Abstract

The optical characteristics of a metal-coated dielectric wedge structure are investigated at a wavelength of 1550 nm. The effects of the metal/gap layers’ thicknesses, as well as the dimension of the dielectric wedge on the guided modes’ properties, are systematically analyzed. It is revealed that the characteristics of the fundamental quasi-TE and quasi-TM plasmonic modes supported by the configuration demonstrate similar trends against the variation of the metal layer thickness while exhibiting quite different behaviors with the change of the wedge size. By choosing appropriate physical dimensions, both modes could simultaneously achieve low modal loss and subwavelength field confinement, along with reasonable mode power inside the low-index gap region. Investigations on the directional coupling between adjacent identical waveguides indicate that ultralow crosstalk can be enabled by the quasi-TE mode, with the coupling length more than two orders of magnitude larger than that achieved by the plasmonic mode in conventional hybrid counterparts. The presented metal-coated dielectric wedge structures can be employed as important building blocks for a number of integrated nanophotonic components, and could also enable numerous applications at the subwavelength scale.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef]
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
    [CrossRef]
  3. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
    [CrossRef]
  4. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
    [CrossRef]
  5. Z. H. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys. 76, 016402 (2013).
    [CrossRef]
  6. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
    [CrossRef]
  7. V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun 2, 331 (2011).
    [CrossRef]
  8. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
    [CrossRef]
  9. R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. A. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2010).
    [CrossRef]
  10. Y. Song, J. Wang, Q. A. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18, 13173–13179 (2010).
    [CrossRef]
  11. X. Y. Zhang, A. Hu, J. Z. Wen, T. Zhang, X. J. Xue, Y. Zhou, and W. W. Duley, “Numerical analysis of deep sub-wavelength integrated plasmonic devices based on semiconductor-insulator-metal strip waveguides,” Opt. Express 18, 18945–18959 (2010).
    [CrossRef]
  12. L. Chen, X. Li, and D. S. Gao, “An efficient directional coupling from dielectric waveguide to hybrid long-range plasmonic waveguide on a silicon platform,” Appl. Phys. B 111, 15–19 (2013).
    [CrossRef]
  13. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Nanoplasmonic power splitters based on the horizontal nanoplasmonic slot waveguide,” Appl. Phys. Lett. 99, 031112 (2011).
    [CrossRef]
  14. H. S. Chu, P. Bai, E. P. Li, and W. R. J. Hoefer, “Hybrid dielectric-loaded plasmonic waveguide-based power splitter and ring resonator: compact size and high optical performance for nanophotonic circuits,” Plasmonics 6, 591–597 (2011).
    [CrossRef]
  15. Y. F. Xiao, B. B. Li, X. Jiang, X. Y. Hu, Y. Li, and Q. H. Gong, “High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip,” J. Phys. B 43, 035402 (2010).
    [CrossRef]
  16. H. S. Chu, Y. Akimov, P. Bai, and E. P. Li, “Submicrometer radius and highly confined plasmonic ring resonator filters based on hybrid metal-oxide-semiconductor waveguide,” Opt. Lett. 37, 4564–4566 (2012).
    [CrossRef]
  17. M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer,” Opt. Lett. 37, 55–57 (2012).
    [CrossRef]
  18. X. Sun, L. Zhou, X. Li, Z. Hong, and J. Chen, “Design and analysis of a phase modulator based on a metal-polymer-silicon hybrid plasmonic waveguide,” Appl. Opt. 50, 3428–3434 (2011).
    [CrossRef]
