Abstract

This paper presents improvements to slab-coupled optical fiber sensors for electric-field sensing. The sensors are comprised of a potassium titanyl phosphate (KTP) crystal mounted on a D-fiber. The improvements are based on changing the crystal orientation, which enhances sensitivity due to a combined increase in the effective electro-optic coefficient and electric-field penetration into the KTP crystal. The paper provides a detailed comparison of the improved sensor, which uses x-cut KTP to the previous sensor design using z-cut KTP. The measurements show an 8.6× improvement in the sensitivity.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. E. Baum, E. L. Breen, J. C. Giles, J. O’Neill, and G. D. Sower, “Sensors for electromagnetic pulse measurements both inside and away from nuclear source regions,” IEEE Trans. Antennas Propag. 26, 22–35 (1978).
    [CrossRef]
  2. C. R. Miller, “Electromagnetic Pulse Threats in 2010,” (Center for Strategy and Technology, Air War College, Air University, Maxwell AFB, Ala., 2005).
  3. A. E. Pevler, “Security implications of high-power microwave technology,” in Proceedings of the 1997 International Symposium on Technology and Society (IEEE, 1997), pp. 107–111.
  4. R. Gibson, R. Selfridge, S. Schultz, W. Wang, and R. Forber, “Electro-optic sensor from high Q resonance between optical D-fiber and slab waveguide,” Appl. Opt. 47, 2234–2240 (2008).
    [CrossRef]
  5. S. Chadderdon, R. Gibson, R. H. Selfridge, S. M. Schultz, W. C. Wang, R. Forber, J. Luo, and A. K. Jen, “Electric-field sensors utilizing coupling between a D-fiber and an electro-optic polymer slab,” Appl. Opt. 50, 3505–3512 (2011).
    [CrossRef]
  6. W. C. Wang, W. Lin, H. Marshall, R. Skolnick, and D. Schaafsma, “All-dielectric miniature wideband rf receive antenna,” Opt. Eng. 43, 673–677 (2004).
    [CrossRef]
  7. W. C. Wang, H. Lotem, R. Forber, and K. Bui, “Optical electric-field sensors,” Opt. Eng. 45, 124402 (2006).
    [CrossRef]
  8. A. Garzarella, S. B. Qadri, and D. H. Wu, “Optimal electro-optic sensor configuration for phase noise limited, remote field sensing applications,” Appl. Phys. Lett. 94, 221113 (2009).
    [CrossRef]
  9. S. M. Chandani and N. A. F. Jaeger, “Modeling of elliptical core D-fibers for determination of cladding thickness,” Proc. SPIE 6796, 67963M (2007).
    [CrossRef]
  10. R. Gibson, R. Selfridge, and S. Schultz, “Electric field sensor array from cavity resonance between optical D-fiber and multiple slab waveguides,” Appl. Opt. 48, 3695–3701 (2009).
    [CrossRef]
  11. C. A. Millar, M. C. Brierley, and R. S. Mallinson, “Exposed-core single-mode-fiber channel-dropping filter using high-index overlay waveguide,” Opt. Lett. 12, 284–286 (1987).
    [CrossRef]
  12. M. M.-K. Liu, Principles and Applications of Optical Communications (Irwin Professional Publishing, 1996).
  13. D. Perry, S. Chadderdon, R. Forber, W. Wang, R. Selfridge, and S. Schultz, “Multiaxis electric field sensing using slab coupled optical sensors,” Appl. Opt. 52, 1968–1977 (2013).
    [CrossRef]
  14. J. D. Bierlein and C. B. Arweiler, “Electro-optic and dielectric properties of KTiOPO4,” Appl. Phys. Lett. 49, 917–919 (1986).
    [CrossRef]
  15. K. Noda, W. Sakamota, T. Yogo, and S. Hirano, “Dielectric properties of KTiOPO4,” J. Mater. Sci. Lett. 19, 69–72 (2000).
    [CrossRef]
  16. B. Whitaker, J. Noren, C. Chadderdon, W. Wang, R. Forber, R. Selfridge, and S. Schultz, “Slab coupled optical fiber sensor calibration,” Rev. Sci. Instrum. 84, 023108 (2013).
    [CrossRef]

2013 (2)

D. Perry, S. Chadderdon, R. Forber, W. Wang, R. Selfridge, and S. Schultz, “Multiaxis electric field sensing using slab coupled optical sensors,” Appl. Opt. 52, 1968–1977 (2013).
[CrossRef]

B. Whitaker, J. Noren, C. Chadderdon, W. Wang, R. Forber, R. Selfridge, and S. Schultz, “Slab coupled optical fiber sensor calibration,” Rev. Sci. Instrum. 84, 023108 (2013).
[CrossRef]

2011 (1)

2009 (2)

