Abstract

We present a double-sideband suppressed-carrier (DSB-SC) technique achieved by an optical balanced detection approach for measuring small vibrations. The baseband signal is recovered by demodulating the DSB-SC signal with a self-mixing approach without local oscillator, which is usually required in coherent detection. The achievement of carrier suppression and vibration measurement is experimentally demonstrated, and the result closely agrees with the theoretical predictions.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Liu, H. C. Chien, S. Fan, J. Yu, and G. K. Chang, “Enhanced vector signal transmission over double-sideband carrier-suppressed optical millimeter-waves through a small LO feedthrough,” IEEE Photon. Technol. Lett. 24, 173–175 (2012).
    [CrossRef]
  2. L. Liu, S. Zheng, X. Zhang, X. Jin, and H. Chi, “Performances improvement in radio over fiber link through carrier suppression using stimulated Brillouin scattering,” Opt. Express 18, 11827–11837 (2010).
    [CrossRef]
  3. C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber-radio links,” IEEE Trans. Microwave Theory Tech. 54, 2181–2187 (2006).
    [CrossRef]
  4. H. H. Lu, S. J. Tzeng, Y. H. Su, and Y. C. Lin, “Employing double external light injection techniques to improve radio-on-fiber systems performance,” Opt. Commun. 230, 185–190 (2004).
    [CrossRef]
  5. R. Montgomery and R. DeSalvo, “A novel technique for double sideband suppressed carrier modulation of optical fields,” IEEE Photon. Technol. Lett. 7, 434–436 (1995).
    [CrossRef]
  6. C. Middleton and R. DeSalvo, “Optical carrier suppression and balanced coherent heterodyne detection for improved performance in wideband microwave photonic links,” 2010 Conference on Optical Fiber Communication (OFC), collocated National Fiber Optic Engineers Conference, San Diego, California, 1–3, 21–25 March2010.
  7. A. Siahmakoun, S. Granieri, and K. Johnson, “Double- and single-sideband suppressed-carrier optical modulator implemented at 1320 nm using LiNbO3 crystals and bulk optics,” Proc. SPIE 4534, 86–92 (2001).
    [CrossRef]
  8. H. K. Teng and K. C. Lang, “Carrier-suppressed single photoreceiver optical balanced detector,” Electron. Lett. 47, 1036–1037 (2011).
    [CrossRef]
  9. H. K. Teng and K. C. Lang, “Excess noise reduction by optical technique in amplitude-sensitive heterodyne interferometer for small differential phase detection,” Appl. Opt. 47, 6860–6870 (2008).
    [CrossRef]
  10. C. R. Farrar, S. W. Doebling, and D. A. Nix, “Vibration-based structural damage identification,” Philos. Trans. R. Soc. London 359, 131–149 (2001).
    [CrossRef]
  11. T. Izumi, M. Hagiwara, T. Hoshina, H. Takeda, and T. Tsurumi, “Analysis of vibration waveforms of electromechanical response to determine piezoelectric and electrostrictive coefficients,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 1632–1638 (2012).
    [CrossRef]
  12. M. Kuschnerov, K. Piyawanno, M. S. Alfiad, B. Spinnler, A. Napoli, and B. Lankl, “Impact of mechanical vibrations on laser stability and carrier phase estimation in coherent receivers,” IEEE Photon. Technol. Lett. 22, 1114–1116 (2010).
    [CrossRef]
  13. L. M. Manojlovic, “A novel common path interferometric technique for vibration measurement based on two fiber-optic couplers,” IEEE Sens. J. 11, 1541–1547 (2011).
    [CrossRef]
  14. Y. Park and K. Cho, “Heterodyne interferometer scheme using a double pass in an acoustic-optic modulator,” Opt. Lett. 36, 331–333 (2011).
    [CrossRef]
  15. G. He and X. Wang, “Real-time micro-vibration measurement in sinusoidal phase modulation,” Optik 120, 101–105 (2009).
    [CrossRef]
  16. H. K. Teng and K. C. Lang, “Heterodyne interferometer for displacement measurement with amplitude quadrature and noise suppression,” Opt. Commun. 280, 16–22 (2007).
    [CrossRef]
  17. A. Boucaud, N. Felix, L. Pizarro, and F. Patat, “High power low frequency ultrasonic transducer: vibration amplitude measurements by an optical interferometric method,” Proceedings of IEEE Ultrasonics Symposium, 1999 (IEEE, 1999), Vol. 2, pp. 1095–1098.
  18. V. Ivaschescu, “Small sinusoidal vibrations amplitude measurements with the Michelson interferometer,” IEEE Trans. Instrum. Meas. 49, 643–647 (2000).
    [CrossRef]
  19. D. H. Lee and B. Y. Kim, “Multiple-reflection interferometer for high accuracy measurement of small vibration displacement,” Meas. Sci. Technol. 71, 1981–1986 (2000).
  20. E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31, 241–243 (2006).
    [CrossRef]
  21. B. Zhang, C. Malouin, and T. J. Schmidt, “Design of coherent receiver optical front end for unamplified applications,” Opt. Express 20, 3225–3234 (2012).
    [CrossRef]
  22. E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16, 753–791 (2008).
    [CrossRef]
  23. G. Bosco and P. Poggiolini, “The impact of receiver imperfections on the performance of optical direct-detection DPSK,” J. Lightwave Technol. 23, 842–848 (2005).
    [CrossRef]
  24. B. E. A. Saleh and M. C. Teich, “Multiplied-Poisson noise in pulse, particle, and photo detection,” Proc. IEEE 70, 229–245 (1982).
    [CrossRef]
  25. T. M. Neibauer, R. Schilling, K. Danzmann, A. Rudiger, and W. Winkler, “Nonstationary shot noise and its effect on the sensitivity of interferometers,” Phys. Rev. A 43, 5022–5029 (1991).
    [CrossRef]