  19. V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophoton. 1, 17–22 (2012).
    [CrossRef]
  20. C. C. Lu, X. Y. Hu, Y. Song, Y. L. Fu, H. Yang, and Q. H. Gong, “Ferroelectric hybrid plasmonic waveguide for all-optical logic gate applications,” Plasmonics 8, 749–754 (2013).
    [CrossRef]
  21. X. D. Yang, Y. M. Liu, R. F. Oulton, X. B. Yin, and X. A. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett. 11, 321–328 (2011).
    [CrossRef]
  22. H. Li, J. W. Noh, Y. Chen, and M. Li, “Enhanced optical forces in integrated hybrid plasmonic waveguides,” Opt. Express 21, 11839–11851 (2013).
    [CrossRef]
  23. F. F. Lu, T. Li, X. P. Hu, Q. Q. Cheng, S. N. Zhu, and Y. Y. Zhu, “Efficient second-harmonic generation in nonlinear plasmonic waveguide,” Opt. Lett. 36, 3371–3373 (2011).
    [CrossRef]
  24. J. Zhang, P. Zhao, E. Cassan, and X. Zhang, “Phase regeneration of phase-shift keying signals in highly nonlinear hybrid plasmonic waveguides,” Opt. Lett. 38, 848–850 (2013).
    [CrossRef]
  25. X. He, L. Yang, and T. Yang, “Optical nanofocusing by tapering coupled photonic-plasmonic waveguides,” Opt. Express 19, 12865–12872 (2011).
  26. J. Tian, Z. Ma, Q. A. Li, Y. Song, Z. H. Liu, Q. Yang, C. L. Zha, J. Akerman, L. M. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97, 231121 (2010).
    [CrossRef]
  27. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Super mode propagation in low index medium,” in Conference on Laser and Electro-Optics (IEEE2007), paper JThD112.
  28. D. X. Dai and S. L. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17, 16646–16653 (2009).
    [CrossRef]
  29. I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express 18, 348–363 (2010).
    [CrossRef]
  30. P. D. Flammer, J. M. Banks, T. E. Furtak, C. G. Durfee, R. E. Hollingsworth, and R. T. Collins, “Hybrid plasmon/dielectric waveguide for integrated silicon-on-insulator optical elements,” Optics Express 18, 21013–21023 (2010).
    [CrossRef]
  31. Y. S. Bian, Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, “Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement,” Opt. Express 18, 23756–23762 (2010).
    [CrossRef]
  32. D. Chen, “Cylindrical hybrid plasmonic waveguide for subwavelength confinement of light,” Appl. Opt. 49, 6868–6871 (2010).
    [CrossRef]
  33. Y. S. Zhao and L. Zhu, “Coaxial hybrid plasmonic nanowire waveguides,” J. Opt. Soc. Am. B 27, 1260–1265 (2010).
    [CrossRef]
  34. Y. Kou, F. Ye, and X. Chen, “Low-loss hybrid plasmonic waveguide for compact and high-efficient photonic integration,” Opt. Express 19, 11746–11752 (2011).
    [CrossRef]
  35. L. J. Wang, Y. Gu, X. Y. Hu, B. Q. Sun, L. M. Tong, and Q. H. Gong, “Subwavelength-confined hybrid surface modes of low attenuation in cylindrical metallic-dielectric waveguides,” Europhys. Lett. 96, 37002 (2011).
    [CrossRef]
  36. Y. S. Bian, Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, “Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement,” Opt. Express 19, 22417–22422 (2011).
    [CrossRef]
  37. H. Benisty and M. Besbes, “Plasmonic inverse rib waveguiding for tight confinement and smooth interface definition,” J. Appl. Phys. 108, 063108 (2010).
    [CrossRef]
  38. J. Zhang, L. K. Cai, W. L. Bai, Y. Xu, and G. F. Song, “Hybrid plasmonic waveguide with gain medium for lossless propagation with nanoscale confinement,” Opt. Lett. 36, 2312–2314 (2011).
    [CrossRef]
  39. C. C. Huang, “Hybrid plasmonic waveguide comprising a semiconductor nanowire and metal ridge for low-loss propagation and nanoscale confinement,” IEEE J. Sel. Top. Quantum Electron. 18, 1661–1668 (2012).
    [CrossRef]
  40. R. Hao, E. P. Li, and X. C. Wei, “Two-dimensional light confinement in cross-index-modulation plasmonic waveguides,” Opt. Lett. 37, 2934–2936 (2012).
    [CrossRef]