A. Garzarella, S. B. Qadri, and D. H. Wu, “Optimal electro-optic sensor configuration for phase noise limited, remote field sensing applications,” Appl. Phys. Lett. 94, 221113 (2009).
[CrossRef]

R. Gibson, R. Selfridge, and S. Schultz, “Electric field sensor array from cavity resonance between optical D-fiber and multiple slab waveguides,” Appl. Opt. 48, 3695–3701 (2009).
[CrossRef]

2008 (1)

2007 (1)

S. M. Chandani and N. A. F. Jaeger, “Modeling of elliptical core D-fibers for determination of cladding thickness,” Proc. SPIE 6796, 67963M (2007).
[CrossRef]

2006 (1)

W. C. Wang, H. Lotem, R. Forber, and K. Bui, “Optical electric-field sensors,” Opt. Eng. 45, 124402 (2006).
[CrossRef]

2004 (1)

W. C. Wang, W. Lin, H. Marshall, R. Skolnick, and D. Schaafsma, “All-dielectric miniature wideband rf receive antenna,” Opt. Eng. 43, 673–677 (2004).
[CrossRef]

2000 (1)

K. Noda, W. Sakamota, T. Yogo, and S. Hirano, “Dielectric properties of KTiOPO4,” J. Mater. Sci. Lett. 19, 69–72 (2000).
[CrossRef]

1987 (1)

1986 (1)

J. D. Bierlein and C. B. Arweiler, “Electro-optic and dielectric properties of KTiOPO4,” Appl. Phys. Lett. 49, 917–919 (1986).
[CrossRef]

1978 (1)

C. E. Baum, E. L. Breen, J. C. Giles, J. O’Neill, and G. D. Sower, “Sensors for electromagnetic pulse measurements both inside and away from nuclear source regions,” IEEE Trans. Antennas Propag. 26, 22–35 (1978).
[CrossRef]

Arweiler, C. B.

J. D. Bierlein and C. B. Arweiler, “Electro-optic and dielectric properties of KTiOPO4,” Appl. Phys. Lett. 49, 917–919 (1986).
[CrossRef]

Baum, C. E.

C. E. Baum, E. L. Breen, J. C. Giles, J. O’Neill, and G. D. Sower, “Sensors for electromagnetic pulse measurements both inside and away from nuclear source regions,” IEEE Trans. Antennas Propag. 26, 22–35 (1978).
[CrossRef]

Bierlein, J. D.

J. D. Bierlein and C. B. Arweiler, “Electro-optic and dielectric properties of KTiOPO4,” Appl. Phys. Lett. 49, 917–919 (1986).
[CrossRef]

Breen, E. L.

C. E. Baum, E. L. Breen, J. C. Giles, J. O’Neill, and G. D. Sower, “Sensors for electromagnetic pulse measurements both inside and away from nuclear source regions,” IEEE Trans. Antennas Propag. 26, 22–35 (1978).
[CrossRef]

Brierley, M. C.

Bui, K.

W. C. Wang, H. Lotem, R. Forber, and K. Bui, “Optical electric-field sensors,” Opt. Eng. 45, 124402 (2006).
[CrossRef]

Chadderdon, C.

B. Whitaker, J. Noren, C. Chadderdon, W. Wang, R. Forber, R. Selfridge, and S. Schultz, “Slab coupled optical fiber sensor calibration,” Rev. Sci. Instrum. 84, 023108 (2013).
[CrossRef]

Chadderdon, S.

Chandani, S. M.

S. M. Chandani and N. A. F. Jaeger, “Modeling of elliptical core D-fibers for determination of cladding thickness,” Proc. SPIE 6796, 67963M (2007).
[CrossRef]

Forber, R.

Garzarella, A.

A. Garzarella, S. B. Qadri, and D. H. Wu, “Optimal electro-optic sensor configuration for phase noise limited, remote field sensing applications,” Appl. Phys. Lett. 94, 221113 (2009).
[CrossRef]

Gibson, R.

Giles, J. C.

C. E. Baum, E. L. Breen, J. C. Giles, J. O’Neill, and G. D. Sower, “Sensors for electromagnetic pulse measurements both inside and away from nuclear source regions,” IEEE Trans. Antennas Propag. 26, 22–35 (1978).
[CrossRef]

Hirano, S.

K. Noda, W. Sakamota, T. Yogo, and S. Hirano, “Dielectric properties of KTiOPO4,” J. Mater. Sci. Lett. 19, 69–72 (2000).
[CrossRef]

Jaeger, N. A. F.

S. M. Chandani and N. A. F. Jaeger, “Modeling of elliptical core D-fibers for determination of cladding thickness,” Proc. SPIE 6796, 67963M (2007).
[CrossRef]

Jen, A. K.

Lin, W.

