef]

2012 (1)

M. Askari and A. Adibi, “Systematically designed PCW bends with very large bandwith and high transmission: an experimental demonstration,” IEEE Photon. Technol. Lett. 24, 2250–2253 (2012).
[CrossRef]

2011 (2)

2010 (2)

S. Schulz, L. O’Faolain, D. Beggs, T. White, A. Melloni, and T. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

C. Lin, X. Wang, S. Chakravarty, B. Lee, W. Lai, and R. Chen, “Wideband group velocity independent coupling into slow light silicon photonic crystal wavegiude,” Appl. Phys. Lett. 97, 183302 (2010).
[CrossRef]

2008 (3)

2007 (4)

L. Yang, A. V. Lavrinenko, L. H. Frandsen, P. I. Borel, A. Têtu, and J. Fage-Pedersen, “Topology optimisation of slow light coupling to photonic crystal waveguides,” Electron. Lett. 43, 923–924 (2007).
[CrossRef]

N. Ozaki, Y. Kitagawa, Y. Takata, N. Ikeda, Y. Watanabe, A. Mizutani, Y. Sugimoto, and K. Asakawa, “High transmission recovery of slow light in a photonic crystal waveguide using a hetero group velocity waveguide,” Opt. Express 15, 7974–7983 (2007).
[CrossRef]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862–865 (2007).
[CrossRef]

M. Gnan, I. Ntakis, P. Pottier, R. de La Rue, and P. Bassi, “Systematic investigation of misalignment effects at junctions between feeder waveguide and photonic crystal channel waveguide,” J. Opt. Netw. 6, 90–101 (2007).
[CrossRef]

2006 (4)

Y. Vlasov and S. McNab, “Coupling into the slow light mode in slab-type photonic crystal waveguides,” Opt. Lett. 31, 50–52 (2006).
[CrossRef]

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, “Wavelength-division demultiplexing using photonic crystal waveguides,” IEEE Photon. Technol. Lett. 18, 226–228 (2006).
[CrossRef]

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photon. News 17(4), 18–23 (2006).
[CrossRef]

J. McMillan, X. Yang, N. Panoiu, R. Osgood, and C. Wong, “Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides,” Opt. Lett. 31, 1235–1237 (2006).
[CrossRef]

2005 (2)

A. Petrov and M. Eich, “Dispersion compensation with photonic crystal line-defect waveguides,” IEEE J. Select. Areas Commun. 23, 1396–1401 (2005).
[CrossRef]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef]

2004 (2)

Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004).
[CrossRef]

M. Soljacic and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[CrossRef]

2003 (2)

2002 (1)

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef]

1980 (1)

D. Merewether, R. Fisher, and F. Smith, “On implementing a numeric Huygen’s source scheme in a finite difference program to illuminate scattering bodies,” IEEE Trans. Nucl. Sci. 27, 1829–1833 (1980).
[CrossRef]

1966 (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving maxwells equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).

Adachi, J.

Adibi, A.

M. Askari and A. Adibi, “Systematically designed PCW bends with very large bandwith and high transmission: an experimental demonstration,” IEEE Photon. Technol. Lett. 24, 2250–2253 (2012).
[CrossRef]

M. Askari, S. Yegnanarayanan, and A. Adibi, “Photonic crystal waveguide based sensor,” Proc. SPIE 7946, 794614 (2011).

M. Askari, B. Momeni, C. M. Reinke, and A. Adibi, “Absorbing boundary conditions for low group velocity electromagnetic waves in photonic crystals,” Appl. Opt. 50, 1266–1271 (2011).
[CrossRef]

M. Askari, B. Momeni, S. Yegnanarayanan, A. Eftekhar, and A. Adibi, “Efficient coupling of light into the planar photonic crystal waveguides in the slow group velocity regime,” Proc. SPIE 6901, 69011A (2008).
[CrossRef]

Agio, M.

Asakawa, K.

Asano, T.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862–865 (2007).
[CrossRef]

Askari, M.