  41. Q. J. Lu, D. R. Chen, and G. Z. Wu, “Low-loss hybrid plasmonic waveguide based on metal ridge and semiconductor nanowire,” Opt. Commun. 289, 64–68 (2013).
    [CrossRef]
  42. Q. Huang, F. Bao, and S. He, “Nonlocal effects in a hybrid plasmonic waveguide for nanoscale confinement,” Opt. Express 21, 1430–1439 (2013).
    [CrossRef]
  43. Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Highly confined hybrid plasmonic modes guided by nanowire-embedded-metal grooves for low-loss propagation at 1550 nm,” IEEE J. Sel. Top. Quantum Electron. 19, 4800106 (2013).
    [CrossRef]
  44. Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metal/dielectric groove,” J. Opt. 15, 055011 (2013).
    [CrossRef]
  45. Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express 17, 21320–21325 (2009).
    [CrossRef]
  46. B. F. Yun, G. H. Hu, Y. Ji, and Y. P. Cui, “Characteristics analysis of a hybrid surface plasmonic waveguide with nanometric confinement and high optical intensity,” J. Opt. Soc. Am. B 26, 1924–1929 (2009).
    [CrossRef]
  47. J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and S. Y. Shin, “Hybrid plasmonic waveguide for low-loss lightwave guiding,” Opt. Express 18, 2808–2813 (2010).
    [CrossRef]
  48. L. Chen, X. Li, G. P. Wang, W. Li, S. H. Chen, L. Xiao, and D. S. Gao, “A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration,” J. Lightwave Technol. 30, 163–168 (2012).
    [CrossRef]
  49. L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31, 2133–2135 (2006).
    [CrossRef]
  50. N. N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm,” IEEE J. Quantum Electron. 43, 479–485 (2007).
    [CrossRef]
  51. D. X. Dai and S. L. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express 18, 17958–17966 (2010).
    [CrossRef]
  52. S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19, 8888–8902 (2011).
    [CrossRef]
  53. J. T. Kim, “CMOS-compatible hybrid plasmonic waveguide for subwavelength light confinement and on-chip integration,” IEEE Photon. Technol. Lett. 23, 206–208 (2011).
    [CrossRef]
  54. M. S. Kwon, “Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology,” Opt. Express 19, 8379–8393 (2011).
    [CrossRef]
  55. X. Zuo and Z. Sun, “Low-loss plasmonic hybrid optical ridge waveguide on silicon-on-insulator substrate,” Opt. Lett. 36, 2946–2948 (2011).
    [CrossRef]
  56. T. Mahmoud, M. Noghani, and S. H. Vadjed, “Analysis and optimum design of hybrid plasmonic slab waveguides,” Plasmonics 8, 1155–1168 (2013).
    [CrossRef]
  57. A. Boltasseva, “Plasmonic components fabrication via nanoimprint,” J. Opt. A 11, 114001 (2009).
    [CrossRef]
  58. S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98, 021107 (2011).
    [CrossRef]
  59. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  60. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
    [CrossRef]
  61. A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16, 5252–5260 (2008).
    [CrossRef]
  62. J. Dintinger and O. J. F. Martin, “Channel and wedge plasmon modes of metallic V-grooves with finite metal thickness,” Opt. Express 17, 2364–2374 (2009).
    [CrossRef]
  63. Z. Pan, J. Guo, R. Soref, W. Buchwald, and G. Sun, “Mode properties of flat-top silver nanoridge surface plasmon waveguides,” J. Opt. Soc. Am. B 29, 340–345 (2012).
    [CrossRef]
  64. E. Verhagen, M. Spasenovic, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
    [CrossRef]
  65. G. Veronis and S. H. Fan, “Crosstalk between three-dimensional plasmonic slot waveguides,” Opt. Express 16, 2129–2140 (2008).
    [CrossRef]
  66. Y. Song, M. Yan, Q. Yang, L. M. Tong, and M. Qiu, “Reducing crosstalk between nanowire-based hybrid plasmonic waveguides,” Opt. Commun. 284, 480–484 (2011).
    [CrossRef]
  67. W. P. Huang, “Coupled-mode theory for optical waveguides: an overview,” J. Opt. Soc. Am. A 11, 963–983 (1994).
    [CrossRef]