2012 (3)

T. Izumi, M. Hagiwara, T. Hoshina, H. Takeda, and T. Tsurumi, “Analysis of vibration waveforms of electromechanical response to determine piezoelectric and electrostrictive coefficients,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 1632–1638 (2012).
[CrossRef]

C. Liu, H. C. Chien, S. Fan, J. Yu, and G. K. Chang, “Enhanced vector signal transmission over double-sideband carrier-suppressed optical millimeter-waves through a small LO feedthrough,” IEEE Photon. Technol. Lett. 24, 173–175 (2012).
[CrossRef]

B. Zhang, C. Malouin, and T. J. Schmidt, “Design of coherent receiver optical front end for unamplified applications,” Opt. Express 20, 3225–3234 (2012).
[CrossRef]

2011 (3)

Y. Park and K. Cho, “Heterodyne interferometer scheme using a double pass in an acoustic-optic modulator,” Opt. Lett. 36, 331–333 (2011).
[CrossRef]

H. K. Teng and K. C. Lang, “Carrier-suppressed single photoreceiver optical balanced detector,” Electron. Lett. 47, 1036–1037 (2011).
[CrossRef]

L. M. Manojlovic, “A novel common path interferometric technique for vibration measurement based on two fiber-optic couplers,” IEEE Sens. J. 11, 1541–1547 (2011).
[CrossRef]

2010 (2)

M. Kuschnerov, K. Piyawanno, M. S. Alfiad, B. Spinnler, A. Napoli, and B. Lankl, “Impact of mechanical vibrations on laser stability and carrier phase estimation in coherent receivers,” IEEE Photon. Technol. Lett. 22, 1114–1116 (2010).
[CrossRef]

L. Liu, S. Zheng, X. Zhang, X. Jin, and H. Chi, “Performances improvement in radio over fiber link through carrier suppression using stimulated Brillouin scattering,” Opt. Express 18, 11827–11837 (2010).
[CrossRef]

2009 (1)

G. He and X. Wang, “Real-time micro-vibration measurement in sinusoidal phase modulation,” Optik 120, 101–105 (2009).
[CrossRef]

2008 (2)

2007 (1)

H. K. Teng and K. C. Lang, “Heterodyne interferometer for displacement measurement with amplitude quadrature and noise suppression,” Opt. Commun. 280, 16–22 (2007).
[CrossRef]

2006 (2)

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber-radio links,” IEEE Trans. Microwave Theory Tech. 54, 2181–2187 (2006).
[CrossRef]

E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31, 241–243 (2006).
[CrossRef]

2005 (1)

2004 (1)

H. H. Lu, S. J. Tzeng, Y. H. Su, and Y. C. Lin, “Employing double external light injection techniques to improve radio-on-fiber systems performance,” Opt. Commun. 230, 185–190 (2004).
[CrossRef]

2001 (2)