M. Askari and A. Adibi, “Systematically designed PCW bends with very large bandwith and high transmission: an experimental demonstration,” IEEE Photon. Technol. Lett. 24, 2250–2253 (2012).
[CrossRef]

M. Askari, S. Yegnanarayanan, and A. Adibi, “Photonic crystal waveguide based sensor,” Proc. SPIE 7946, 794614 (2011).

M. Askari, B. Momeni, C. M. Reinke, and A. Adibi, “Absorbing boundary conditions for low group velocity electromagnetic waves in photonic crystals,” Appl. Opt. 50, 1266–1271 (2011).
[CrossRef]

M. Askari, B. Momeni, S. Yegnanarayanan, A. Eftekhar, and A. Adibi, “Efficient coupling of light into the planar photonic crystal waveguides in the slow group velocity regime,” Proc. SPIE 6901, 69011A (2008).
[CrossRef]

Assefa, S.

Baba, T.

Bassi, P.

Beggs, D.

S. Schulz, L. O’Faolain, D. Beggs, T. White, A. Melloni, and T. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

Bienstman, P.

Borel, P. I.

L. Yang, A. V. Lavrinenko, L. H. Frandsen, P. I. Borel, A. Têtu, and J. Fage-Pedersen, “Topology optimisation of slow light coupling to photonic crystal waveguides,” Electron. Lett. 43, 923–924 (2007).
[CrossRef]

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, “Wavelength-division demultiplexing using photonic crystal waveguides,” IEEE Photon. Technol. Lett. 18, 226–228 (2006).
[CrossRef]

Boyd, R. W.

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photon. News 17(4), 18–23 (2006).
[CrossRef]

Chakravarty, S.

C. Lin, X. Wang, S. Chakravarty, B. Lee, W. Lai, and R. Chen, “Wideband group velocity independent coupling into slow light silicon photonic crystal wavegiude,” Appl. Phys. Lett. 97, 183302 (2010).
[CrossRef]

Chen, R.

C. Lin, X. Wang, S. Chakravarty, B. Lee, W. Lai, and R. Chen, “Wideband group velocity independent coupling into slow light silicon photonic crystal wavegiude,” Appl. Phys. Lett. 97, 183302 (2010).
[CrossRef]

Chen, R. T.

Y. Jiang, W. Jiang, X. Chen, L. Gu, B. Howley, and R. T. Chen, “Nano-photonic crystal waveguides for ultra-compact tunable true time delay lines,” in Photonics Europe (International Society for Optics and Photonics, 2005), pp. 166–175.

Chen, X.

Y. Jiang, W. Jiang, X. Chen, L. Gu, B. Howley, and R. T. Chen, “Nano-photonic crystal waveguides for ultra-compact tunable true time delay lines,” in Photonics Europe (International Society for Optics and Photonics, 2005), pp. 166–175.

de La Rue, R.

Eftekhar, A.

M. Askari, B. Momeni, S. Yegnanarayanan, A. Eftekhar, and A. Adibi, “Efficient coupling of light into the planar photonic crystal waveguides in the slow group velocity regime,” Proc. SPIE 6901, 69011A (2008).
[CrossRef]

Eich, M.

A. Petrov and M. Eich, “Dispersion compensation with photonic crystal line-defect waveguides,” IEEE J. Select. Areas Commun. 23, 1396–1401 (2005).
[CrossRef]

Fage-Pedersen, J.

L. Yang, A. V. Lavrinenko, L. H. Frandsen, P. I. Borel, A. Têtu, and J. Fage-Pedersen, “Topology optimisation of slow light coupling to photonic crystal waveguides,” Electron. Lett. 43, 923–924 (2007).
[CrossRef]

Fisher, R.

D. Merewether, R. Fisher, and F. Smith, “On implementing a numeric Huygen’s source scheme in a finite difference program to illuminate scattering bodies,” IEEE Trans. Nucl. Sci. 27, 1829–1833 (1980).
[CrossRef]

Frandsen, L. H.