2013 (10)

Z. H. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys. 76, 016402 (2013).
[CrossRef]

L. Chen, X. Li, and D. S. Gao, “An efficient directional coupling from dielectric waveguide to hybrid long-range plasmonic waveguide on a silicon platform,” Appl. Phys. B 111, 15–19 (2013).
[CrossRef]

C. C. Lu, X. Y. Hu, Y. Song, Y. L. Fu, H. Yang, and Q. H. Gong, “Ferroelectric hybrid plasmonic waveguide for all-optical logic gate applications,” Plasmonics 8, 749–754 (2013).
[CrossRef]

H. Li, J. W. Noh, Y. Chen, and M. Li, “Enhanced optical forces in integrated hybrid plasmonic waveguides,” Opt. Express 21, 11839–11851 (2013).
[CrossRef]

J. Zhang, P. Zhao, E. Cassan, and X. Zhang, “Phase regeneration of phase-shift keying signals in highly nonlinear hybrid plasmonic waveguides,” Opt. Lett. 38, 848–850 (2013).
[CrossRef]

Q. J. Lu, D. R. Chen, and G. Z. Wu, “Low-loss hybrid plasmonic waveguide based on metal ridge and semiconductor nanowire,” Opt. Commun. 289, 64–68 (2013).
[CrossRef]

Q. Huang, F. Bao, and S. He, “Nonlocal effects in a hybrid plasmonic waveguide for nanoscale confinement,” Opt. Express 21, 1430–1439 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Highly confined hybrid plasmonic modes guided by nanowire-embedded-metal grooves for low-loss propagation at 1550 nm,” IEEE J. Sel. Top. Quantum Electron. 19, 4800106 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metal/dielectric groove,” J. Opt. 15, 055011 (2013).
[CrossRef]

T. Mahmoud, M. Noghani, and S. H. Vadjed, “Analysis and optimum design of hybrid plasmonic slab waveguides,” Plasmonics 8, 1155–1168 (2013).
[CrossRef]

2012 (7)

2011 (17)

X. Sun, L. Zhou, X. Li, Z. Hong, and J. Chen, “Design and analysis of a phase modulator based on a metal-polymer-silicon hybrid plasmonic waveguide,” Appl. Opt. 50, 3428–3434 (2011).
[CrossRef]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Nanoplasmonic power splitters based on the horizontal nanoplasmonic slot waveguide,” Appl. Phys. Lett. 99, 031112 (2011).
[CrossRef]

H. S. Chu, P. Bai, E. P. Li, and W. R. J. Hoefer, “Hybrid dielectric-loaded plasmonic waveguide-based power splitter and ring resonator: compact size and high optical performance for nanophotonic circuits,” Plasmonics 6, 591–597 (2011).
[CrossRef]

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun 2, 331 (2011).
[CrossRef]

X. He, L. Yang, and T. Yang, “Optical nanofocusing by tapering coupled photonic-plasmonic waveguides,” Opt. Express 19, 12865–12872 (2011).

F. F. Lu, T. Li, X. P. Hu, Q. Q. Cheng, S. N. Zhu, and Y. Y. Zhu, “Efficient second-harmonic generation in nonlinear plasmonic waveguide,” Opt. Lett. 36, 3371–3373 (2011).
[CrossRef]

X. D. Yang, Y. M. Liu, R. F. Oulton, X. B. Yin, and X. A. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett. 11, 321–328 (2011).
[CrossRef]

Y. Kou, F. Ye, and X. Chen, “Low-loss hybrid plasmonic waveguide for compact and high-efficient photonic integration,” Opt. Express 19, 11746–11752 (2011).
[CrossRef]

L. J. Wang, Y. Gu, X. Y. Hu, B. Q. Sun, L. M. Tong, and Q. H. Gong, “Subwavelength-confined hybrid surface modes of low attenuation in cylindrical metallic-dielectric waveguides,” Europhys. Lett. 96, 37002 (2011).
[CrossRef]

Y. S. Bian, Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, “Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement,” Opt. Express 19, 22417–22422 (2011).
[CrossRef]

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19, 8888–8902 (2011).
[CrossRef]

J. T. Kim, “CMOS-compatible hybrid plasmonic waveguide for subwavelength light confinement and on-chip integration,” IEEE Photon. Technol. Lett. 23, 206–208 (2011).
[CrossRef]