C. R. Farrar, S. W. Doebling, and D. A. Nix, “Vibration-based structural damage identification,” Philos. Trans. R. Soc. London 359, 131–149 (2001).
[CrossRef]

A. Siahmakoun, S. Granieri, and K. Johnson, “Double- and single-sideband suppressed-carrier optical modulator implemented at 1320 nm using LiNbO3 crystals and bulk optics,” Proc. SPIE 4534, 86–92 (2001).
[CrossRef]

2000 (2)

V. Ivaschescu, “Small sinusoidal vibrations amplitude measurements with the Michelson interferometer,” IEEE Trans. Instrum. Meas. 49, 643–647 (2000).
[CrossRef]

D. H. Lee and B. Y. Kim, “Multiple-reflection interferometer for high accuracy measurement of small vibration displacement,” Meas. Sci. Technol. 71, 1981–1986 (2000).

1995 (1)

R. Montgomery and R. DeSalvo, “A novel technique for double sideband suppressed carrier modulation of optical fields,” IEEE Photon. Technol. Lett. 7, 434–436 (1995).
[CrossRef]

1991 (1)

T. M. Neibauer, R. Schilling, K. Danzmann, A. Rudiger, and W. Winkler, “Nonstationary shot noise and its effect on the sensitivity of interferometers,” Phys. Rev. A 43, 5022–5029 (1991).
[CrossRef]

1982 (1)

B. E. A. Saleh and M. C. Teich, “Multiplied-Poisson noise in pulse, particle, and photo detection,” Proc. IEEE 70, 229–245 (1982).
[CrossRef]

Alfiad, M. S.

M. Kuschnerov, K. Piyawanno, M. S. Alfiad, B. Spinnler, A. Napoli, and B. Lankl, “Impact of mechanical vibrations on laser stability and carrier phase estimation in coherent receivers,” IEEE Photon. Technol. Lett. 22, 1114–1116 (2010).
[CrossRef]

Attygalle, M.

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber-radio links,” IEEE Trans. Microwave Theory Tech. 54, 2181–2187 (2006).
[CrossRef]

Barros, D. J. F.

Bosco, G.

Boucaud, A.

A. Boucaud, N. Felix, L. Pizarro, and F. Patat, “High power low frequency ultrasonic transducer: vibration amplitude measurements by an optical interferometric method,” Proceedings of IEEE Ultrasonics Symposium, 1999 (IEEE, 1999), Vol. 2, pp. 1095–1098.

Chang, G. K.

C. Liu, H. C. Chien, S. Fan, J. Yu, and G. K. Chang, “Enhanced vector signal transmission over double-sideband carrier-suppressed optical millimeter-waves through a small LO feedthrough,” IEEE Photon. Technol. Lett. 24, 173–175 (2012).
[CrossRef]

Chi, H.

Chien, H. C.

C. Liu, H. C. Chien, S. Fan, J. Yu, and G. K. Chang, “Enhanced vector signal transmission over double-sideband carrier-suppressed optical millimeter-waves through a small LO feedthrough,” IEEE Photon. Technol. Lett. 24, 173–175 (2012).
[CrossRef]

Cho, K.

Danzmann, K.

T. M. Neibauer, R. Schilling, K. Danzmann, A. Rudiger, and W. Winkler, “Nonstationary shot noise and its effect on the sensitivity of interferometers,” Phys. Rev. A 43, 5022–5029 (1991).
[CrossRef]

DeSalvo, R.

R. Montgomery and R. DeSalvo, “A novel technique for double sideband suppressed carrier modulation of optical fields,” IEEE Photon. Technol. Lett. 7, 434–436 (1995).
[CrossRef]

C. Middleton and R. DeSalvo, “Optical carrier suppression and balanced coherent heterodyne detection for improved performance in wideband microwave photonic links,” 2010 Conference on Optical Fiber Communication (OFC), collocated National Fiber Optic Engineers Conference, San Diego, California, 1–3, 21–25 March2010.

Doebling, S. W.

C. R. Farrar, S. W. Doebling, and D. A. Nix, “Vibration-based structural damage identification,” Philos. Trans. R. Soc. London 359, 131–149 (2001).
[CrossRef]

Evans, C. L.

Fan, S.

C. Liu, H. C. Chien, S. Fan, J. Yu, and G. K. Chang, “Enhanced vector signal transmission over double-sideband carrier-suppressed optical millimeter-waves through a small LO feedthrough,” IEEE Photon. Technol. Lett. 24, 173–175 (2012).
[CrossRef]

Farrar, C. R.