L. Yang, A. V. Lavrinenko, L. H. Frandsen, P. I. Borel, A. Têtu, and J. Fage-Pedersen, “Topology optimisation of slow light coupling to photonic crystal waveguides,” Electron. Lett. 43, 923–924 (2007).
[CrossRef]

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, “Wavelength-division demultiplexing using photonic crystal waveguides,” IEEE Photon. Technol. Lett. 18, 226–228 (2006).
[CrossRef]

Gaeta, A. L.

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photon. News 17(4), 18–23 (2006).
[CrossRef]

Gauthier, D. J.

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photon. News 17(4), 18–23 (2006).
[CrossRef]

Gnan, M.

Gomez-Iglesias, A.

Gu, L.

Y. Jiang, W. Jiang, X. Chen, L. Gu, B. Howley, and R. T. Chen, “Nano-photonic crystal waveguides for ultra-compact tunable true time delay lines,” in Photonics Europe (International Society for Optics and Photonics, 2005), pp. 166–175.

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef]

Harpoth, A.

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, “Wavelength-division demultiplexing using photonic crystal waveguides,” IEEE Photon. Technol. Lett. 18, 226–228 (2006).
[CrossRef]

Hede, K. K.

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, “Wavelength-division demultiplexing using photonic crystal waveguides,” IEEE Photon. Technol. Lett. 18, 226–228 (2006).
[CrossRef]

Howley, B.

Y. Jiang, W. Jiang, X. Chen, L. Gu, B. Howley, and R. T. Chen, “Nano-photonic crystal waveguides for ultra-compact tunable true time delay lines,” in Photonics Europe (International Society for Optics and Photonics, 2005), pp. 166–175.

Ikeda, N.

Jiang, W.

Y. Jiang, W. Jiang, X. Chen, L. Gu, B. Howley, and R. T. Chen, “Nano-photonic crystal waveguides for ultra-compact tunable true time delay lines,” in Photonics Europe (International Society for Optics and Photonics, 2005), pp. 166–175.

Jiang, Y.

Y. Jiang, W. Jiang, X. Chen, L. Gu, B. Howley, and R. T. Chen, “Nano-photonic crystal waveguides for ultra-compact tunable true time delay lines,” in Photonics Europe (International Society for Optics and Photonics, 2005), pp. 166–175.

Joannopoulos, J.

Joannopoulos, J. D.

M. Soljacic and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[CrossRef]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef]

Johnson, S.

Kawaaski, T.

Kitagawa, Y.

Kolodziejski, L.

Krauss, T.

S. Schulz, L. O’Faolain, D. Beggs, T. White, A. Melloni, and T. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

J. Li, T. White, L. O’Faolain, A. Gomez-Iglesias, and T. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef]

Kristensen, M.

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, “Wavelength-division demultiplexing using photonic crystal waveguides,” IEEE Photon. Technol. Lett. 18, 226–228 (2006).
[CrossRef]

Lai, W.

C. Lin, X. Wang, S. Chakravarty, B. Lee, W. Lai, and R. Chen, “Wideband group velocity independent coupling into slow light silicon photonic crystal wavegiude,” Appl. Phys. Lett. 97, 183302 (2010).
[CrossRef]

Lalanne, P.

Lavrinenko, A. V.

L. Yang, A. V. Lavrinenko, L. H. Frandsen, P. I. Borel, A. Têtu, and J. Fage-Pedersen, “Topology optimisation of slow light coupling to photonic crystal waveguides,” Electron. Lett. 43, 923–924 (2007).
[CrossRef]

Lee, B.

C. Lin, X. Wang, S. Chakravarty, B. Lee, W. Lai, and R. Chen, “Wideband group velocity independent coupling into slow light silicon photonic crystal wavegiude,” Appl. Phys. Lett. 97, 183302 (2010).
[CrossRef]

Li, J.

Lin, C.

C. Lin, X. Wang, S. Chakravarty, B. Lee, W. Lai, and R. Chen, “Wideband group velocity independent coupling into slow light silicon photonic crystal wavegiude,” Appl. Phys. Lett. 97, 183302 (2010).
[CrossRef]

McMillan, J.