W. C. Wang, W. Lin, H. Marshall, R. Skolnick, and D. Schaafsma, “All-dielectric miniature wideband rf receive antenna,” Opt. Eng. 43, 673–677 (2004).
[CrossRef]

Liu, M. M.-K.

M. M.-K. Liu, Principles and Applications of Optical Communications (Irwin Professional Publishing, 1996).

Lotem, H.

W. C. Wang, H. Lotem, R. Forber, and K. Bui, “Optical electric-field sensors,” Opt. Eng. 45, 124402 (2006).
[CrossRef]

Luo, J.

Mallinson, R. S.

Marshall, H.

W. C. Wang, W. Lin, H. Marshall, R. Skolnick, and D. Schaafsma, “All-dielectric miniature wideband rf receive antenna,” Opt. Eng. 43, 673–677 (2004).
[CrossRef]

Millar, C. A.

Miller, C. R.

C. R. Miller, “Electromagnetic Pulse Threats in 2010,” (Center for Strategy and Technology, Air War College, Air University, Maxwell AFB, Ala., 2005).

Noda, K.

K. Noda, W. Sakamota, T. Yogo, and S. Hirano, “Dielectric properties of KTiOPO4,” J. Mater. Sci. Lett. 19, 69–72 (2000).
[CrossRef]

Noren, J.

B. Whitaker, J. Noren, C. Chadderdon, W. Wang, R. Forber, R. Selfridge, and S. Schultz, “Slab coupled optical fiber sensor calibration,” Rev. Sci. Instrum. 84, 023108 (2013).
[CrossRef]

O’Neill, J.

C. E. Baum, E. L. Breen, J. C. Giles, J. O’Neill, and G. D. Sower, “Sensors for electromagnetic pulse measurements both inside and away from nuclear source regions,” IEEE Trans. Antennas Propag. 26, 22–35 (1978).
[CrossRef]

Perry, D.

Pevler, A. E.

A. E. Pevler, “Security implications of high-power microwave technology,” in Proceedings of the 1997 International Symposium on Technology and Society (IEEE, 1997), pp. 107–111.

Qadri, S. B.

A. Garzarella, S. B. Qadri, and D. H. Wu, “Optimal electro-optic sensor configuration for phase noise limited, remote field sensing applications,” Appl. Phys. Lett. 94, 221113 (2009).
[CrossRef]

Sakamota, W.

K. Noda, W. Sakamota, T. Yogo, and S. Hirano, “Dielectric properties of KTiOPO4,” J. Mater. Sci. Lett. 19, 69–72 (2000).
[CrossRef]

Schaafsma, D.

W. C. Wang, W. Lin, H. Marshall, R. Skolnick, and D. Schaafsma, “All-dielectric miniature wideband rf receive antenna,” Opt. Eng. 43, 673–677 (2004).
[CrossRef]

Schultz, S.

Schultz, S. M.

Selfridge, R.

Selfridge, R. H.

Skolnick, R.

W. C. Wang, W. Lin, H. Marshall, R. Skolnick, and D. Schaafsma, “All-dielectric miniature wideband rf receive antenna,” Opt. Eng. 43, 673–677 (2004).
[CrossRef]

Sower, G. D.

C. E. Baum, E. L. Breen, J. C. Giles, J. O’Neill, and G. D. Sower, “Sensors for electromagnetic pulse measurements both inside and away from nuclear source regions,” IEEE Trans. Antennas Propag. 26, 22–35 (1978).
[CrossRef]

Wang, W.

Wang, W. C.

S. Chadderdon, R. Gibson, R. H. Selfridge, S. M. Schultz, W. C. Wang, R. Forber, J. Luo, and A. K. Jen, “Electric-field sensors utilizing coupling between a D-fiber and an electro-optic polymer slab,” Appl. Opt. 50, 3505–3512 (2011).
[CrossRef]

W. C. Wang, H. Lotem, R. Forber, and K. Bui, “Optical electric-field sensors,” Opt. Eng. 45, 124402 (2006).
[CrossRef]

W. C. Wang, W. Lin, H. Marshall, R. Skolnick, and D. Schaafsma, “All-dielectric miniature wideband rf receive antenna,” Opt. Eng. 43, 673–677 (2004).
[CrossRef]

Whitaker, B.

B. Whitaker, J. Noren, C. Chadderdon, W. Wang, R. Forber, R. Selfridge, and S. Schultz, “Slab coupled optical fiber sensor calibration,” Rev. Sci. Instrum. 84, 023108 (2013).
[CrossRef]

Wu, D. H.

A. Garzarella, S. B. Qadri, and D. H. Wu, “Optimal electro-optic sensor configuration for phase noise limited, remote field sensing applications,” Appl. Phys. Lett. 94, 221113 (2009).
[CrossRef]

Yogo, T.