C. R. Farrar, S. W. Doebling, and D. A. Nix, “Vibration-based structural damage identification,” Philos. Trans. R. Soc. London 359, 131–149 (2001).
[CrossRef]

Felix, N.

A. Boucaud, N. Felix, L. Pizarro, and F. Patat, “High power low frequency ultrasonic transducer: vibration amplitude measurements by an optical interferometric method,” Proceedings of IEEE Ultrasonics Symposium, 1999 (IEEE, 1999), Vol. 2, pp. 1095–1098.

Granieri, S.

A. Siahmakoun, S. Granieri, and K. Johnson, “Double- and single-sideband suppressed-carrier optical modulator implemented at 1320 nm using LiNbO3 crystals and bulk optics,” Proc. SPIE 4534, 86–92 (2001).
[CrossRef]

Hagiwara, M.

T. Izumi, M. Hagiwara, T. Hoshina, H. Takeda, and T. Tsurumi, “Analysis of vibration waveforms of electromechanical response to determine piezoelectric and electrostrictive coefficients,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 1632–1638 (2012).
[CrossRef]

He, G.

G. He and X. Wang, “Real-time micro-vibration measurement in sinusoidal phase modulation,” Optik 120, 101–105 (2009).
[CrossRef]

Hoshina, T.

T. Izumi, M. Hagiwara, T. Hoshina, H. Takeda, and T. Tsurumi, “Analysis of vibration waveforms of electromechanical response to determine piezoelectric and electrostrictive coefficients,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 1632–1638 (2012).
[CrossRef]

Ip, E.

Ivaschescu, V.

V. Ivaschescu, “Small sinusoidal vibrations amplitude measurements with the Michelson interferometer,” IEEE Trans. Instrum. Meas. 49, 643–647 (2000).
[CrossRef]

Izumi, T.

T. Izumi, M. Hagiwara, T. Hoshina, H. Takeda, and T. Tsurumi, “Analysis of vibration waveforms of electromechanical response to determine piezoelectric and electrostrictive coefficients,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 1632–1638 (2012).
[CrossRef]

Jin, X.

Johnson, K.

A. Siahmakoun, S. Granieri, and K. Johnson, “Double- and single-sideband suppressed-carrier optical modulator implemented at 1320 nm using LiNbO3 crystals and bulk optics,” Proc. SPIE 4534, 86–92 (2001).
[CrossRef]

Kahn, J. M.

Kim, B. Y.

D. H. Lee and B. Y. Kim, “Multiple-reflection interferometer for high accuracy measurement of small vibration displacement,” Meas. Sci. Technol. 71, 1981–1986 (2000).

Kuschnerov, M.

M. Kuschnerov, K. Piyawanno, M. S. Alfiad, B. Spinnler, A. Napoli, and B. Lankl, “Impact of mechanical vibrations on laser stability and carrier phase estimation in coherent receivers,” IEEE Photon. Technol. Lett. 22, 1114–1116 (2010).
[CrossRef]

Lang, K. C.

H. K. Teng and K. C. Lang, “Carrier-suppressed single photoreceiver optical balanced detector,” Electron. Lett. 47, 1036–1037 (2011).
[CrossRef]

H. K. Teng and K. C. Lang, “Excess noise reduction by optical technique in amplitude-sensitive heterodyne interferometer for small differential phase detection,” Appl. Opt. 47, 6860–6870 (2008).
[CrossRef]

H. K. Teng and K. C. Lang, “Heterodyne interferometer for displacement measurement with amplitude quadrature and noise suppression,” Opt. Commun. 280, 16–22 (2007).
[CrossRef]

Lankl, B.

M. Kuschnerov, K. Piyawanno, M. S. Alfiad, B. Spinnler, A. Napoli, and B. Lankl, “Impact of mechanical vibrations on laser stability and carrier phase estimation in coherent receivers,” IEEE Photon. Technol. Lett. 22, 1114–1116 (2010).
[CrossRef]

Lau, A. P. T.

Lee, D. H.

D. H. Lee and B. Y. Kim, “Multiple-reflection interferometer for high accuracy measurement of small vibration displacement,” Meas. Sci. Technol. 71, 1981–1986 (2000).

Lim, C.