McNab, S.

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef]

Meade, R.

J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 2005).

Melloni, A.

S. Schulz, L. O’Faolain, D. Beggs, T. White, A. Melloni, and T. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

Merewether, D.

D. Merewether, R. Fisher, and F. Smith, “On implementing a numeric Huygen’s source scheme in a finite difference program to illuminate scattering bodies,” IEEE Trans. Nucl. Sci. 27, 1829–1833 (1980).
[CrossRef]

Mizutani, A.

Moll, N.

Momeni, B.

M. Askari, B. Momeni, C. M. Reinke, and A. Adibi, “Absorbing boundary conditions for low group velocity electromagnetic waves in photonic crystals,” Appl. Opt. 50, 1266–1271 (2011).
[CrossRef]

M. Askari, B. Momeni, S. Yegnanarayanan, A. Eftekhar, and A. Adibi, “Efficient coupling of light into the planar photonic crystal waveguides in the slow group velocity regime,” Proc. SPIE 6901, 69011A (2008).
[CrossRef]

Mori, D.

Nagashima, T.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862–865 (2007).
[CrossRef]

Niemi, T.

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, “Wavelength-division demultiplexing using photonic crystal waveguides,” IEEE Photon. Technol. Lett. 18, 226–228 (2006).
[CrossRef]

Noda, S.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862–865 (2007).
[CrossRef]

Ntakis, I.

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef]

O’Faolain, L.

S. Schulz, L. O’Faolain, D. Beggs, T. White, A. Melloni, and T. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

J. Li, T. White, L. O’Faolain, A. Gomez-Iglesias, and T. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef]

Osgood, R.

Ozaki, N.

Panoiu, N.

Petrich, G.

Petrov, A.

A. Petrov and M. Eich, “Dispersion compensation with photonic crystal line-defect waveguides,” IEEE J. Select. Areas Commun. 23, 1396–1401 (2005).
[CrossRef]

Pollock, C.

C. Pollock, Fundamentals of Optoelectronics (Irwin, 1995).

Pottier, P.

Reinke, C. M.

Sasaki, H.

Schulz, S.

S. Schulz, L. O’Faolain, D. Beggs, T. White, A. Melloni, and T. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

Smith, F.

D. Merewether, R. Fisher, and F. Smith, “On implementing a numeric Huygen’s source scheme in a finite difference program to illuminate scattering bodies,” IEEE Trans. Nucl. Sci. 27, 1829–1833 (1980).
[CrossRef]

Soljacic, M.

M. Soljacic and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[CrossRef]

Soukoulis, C.

Sugimoto, Y.

Sugiya, T.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862–865 (2007).
[CrossRef]

Takata, Y.

Talneau, A.

Tanaka, Y.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862–865 (2007).
[CrossRef]

Têtu, A.

L. Yang, A. V. Lavrinenko, L. H. Frandsen, P. I. Borel, A. Têtu, and J. Fage-Pedersen, “Topology optimisation of slow light coupling to photonic crystal waveguides,” Electron. Lett. 43, 923–924 (2007).
[CrossRef]

Upham, J.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862–865 (2007).
[CrossRef]

Vlasov, Y.

Vlasov, Y. A.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef]

Wang, X.

C. Lin, X. Wang, S. Chakravarty, B. Lee, W. Lai, and R. Chen, “Wideband group velocity independent coupling into slow light silicon photonic crystal wavegiude,” Appl. Phys. Lett. 97, 183302 (2010).
[CrossRef]

Watanabe, Y.

White, T.

S. Schulz, L. O’Faolain, D. Beggs, T. White, A. Melloni, and T. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

J. Li, T. White, L. O’Faolain, A. Gomez-Iglesias, and T. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef]

Winn, J.

J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 2005).

Wong, C.

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef]

Yang, L.