M. S. Kwon, “Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology,” Opt. Express 19, 8379–8393 (2011).
[CrossRef]

X. Zuo and Z. Sun, “Low-loss plasmonic hybrid optical ridge waveguide on silicon-on-insulator substrate,” Opt. Lett. 36, 2946–2948 (2011).
[CrossRef]

J. Zhang, L. K. Cai, W. L. Bai, Y. Xu, and G. F. Song, “Hybrid plasmonic waveguide with gain medium for lossless propagation with nanoscale confinement,” Opt. Lett. 36, 2312–2314 (2011).
[CrossRef]

Y. Song, M. Yan, Q. Yang, L. M. Tong, and M. Qiu, “Reducing crosstalk between nanowire-based hybrid plasmonic waveguides,” Opt. Commun. 284, 480–484 (2011).
[CrossRef]

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98, 021107 (2011).
[CrossRef]

2010 (14)

D. X. Dai and S. L. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express 18, 17958–17966 (2010).
[CrossRef]

J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and S. Y. Shin, “Hybrid plasmonic waveguide for low-loss lightwave guiding,” Opt. Express 18, 2808–2813 (2010).
[CrossRef]

H. Benisty and M. Besbes, “Plasmonic inverse rib waveguiding for tight confinement and smooth interface definition,” J. Appl. Phys. 108, 063108 (2010).
[CrossRef]

I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express 18, 348–363 (2010).
[CrossRef]

P. D. Flammer, J. M. Banks, T. E. Furtak, C. G. Durfee, R. E. Hollingsworth, and R. T. Collins, “Hybrid plasmon/dielectric waveguide for integrated silicon-on-insulator optical elements,” Optics Express 18, 21013–21023 (2010).
[CrossRef]

Y. S. Bian, Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, “Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement,” Opt. Express 18, 23756–23762 (2010).
[CrossRef]

D. Chen, “Cylindrical hybrid plasmonic waveguide for subwavelength confinement of light,” Appl. Opt. 49, 6868–6871 (2010).
[CrossRef]

Y. S. Zhao and L. Zhu, “Coaxial hybrid plasmonic nanowire waveguides,” J. Opt. Soc. Am. B 27, 1260–1265 (2010).
[CrossRef]

J. Tian, Z. Ma, Q. A. Li, Y. Song, Z. H. Liu, Q. Yang, C. L. Zha, J. Akerman, L. M. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97, 231121 (2010).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

Y. F. Xiao, B. B. Li, X. Jiang, X. Y. Hu, Y. Li, and Q. H. Gong, “High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip,” J. Phys. B 43, 035402 (2010).
[CrossRef]

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. A. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2010).
[CrossRef]

Y. Song, J. Wang, Q. A. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18, 13173–13179 (2010).
[CrossRef]

X. Y. Zhang, A. Hu, J. Z. Wen, T. Zhang, X. J. Xue, Y. Zhou, and W. W. Duley, “Numerical analysis of deep sub-wavelength integrated plasmonic devices based on semiconductor-insulator-metal strip waveguides,” Opt. Express 18, 18945–18959 (2010).
[CrossRef]

2009 (7)

2008 (4)

G. Veronis and S. H. Fan, “Crosstalk between three-dimensional plasmonic slot waveguides,” Opt. Express 16, 2129–2140 (2008).
[CrossRef]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef]

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16, 5252–5260 (2008).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

2007 (1)

N. N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm,” IEEE J. Quantum Electron. 43, 479–485 (2007).
[CrossRef]

2006 (3)

L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31, 2133–2135 (2006).
[CrossRef]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

1994 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Aitchison, J. S.

M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer,” Opt. Lett. 37, 55–57 (2012).
[CrossRef]

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Super mode propagation in low index medium,” in Conference on Laser and Electro-Optics (IEEE2007), paper JThD112.

Akerman, J.

J. Tian, Z. Ma, Q. A. Li, Y. Song, Z. H. Liu, Q. Yang, C. L. Zha, J. Akerman, L. M. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97, 231121 (2010).
[CrossRef]

Akimov, Y.

Alam, M. Z.

M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer,” Opt. Lett. 37, 55–57 (2012).
[CrossRef]

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Super mode propagation in low index medium,” in Conference on Laser and Electro-Optics (IEEE2007), paper JThD112.