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber-radio links,” IEEE Trans. Microwave Theory Tech. 54, 2181–2187 (2006).
[CrossRef]

Lin, Y. C.

H. H. Lu, S. J. Tzeng, Y. H. Su, and Y. C. Lin, “Employing double external light injection techniques to improve radio-on-fiber systems performance,” Opt. Commun. 230, 185–190 (2004).
[CrossRef]

Liu, C.

C. Liu, H. C. Chien, S. Fan, J. Yu, and G. K. Chang, “Enhanced vector signal transmission over double-sideband carrier-suppressed optical millimeter-waves through a small LO feedthrough,” IEEE Photon. Technol. Lett. 24, 173–175 (2012).
[CrossRef]

Liu, L.

Lu, H. H.

H. H. Lu, S. J. Tzeng, Y. H. Su, and Y. C. Lin, “Employing double external light injection techniques to improve radio-on-fiber systems performance,” Opt. Commun. 230, 185–190 (2004).
[CrossRef]

Malouin, C.

Manojlovic, L. M.

L. M. Manojlovic, “A novel common path interferometric technique for vibration measurement based on two fiber-optic couplers,” IEEE Sens. J. 11, 1541–1547 (2011).
[CrossRef]

Middleton, C.

C. Middleton and R. DeSalvo, “Optical carrier suppression and balanced coherent heterodyne detection for improved performance in wideband microwave photonic links,” 2010 Conference on Optical Fiber Communication (OFC), collocated National Fiber Optic Engineers Conference, San Diego, California, 1–3, 21–25 March2010.

Montgomery, R.

R. Montgomery and R. DeSalvo, “A novel technique for double sideband suppressed carrier modulation of optical fields,” IEEE Photon. Technol. Lett. 7, 434–436 (1995).
[CrossRef]

Napoli, A.

M. Kuschnerov, K. Piyawanno, M. S. Alfiad, B. Spinnler, A. Napoli, and B. Lankl, “Impact of mechanical vibrations on laser stability and carrier phase estimation in coherent receivers,” IEEE Photon. Technol. Lett. 22, 1114–1116 (2010).
[CrossRef]

Neibauer, T. M.

T. M. Neibauer, R. Schilling, K. Danzmann, A. Rudiger, and W. Winkler, “Nonstationary shot noise and its effect on the sensitivity of interferometers,” Phys. Rev. A 43, 5022–5029 (1991).
[CrossRef]

Nirmalathas, A.

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber-radio links,” IEEE Trans. Microwave Theory Tech. 54, 2181–2187 (2006).
[CrossRef]

Nix, D. A.

C. R. Farrar, S. W. Doebling, and D. A. Nix, “Vibration-based structural damage identification,” Philos. Trans. R. Soc. London 359, 131–149 (2001).
[CrossRef]

Novak, D.

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber-radio links,” IEEE Trans. Microwave Theory Tech. 54, 2181–2187 (2006).
[CrossRef]

Park, Y.

Patat, F.

A. Boucaud, N. Felix, L. Pizarro, and F. Patat, “High power low frequency ultrasonic transducer: vibration amplitude measurements by an optical interferometric method,” Proceedings of IEEE Ultrasonics Symposium, 1999 (IEEE, 1999), Vol. 2, pp. 1095–1098.

Piyawanno, K.

M. Kuschnerov, K. Piyawanno, M. S. Alfiad, B. Spinnler, A. Napoli, and B. Lankl, “Impact of mechanical vibrations on laser stability and carrier phase estimation in coherent receivers,” IEEE Photon. Technol. Lett. 22, 1114–1116 (2010).
[CrossRef]

Pizarro, L.

A. Boucaud, N. Felix, L. Pizarro, and F. Patat, “High power low frequency ultrasonic transducer: vibration amplitude measurements by an optical interferometric method,” Proceedings of IEEE Ultrasonics Symposium, 1999 (IEEE, 1999), Vol. 2, pp. 1095–1098.

Poggiolini, P.

Potma, E. O.

Rudiger, A.

T. M. Neibauer, R. Schilling, K. Danzmann, A. Rudiger, and W. Winkler, “Nonstationary shot noise and its effect on the sensitivity of interferometers,” Phys. Rev. A 43, 5022–5029 (1991).
[CrossRef]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, “Multiplied-Poisson noise in pulse, particle, and photo detection,” Proc. IEEE 70, 229–245 (1982).
[CrossRef]

Schilling, R.