L. Yang, A. V. Lavrinenko, L. H. Frandsen, P. I. Borel, A. Têtu, and J. Fage-Pedersen, “Topology optimisation of slow light coupling to photonic crystal waveguides,” Electron. Lett. 43, 923–924 (2007).
[CrossRef]

Yang, X.

Yee, K. S.

K. S. Yee, “Numerical solution of initial boundary value problems involving maxwells equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).

Yegnanarayanan, S.

M. Askari, S. Yegnanarayanan, and A. Adibi, “Photonic crystal waveguide based sensor,” Proc. SPIE 7946, 794614 (2011).

M. Askari, B. Momeni, S. Yegnanarayanan, A. Eftekhar, and A. Adibi, “Efficient coupling of light into the planar photonic crystal waveguides in the slow group velocity regime,” Proc. SPIE 6901, 69011A (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

C. Lin, X. Wang, S. Chakravarty, B. Lee, W. Lai, and R. Chen, “Wideband group velocity independent coupling into slow light silicon photonic crystal wavegiude,” Appl. Phys. Lett. 97, 183302 (2010).
[CrossRef]

Electron. Lett. (1)

L. Yang, A. V. Lavrinenko, L. H. Frandsen, P. I. Borel, A. Têtu, and J. Fage-Pedersen, “Topology optimisation of slow light coupling to photonic crystal waveguides,” Electron. Lett. 43, 923–924 (2007).
[CrossRef]

IEEE J. Select. Areas Commun. (1)

A. Petrov and M. Eich, “Dispersion compensation with photonic crystal line-defect waveguides,” IEEE J. Select. Areas Commun. 23, 1396–1401 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. Kristensen, “Wavelength-division demultiplexing using photonic crystal waveguides,” IEEE Photon. Technol. Lett. 18, 226–228 (2006).
[CrossRef]

M. Askari and A. Adibi, “Systematically designed PCW bends with very large bandwith and high transmission: an experimental demonstration,” IEEE Photon. Technol. Lett. 24, 2250–2253 (2012).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

K. S. Yee, “Numerical solution of initial boundary value problems involving maxwells equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).

IEEE Trans. Nucl. Sci. (1)

D. Merewether, R. Fisher, and F. Smith, “On implementing a numeric Huygen’s source scheme in a finite difference program to illuminate scattering bodies,” IEEE Trans. Nucl. Sci. 27, 1829–1833 (1980).
[CrossRef]

J. Opt. (1)

S. Schulz, L. O’Faolain, D. Beggs, T. White, A. Melloni, and T. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010).
[CrossRef]

J. Opt. Netw. (1)

J. Opt. Soc. Am. B (1)

Nat. Mater. (2)

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the q factor in a photonic crystal nanocavity,” Nat. Mater. 6, 862–865 (2007).
[CrossRef]

M. Soljacic and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3, 211–219 (2004).
[CrossRef]

Nature (1)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Opt. Photon. News (1)

R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, “Applications of slow light in telecommunications,” Opt. Photon. News 17(4), 18–23 (2006).
[CrossRef]

Phys. Rev. Lett. (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef]

Proc. SPIE (2)

M. Askari, S. Yegnanarayanan, and A. Adibi, “Photonic crystal waveguide based sensor,” Proc. SPIE 7946, 794614 (2011).

M. Askari, B. Momeni, S. Yegnanarayanan, A. Eftekhar, and A. Adibi, “Efficient coupling of light into the planar photonic crystal waveguides in the slow group velocity regime,” Proc. SPIE 6901, 69011A (2008).
[CrossRef]

Other (3)

C. Pollock, Fundamentals of Optoelectronics (Irwin, 1995).

J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 2005).

Y. Jiang, W. Jiang, X. Chen, L. Gu, B. Howley, and R. T. Chen, “Nano-photonic crystal waveguides for ultra-compact tunable true time delay lines,” in Photonics Europe (International Society for Optics and Photonics, 2005), pp. 166–175.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

(a) Structure used for simulating the coupling between a ridge and a PC waveguide. (b) A simple slab waveguide is used as a reference for our simulations. (c) Dispersion diagram of a PCW (solid curve) showing the linear and the nonlinear parts of the even-mode dispersion. Also shown (open circles) is the dispersion for the fundamental mode of a slab waveguide with width d.