Avrutsky, I.

Bai, P.

H. S. Chu, Y. Akimov, P. Bai, and E. P. Li, “Submicrometer radius and highly confined plasmonic ring resonator filters based on hybrid metal-oxide-semiconductor waveguide,” Opt. Lett. 37, 4564–4566 (2012).
[CrossRef]

H. S. Chu, P. Bai, E. P. Li, and W. R. J. Hoefer, “Hybrid dielectric-loaded plasmonic waveguide-based power splitter and ring resonator: compact size and high optical performance for nanophotonic circuits,” Plasmonics 6, 591–597 (2011).
[CrossRef]

Bai, W. L.

Banks, J. M.

P. D. Flammer, J. M. Banks, T. E. Furtak, C. G. Durfee, R. E. Hollingsworth, and R. T. Collins, “Hybrid plasmon/dielectric waveguide for integrated silicon-on-insulator optical elements,” Optics Express 18, 21013–21023 (2010).
[CrossRef]

Bao, F.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Bartal, G.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun 2, 331 (2011).
[CrossRef]

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. A. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2010).
[CrossRef]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef]

Benisty, H.

H. Benisty and M. Besbes, “Plasmonic inverse rib waveguiding for tight confinement and smooth interface definition,” J. Appl. Phys. 108, 063108 (2010).
[CrossRef]

Besbes, M.

H. Benisty and M. Besbes, “Plasmonic inverse rib waveguiding for tight confinement and smooth interface definition,” J. Appl. Phys. 108, 063108 (2010).
[CrossRef]

Bian, Y. S.

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Highly confined hybrid plasmonic modes guided by nanowire-embedded-metal grooves for low-loss propagation at 1550 nm,” IEEE J. Sel. Top. Quantum Electron. 19, 4800106 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metal/dielectric groove,” J. Opt. 15, 055011 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, “Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement,” Opt. Express 19, 22417–22422 (2011).
[CrossRef]

Y. S. Bian, Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, “Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement,” Opt. Express 18, 23756–23762 (2010).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express 17, 21320–21325 (2009).
[CrossRef]

Boltasseva, A.

Bozhevolnyi, S. I.

Z. H. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys. 76, 016402 (2013).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef]

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16, 5252–5260 (2008).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

Brongersma, M. L.

N. N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm,” IEEE J. Quantum Electron. 43, 479–485 (2007).
[CrossRef]

Buchwald, W.

Cai, L. K.

Cassan, E.

Chen, D.

Chen, D. R.

Q. J. Lu, D. R. Chen, and G. Z. Wu, “Low-loss hybrid plasmonic waveguide based on metal ridge and semiconductor nanowire,” Opt. Commun. 289, 64–68 (2013).
[CrossRef]

Chen, J.

Chen, L.

Chen, S. H.

Chen, X.

Chen, Y.

Cheng, Q. Q.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Chu, H. S.

H. S. Chu, Y. Akimov, P. Bai, and E. P. Li, “Submicrometer radius and highly confined plasmonic ring resonator filters based on hybrid metal-oxide-semiconductor waveguide,” Opt. Lett. 37, 4564–4566 (2012).
[CrossRef]

H. S. Chu, P. Bai, E. P. Li, and W. R. J. Hoefer, “Hybrid dielectric-loaded plasmonic waveguide-based power splitter and ring resonator: compact size and high optical performance for nanophotonic circuits,” Plasmonics 6, 591–597 (2011).
[CrossRef]

Collins, R. T.

P. D. Flammer, J. M. Banks, T. E. Furtak, C. G. Durfee, R. E. Hollingsworth, and R. T. Collins, “Hybrid plasmon/dielectric waveguide for integrated silicon-on-insulator optical elements,” Optics Express 18, 21013–21023 (2010).
[CrossRef]

Cui, Y. P.

Dai, D. X.

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef]

Dal Negro, L.

N. N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm,” IEEE J. Quantum Electron. 43, 479–485 (2007).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

Dintinger, J.

Duley, W. W.

Durfee, C. G.