T. M. Neibauer, R. Schilling, K. Danzmann, A. Rudiger, and W. Winkler, “Nonstationary shot noise and its effect on the sensitivity of interferometers,” Phys. Rev. A 43, 5022–5029 (1991).
[CrossRef]

Schmidt, T. J.

Siahmakoun, A.

A. Siahmakoun, S. Granieri, and K. Johnson, “Double- and single-sideband suppressed-carrier optical modulator implemented at 1320 nm using LiNbO3 crystals and bulk optics,” Proc. SPIE 4534, 86–92 (2001).
[CrossRef]

Spinnler, B.

M. Kuschnerov, K. Piyawanno, M. S. Alfiad, B. Spinnler, A. Napoli, and B. Lankl, “Impact of mechanical vibrations on laser stability and carrier phase estimation in coherent receivers,” IEEE Photon. Technol. Lett. 22, 1114–1116 (2010).
[CrossRef]

Su, Y. H.

H. H. Lu, S. J. Tzeng, Y. H. Su, and Y. C. Lin, “Employing double external light injection techniques to improve radio-on-fiber systems performance,” Opt. Commun. 230, 185–190 (2004).
[CrossRef]

Takeda, H.

T. Izumi, M. Hagiwara, T. Hoshina, H. Takeda, and T. Tsurumi, “Analysis of vibration waveforms of electromechanical response to determine piezoelectric and electrostrictive coefficients,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 1632–1638 (2012).
[CrossRef]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, “Multiplied-Poisson noise in pulse, particle, and photo detection,” Proc. IEEE 70, 229–245 (1982).
[CrossRef]

Teng, H. K.

H. K. Teng and K. C. Lang, “Carrier-suppressed single photoreceiver optical balanced detector,” Electron. Lett. 47, 1036–1037 (2011).
[CrossRef]

H. K. Teng and K. C. Lang, “Excess noise reduction by optical technique in amplitude-sensitive heterodyne interferometer for small differential phase detection,” Appl. Opt. 47, 6860–6870 (2008).
[CrossRef]

H. K. Teng and K. C. Lang, “Heterodyne interferometer for displacement measurement with amplitude quadrature and noise suppression,” Opt. Commun. 280, 16–22 (2007).
[CrossRef]

Tsurumi, T.

T. Izumi, M. Hagiwara, T. Hoshina, H. Takeda, and T. Tsurumi, “Analysis of vibration waveforms of electromechanical response to determine piezoelectric and electrostrictive coefficients,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 1632–1638 (2012).
[CrossRef]

Tzeng, S. J.

H. H. Lu, S. J. Tzeng, Y. H. Su, and Y. C. Lin, “Employing double external light injection techniques to improve radio-on-fiber systems performance,” Opt. Commun. 230, 185–190 (2004).
[CrossRef]

Wang, X.

G. He and X. Wang, “Real-time micro-vibration measurement in sinusoidal phase modulation,” Optik 120, 101–105 (2009).
[CrossRef]

Waterhouse, R.

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber-radio links,” IEEE Trans. Microwave Theory Tech. 54, 2181–2187 (2006).
[CrossRef]

Winkler, W.

T. M. Neibauer, R. Schilling, K. Danzmann, A. Rudiger, and W. Winkler, “Nonstationary shot noise and its effect on the sensitivity of interferometers,” Phys. Rev. A 43, 5022–5029 (1991).
[CrossRef]

Xie, X. S.

Yu, J.

C. Liu, H. C. Chien, S. Fan, J. Yu, and G. K. Chang, “Enhanced vector signal transmission over double-sideband carrier-suppressed optical millimeter-waves through a small LO feedthrough,” IEEE Photon. Technol. Lett. 24, 173–175 (2012).
[CrossRef]

Zhang, B.

Zhang, X.

Zheng, S.