Fig. 2.
Fig. 2.

(a) Transmission from a slab waveguide to a BC PCW [22]. Inset shows group index as a function of normalized frequency, obtained from the dispersion shown in Fig. 1(c). (b) The unit cell for calculating field profiles. (c) Field profile (|Hz|) of the even mode at κa=1. (d) Field profile of the even mode at κa=π. (e) Field profile for the even (fundamental) mode of a slab waveguide.

Fig. 3.
Fig. 3.

(a) Dispersion of a PCW as a function of r/a. The dispersion is shown for four different values of r/a: r/a=0.30 (curve with squares), r/a=0.28 (curve with circles), r/a=0.26 (curve with emeralds), and r/a=0.24 (curve with plus signs). (b) Comparison of the normalized transmission into a BC PCW and a taper-coupled PCW, where we have tapered the radius of air holes. Inset shows the schematic of a taper-coupled PCW with air-hole radii tapered linearly from rinit/a to r/a=0.3 over a length of Ltap.

Fig. 4.
Fig. 4.

Two terminations used to study the effect of termination on coupling: (a) termination BC, and (b) termination IHC. (c) Comparison of normalized transmission from a slab to a PC waveguide with terminations BC and IHC.

Fig. 5.
Fig. 5.

Optimization of tapered coupler. (a) Normalized transmission for three different values of initial hole radius (rinit): 0.24a (dotted curve), 0.25a (solid curve), and 0.26a (dashed curve). (b) Normalized transmission for three different values of taper length (Ltap): 4a (dashed curve), 9a (solid curve), and 14a (dotted curve).

Fig. 6.
Fig. 6.

(a) Schematic of the final design with both the IHC termination and the linear taper of air hole radii; Ltap=9a, rinit/a=0.25. (b) Comparison of normalized transmission for the final design: IHC terminated tapered coupler (dashed curve) with IHC terminated coupler without the taper (solid curve with circles), tapered coupler without the IHC termination (solid curve with plus signs) and a simple butt coupler (solid line).

Fig. 7.
Fig. 7.

(a) Schematic of an air wedge coupler. Height (h) and length (l) are the two parameters used for optimizing the performance of the coupler. (b) Normalized transmission for air wedge couplers with three different lengths (l): l=7a (solid curve), l=8a (dotted curve), and l=9a (dashed curve).

Fig. 8.
Fig. 8.

Comparison of normalized transmission of the IHC terminated tapered coupler (dashed curve) and the air wedge coupler (dotted curve) with the butt coupler (solid curve).

Fig. 9.
Fig. 9.

SEM images of fabricated structures: (a) BC PCW, (b) air wedge coupler, and two realizations of tapered coupler: (c) hole-radius tapered coupler, and (d) hole-period tapered coupler. The length of the PCW in each case is 50a.

Fig. 10.
Fig. 10.

(a) Transmission spectrum of a BC PCW of length 50a. (b) Magnified version of (a) in the low group velocity region. Inset shows the group index (ng) as a function of wavelength. Group index has been calculated from the Fabry–Perot fringes.

Fig. 11.
Fig. 11.

Characterization results for couplers fabricated on a single chip: (a) butt coupler, (b) air wedge coupler with length 7a, (c) hole-radius tapered coupler with length 9a and initial r/a=0.25, and (d) hole-period tapered coupler with initial r/a=0.24 and length being 9 tapered periods. In each case the total length of the PCW is 50a.

Tables (2)

Tables Icon

Table 1. Statistical Average of the Ratios of Average Transmission at Low Group Velocities to Average Transmission at High Group Velocities (Tavlowvg/Tavhighvg) for Four Different Fabrications

Tables Icon

Table 2. Ratio of Output Powers from the Two Arms of the y junctiona

Metrics