P. D. Flammer, J. M. Banks, T. E. Furtak, C. G. Durfee, R. E. Hollingsworth, and R. T. Collins, “Hybrid plasmon/dielectric waveguide for integrated silicon-on-insulator optical elements,” Optics Express 18, 21013–21023 (2010).
[CrossRef]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Fan, S. H.

Feng, N. N.

N. N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm,” IEEE J. Quantum Electron. 43, 479–485 (2007).
[CrossRef]

Flammer, P. D.

P. D. Flammer, J. M. Banks, T. E. Furtak, C. G. Durfee, R. E. Hollingsworth, and R. T. Collins, “Hybrid plasmon/dielectric waveguide for integrated silicon-on-insulator optical elements,” Optics Express 18, 21013–21023 (2010).
[CrossRef]

Fu, Y. L.

C. C. Lu, X. Y. Hu, Y. Song, Y. L. Fu, H. Yang, and Q. H. Gong, “Ferroelectric hybrid plasmonic waveguide for all-optical logic gate applications,” Plasmonics 8, 749–754 (2013).
[CrossRef]

Furtak, T. E.

P. D. Flammer, J. M. Banks, T. E. Furtak, C. G. Durfee, R. E. Hollingsworth, and R. T. Collins, “Hybrid plasmon/dielectric waveguide for integrated silicon-on-insulator optical elements,” Optics Express 18, 21013–21023 (2010).
[CrossRef]

Gao, D. S.

L. Chen, X. Li, and D. S. Gao, “An efficient directional coupling from dielectric waveguide to hybrid long-range plasmonic waveguide on a silicon platform,” Appl. Phys. B 111, 15–19 (2013).
[CrossRef]

L. Chen, X. Li, G. P. Wang, W. Li, S. H. Chen, L. Xiao, and D. S. Gao, “A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration,” J. Lightwave Technol. 30, 163–168 (2012).
[CrossRef]

Garcia-Vidal, F. J.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef]

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef]

Gong, Q. H.

C. C. Lu, X. Y. Hu, Y. Song, Y. L. Fu, H. Yang, and Q. H. Gong, “Ferroelectric hybrid plasmonic waveguide for all-optical logic gate applications,” Plasmonics 8, 749–754 (2013).
[CrossRef]

L. J. Wang, Y. Gu, X. Y. Hu, B. Q. Sun, L. M. Tong, and Q. H. Gong, “Subwavelength-confined hybrid surface modes of low attenuation in cylindrical metallic-dielectric waveguides,” Europhys. Lett. 96, 37002 (2011).
[CrossRef]

Y. F. Xiao, B. B. Li, X. Jiang, X. Y. Hu, Y. Li, and Q. H. Gong, “High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip,” J. Phys. B 43, 035402 (2010).
[CrossRef]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

Gu, Y.

L. J. Wang, Y. Gu, X. Y. Hu, B. Q. Sun, L. M. Tong, and Q. H. Gong, “Subwavelength-confined hybrid surface modes of low attenuation in cylindrical metallic-dielectric waveguides,” Europhys. Lett. 96, 37002 (2011).
[CrossRef]

Guo, J.

Han, Z. H.

Z. H. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys. 76, 016402 (2013).
[CrossRef]

Hao, R.

He, S.

He, S. L.

He, X.

Hoefer, W. R. J.

H. S. Chu, P. Bai, E. P. Li, and W. R. J. Hoefer, “Hybrid dielectric-loaded plasmonic waveguide-based power splitter and ring resonator: compact size and high optical performance for nanophotonic circuits,” Plasmonics 6, 591–597 (2011).
[CrossRef]

Hollingsworth, R. E.

P. D. Flammer, J. M. Banks, T. E. Furtak, C. G. Durfee, R. E. Hollingsworth, and R. T. Collins, “Hybrid plasmon/dielectric waveguide for integrated silicon-on-insulator optical elements,” Optics Express 18, 21013–21023 (2010).
[CrossRef]

Hong, Z.

Hu, A.

Hu, G. H.

Hu, X. P.

Hu, X. Y.