Appl. Opt. (1)

Electron. Lett. (1)

H. K. Teng and K. C. Lang, “Carrier-suppressed single photoreceiver optical balanced detector,” Electron. Lett. 47, 1036–1037 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

R. Montgomery and R. DeSalvo, “A novel technique for double sideband suppressed carrier modulation of optical fields,” IEEE Photon. Technol. Lett. 7, 434–436 (1995).
[CrossRef]

M. Kuschnerov, K. Piyawanno, M. S. Alfiad, B. Spinnler, A. Napoli, and B. Lankl, “Impact of mechanical vibrations on laser stability and carrier phase estimation in coherent receivers,” IEEE Photon. Technol. Lett. 22, 1114–1116 (2010).
[CrossRef]

C. Liu, H. C. Chien, S. Fan, J. Yu, and G. K. Chang, “Enhanced vector signal transmission over double-sideband carrier-suppressed optical millimeter-waves through a small LO feedthrough,” IEEE Photon. Technol. Lett. 24, 173–175 (2012).
[CrossRef]

IEEE Sens. J. (1)

L. M. Manojlovic, “A novel common path interferometric technique for vibration measurement based on two fiber-optic couplers,” IEEE Sens. J. 11, 1541–1547 (2011).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

V. Ivaschescu, “Small sinusoidal vibrations amplitude measurements with the Michelson interferometer,” IEEE Trans. Instrum. Meas. 49, 643–647 (2000).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

C. Lim, M. Attygalle, A. Nirmalathas, D. Novak, and R. Waterhouse, “Analysis of optical carrier-to-sideband ratio for improving transmission performance in fiber-radio links,” IEEE Trans. Microwave Theory Tech. 54, 2181–2187 (2006).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

T. Izumi, M. Hagiwara, T. Hoshina, H. Takeda, and T. Tsurumi, “Analysis of vibration waveforms of electromechanical response to determine piezoelectric and electrostrictive coefficients,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 1632–1638 (2012).
[CrossRef]

J. Lightwave Technol. (1)

Meas. Sci. Technol. (1)

D. H. Lee and B. Y. Kim, “Multiple-reflection interferometer for high accuracy measurement of small vibration displacement,” Meas. Sci. Technol. 71, 1981–1986 (2000).

Opt. Commun. (2)

H. K. Teng and K. C. Lang, “Heterodyne interferometer for displacement measurement with amplitude quadrature and noise suppression,” Opt. Commun. 280, 16–22 (2007).
[CrossRef]

H. H. Lu, S. J. Tzeng, Y. H. Su, and Y. C. Lin, “Employing double external light injection techniques to improve radio-on-fiber systems performance,” Opt. Commun. 230, 185–190 (2004).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Optik (1)

G. He and X. Wang, “Real-time micro-vibration measurement in sinusoidal phase modulation,” Optik 120, 101–105 (2009).
[CrossRef]

Philos. Trans. R. Soc. London (1)

C. R. Farrar, S. W. Doebling, and D. A. Nix, “Vibration-based structural damage identification,” Philos. Trans. R. Soc. London 359, 131–149 (2001).
[CrossRef]

Phys. Rev. A (1)

T. M. Neibauer, R. Schilling, K. Danzmann, A. Rudiger, and W. Winkler, “Nonstationary shot noise and its effect on the sensitivity of interferometers,” Phys. Rev. A 43, 5022–5029 (1991).
[CrossRef]

Proc. IEEE (1)

B. E. A. Saleh and M. C. Teich, “Multiplied-Poisson noise in pulse, particle, and photo detection,” Proc. IEEE 70, 229–245 (1982).
[CrossRef]

Proc. SPIE (1)

A. Siahmakoun, S. Granieri, and K. Johnson, “Double- and single-sideband suppressed-carrier optical modulator implemented at 1320 nm using LiNbO3 crystals and bulk optics,” Proc. SPIE 4534, 86–92 (2001).
[CrossRef]

Other (2)

C. Middleton and R. DeSalvo, “Optical carrier suppression and balanced coherent heterodyne detection for improved performance in wideband microwave photonic links,” 2010 Conference on Optical Fiber Communication (OFC), collocated National Fiber Optic Engineers Conference, San Diego, California, 1–3, 21–25 March2010.

A. Boucaud, N. Felix, L. Pizarro, and F. Patat, “High power low frequency ultrasonic transducer: vibration amplitude measurements by an optical interferometric method,” Proceedings of IEEE Ultrasonics Symposium, 1999 (IEEE, 1999), Vol. 2, pp. 1095–1098.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Optical configuration for achieving DSB-SC by OBD approach is shown. The horizontal and vertical polarization components are represented by arrows and dots. PBS, polarized beam splitter; H, half-wave plate; Q, quarter-wave plate; P, polarizer; PR, photoreceiver.

Fig. 2.
Fig. 2.