K. Noda, W. Sakamota, T. Yogo, and S. Hirano, “Dielectric properties of KTiOPO4,” J. Mater. Sci. Lett. 19, 69–72 (2000).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (2)

J. D. Bierlein and C. B. Arweiler, “Electro-optic and dielectric properties of KTiOPO4,” Appl. Phys. Lett. 49, 917–919 (1986).
[CrossRef]

A. Garzarella, S. B. Qadri, and D. H. Wu, “Optimal electro-optic sensor configuration for phase noise limited, remote field sensing applications,” Appl. Phys. Lett. 94, 221113 (2009).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

C. E. Baum, E. L. Breen, J. C. Giles, J. O’Neill, and G. D. Sower, “Sensors for electromagnetic pulse measurements both inside and away from nuclear source regions,” IEEE Trans. Antennas Propag. 26, 22–35 (1978).
[CrossRef]

J. Mater. Sci. Lett. (1)

K. Noda, W. Sakamota, T. Yogo, and S. Hirano, “Dielectric properties of KTiOPO4,” J. Mater. Sci. Lett. 19, 69–72 (2000).
[CrossRef]

Opt. Eng. (2)

W. C. Wang, W. Lin, H. Marshall, R. Skolnick, and D. Schaafsma, “All-dielectric miniature wideband rf receive antenna,” Opt. Eng. 43, 673–677 (2004).
[CrossRef]

W. C. Wang, H. Lotem, R. Forber, and K. Bui, “Optical electric-field sensors,” Opt. Eng. 45, 124402 (2006).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

S. M. Chandani and N. A. F. Jaeger, “Modeling of elliptical core D-fibers for determination of cladding thickness,” Proc. SPIE 6796, 67963M (2007).
[CrossRef]

Rev. Sci. Instrum. (1)

B. Whitaker, J. Noren, C. Chadderdon, W. Wang, R. Forber, R. Selfridge, and S. Schultz, “Slab coupled optical fiber sensor calibration,” Rev. Sci. Instrum. 84, 023108 (2013).
[CrossRef]

Other (3)

M. M.-K. Liu, Principles and Applications of Optical Communications (Irwin Professional Publishing, 1996).

C. R. Miller, “Electromagnetic Pulse Threats in 2010,” (Center for Strategy and Technology, Air War College, Air University, Maxwell AFB, Ala., 2005).

A. E. Pevler, “Security implications of high-power microwave technology,” in Proceedings of the 1997 International Symposium on Technology and Society (IEEE, 1997), pp. 107–111.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Diagrams of a SCOS device consisting of slab and D-fiber waveguides.

Fig. 2.
Fig. 2.

Transmission spectrum of SCOS device, where transmission dips correspond to coupling wavelengths. An incident electric field causes a shift of Δλ, resulting in a change in the transmitted power of ΔP if a laser is used with a fixed wavelength.

Fig. 3.
Fig. 3.

Two possible SCOS configurations for electric-field detection occurring orthogonal to the direction of the optical fiber.

Fig. 4.
Fig. 4.

Ray diagram showing light propagation in fiber and slab waveguide of SCOS. The modes with the electric field perpendicular and parallel to the plane of incident are, respectively, the TE and TM modes.

Fig. 5.
Fig. 5.

Model used for Maxwell 2D simulation to determine strength of E-field within normal and transverse slab waveguides.

Fig. 6.
Fig. 6.

Electric-field strength relative to position for transverse and normal slab waveguides.

Fig. 7.
Fig. 7.

Eslab/Einc ratio as function of RF permittivity, εslab.

Fig. 8.
Fig. 8.

SCOS electric-field test setup consisting of tunable laser, photo detector (PD), transimpedance amplifier (TIA), and electrical spectrum analyzer (ESA). A signal generator and electrodes were used to produce an electric field across the SCOSs.

Fig. 9.
Fig. 9.

Transmission spectra for SCOSs fabricated using x-cut and z-cut KTP slab waveguides.

Fig. 10.
Fig. 10.

AC component of electric-field measurement using ESA with 100 point averaging.

Tables (1)

Tables Icon

Table 1. SCOS Measurements

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

λm=2tmns2N2,
Δns=12ns3reffEz,
Ptrans=Po+(ΔPΔλ)(ΔλE)E(t),
r=[00r1300r2300r330r420r5100000].
Δnx=12nx3r13Ez,
Δny=12ny3r23Ez,
Δnz=12nz3r33Ez,
reff=rt,
reff=rfrnrf2sin2(θ)+rn2cos2(θ).
reff=r23r33r232sin2(θ)+r332cos2(θ).
reff=r33=35pm/V
Dslab·n^=Dinc·n^,
Eslab·t^=Einc·t^.
EslabEinc=1εslab,
Vs=(ΔPΔλ)(ΔλEinc)GEinc,
ΔPΔλ=1GΔVΔλ.

Metrics