(a) Power ratios of carrier (dotted line), first- and second-order basebands (solid and dashed lines), and second- and higher-order power sidebands to that of first-order lower sideband in decibels are shown as function of bias phase ϕb. The power ratios of basebands decrease as r increases whereas that of carrier is independent of r. (b) Power ratios of carrier to first-order lower sideband in decibels are shown as function of ϕb regarding different ϕs. The suppression of carrier is more effective for smaller ϕs as expected at smaller ϕb.

Fig. 3.
Fig. 3.

(a) Theoretical SNR of self-mixing approach as function of bias phase ϕb at different ϕs, where the optical power PPB remains constant. (b) Theoretical SNR of self-mixing approach as function of bias phase ϕb at different ϕs, where the optical power PPB is related to r.

Fig. 4.
Fig. 4.

Optical setup for measuring small vibration amplitude.

Fig. 5.
Fig. 5.

Spectrum of DSB-SC signal at different ϕb denoted in the figure are recorded under the same vibration amplitude. The powers of first-order lower and upper sidebands are equal and remain constant irrespective of ϕb as predicted. The power of carrier is suppressed from 83dBm to 110dBm. The noise floor is obtained by blocking the laser source while all the electronics are power on.

Fig. 6.
Fig. 6.

Output spectrum of self-mixing approach demonstrates the recovered signal at 2Ω whereas the baseband signal at Ω and carrier disappeared. The sidebands around Δω and 2Δω also exist as predicted. The DSB-SC signal from PR is shown as inset.

Fig. 7.
Fig. 7.

SNR of recovered signal power at 2Ω where (a) PPB is varied as function of r and (b) PPB remains constant irrespective to r.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

ET=aEPB[exp(i(ω1t+ϕ1+ϕ(t)))exp(i(ω1t+ϕ2))]+bEMOexp(i(ω2t+ϕMO)).
ϕ(t)=ϕssin(Ωt),
iDC=2a2ηPPB[1cos(ϕb)J0(ϕs)+(b/a)2r/2],
iDCηrb2PPB=ηb2PMO,
iBB(t)=4a2ηPPB[sin(ϕb)J1(ϕs)sin(Ωt)cos(ϕb)J2(ϕs)cos(2Ωt)+],
iCR(t)=4abηPPBr[sin2(ϕb2)(J02(ϕs2)+2J22(ϕs2)+)2+4cos2(ϕb2)(J12(ϕs2)+J32(ϕs2)+)2]1/2cos(Δωt+γ),
iDB(t)=4abηPPBr{[J0(ϕs2)J1(ϕs2)J1(ϕs2)J2(ϕs2)+J2(ϕs2)J3(ϕs2)][cos((ΔωΩ)t+ξ)cos((Δω+Ω)t+ξ)]+[cos(ϕb2)2(J12(ϕs2)+J1(ϕs2)J3(ϕs2)+)2+4sin(ϕb2)2(J0(ϕs2)J2(ϕs2)+)2]1/2[cos((Δω2Ω)t+ε)+cos((Δω+2Ω)t+ε)]+[J1(ϕs2)J2(ϕs2)J0(ϕs2)J3(ϕs2)+][cos((Δω3Ω)t+ξ)cos((Δω+3Ω)t+ξ)]+high order sidebands},
isig(t)ηPPB{b2rabrϕs[cos((ΔωΩ)t+ξ)+δcos(Δωt+γ)cos((Δω+Ω)t+ξ)]},
Imix(t)={G[iDCA(cos((ΔωΩ)t+ξ)+δcos(Δωt+γ)cos((Δω+Ω)t+ξ))]}2/SF,
Imix(t)=(GiDC)2+(GA)2(1+δ/2)(GA)2[2δsin(γξ)sin(Ωt)+cos(2Ωt)]2G2AiDC[cos((ΔωΩ)t+ξ)+δcos(Δωt+γ)cos((Δω+Ω)t+ξ)]+(G2A2/2)[cos(2(ΔωΩ)t+2ξ)2δcos((2ΔωΩ)t+ξ+γ)2cos(2Δωt+2ξ)+2δcos((2Δω+Ω)t+ξ+γ)+cos(2(Δω+Ω)t+2ξ)].
Iout(t)=(GabrηPPBϕs)2cos(2Ωt).
Psig=[GabrηPPB]4/2Zm,
Pnoise=2eB(GiDC)2/Zm.
S=(ηGPPBr)2(bϕs)416eB[(1cos(ϕb)J0(ϕs))+(b/a)2r/2]2.

Metrics