C. C. Lu, X. Y. Hu, Y. Song, Y. L. Fu, H. Yang, and Q. H. Gong, “Ferroelectric hybrid plasmonic waveguide for all-optical logic gate applications,” Plasmonics 8, 749–754 (2013).
[CrossRef]

L. J. Wang, Y. Gu, X. Y. Hu, B. Q. Sun, L. M. Tong, and Q. H. Gong, “Subwavelength-confined hybrid surface modes of low attenuation in cylindrical metallic-dielectric waveguides,” Europhys. Lett. 96, 37002 (2011).
[CrossRef]

Y. F. Xiao, B. B. Li, X. Jiang, X. Y. Hu, Y. Li, and Q. H. Gong, “High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip,” J. Phys. B 43, 035402 (2010).
[CrossRef]

Huang, C. C.

C. C. Huang, “Hybrid plasmonic waveguide comprising a semiconductor nanowire and metal ridge for low-loss propagation and nanoscale confinement,” IEEE J. Sel. Top. Quantum Electron. 18, 1661–1668 (2012).
[CrossRef]

Huang, Q.

Huang, W. P.

Ji, Y.

Jiang, X.

Y. F. Xiao, B. B. Li, X. Jiang, X. Y. Hu, Y. Li, and Q. H. Gong, “High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip,” J. Phys. B 43, 035402 (2010).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Ju, J. J.

Kim, J. T.

J. T. Kim, “CMOS-compatible hybrid plasmonic waveguide for subwavelength light confinement and on-chip integration,” IEEE Photon. Technol. Lett. 23, 206–208 (2011).
[CrossRef]

J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and S. Y. Shin, “Hybrid plasmonic waveguide for low-loss lightwave guiding,” Opt. Express 18, 2808–2813 (2010).
[CrossRef]

Kim, M. S.

Kou, Y.

Kuipers, L.

E. Verhagen, M. Spasenovic, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef]

Kwon, M. S.

Kwong, D. L.

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19, 8888–8902 (2011).
[CrossRef]

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98, 021107 (2011).
[CrossRef]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Nanoplasmonic power splitters based on the horizontal nanoplasmonic slot waveguide,” Appl. Phys. Lett. 99, 031112 (2011).
[CrossRef]

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

Lanzillotti-Kimura, N. D.

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophoton. 1, 17–22 (2012).
[CrossRef]

Li, B. B.

Y. F. Xiao, B. B. Li, X. Jiang, X. Y. Hu, Y. Li, and Q. H. Gong, “High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip,” J. Phys. B 43, 035402 (2010).
[CrossRef]

Li, E. P.

Li, H.

Li, M.

Li, Q. A.

J. Tian, Z. Ma, Q. A. Li, Y. Song, Z. H. Liu, Q. Yang, C. L. Zha, J. Akerman, L. M. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97, 231121 (2010).
[CrossRef]

Y. Song, J. Wang, Q. A. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18, 13173–13179 (2010).
[CrossRef]

Li, T.

Li, W.

Li, X.

Li, Y.

Y. F. Xiao, B. B. Li, X. Jiang, X. Y. Hu, Y. Li, and Q. H. Gong, “High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip,” J. Phys. B 43, 035402 (2010).
[CrossRef]

Liow, T. Y.

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98, 021107 (2011).
[CrossRef]

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19, 8888–8902 (2011).
[CrossRef]

Lipson, M.

Liu, J. S.

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Highly confined hybrid plasmonic modes guided by nanowire-embedded-metal grooves for low-loss propagation at 1550 nm,” IEEE J. Sel. Top. Quantum Electron. 19, 4800106 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metal/dielectric groove,” J. Opt. 15, 055011 (2013).
[CrossRef]

Liu, L.

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metal/dielectric groove,” J. Opt. 15, 055011 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Highly confined hybrid plasmonic modes guided by nanowire-embedded-metal grooves for low-loss propagation at 1550 nm,” IEEE J. Sel. Top. Quantum Electron. 19, 4800106 (2013).
[CrossRef]

Liu, Y.

Liu, Y. M.

X. D. Yang, Y. M. Liu, R. F. Oulton, X. B. Yin, and X. A. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett. 11, 321–328 (2011).
[CrossRef]

Liu, Z. H.

J. Tian, Z. Ma, Q. A. Li, Y. Song, Z. H. Liu, Q. Yang, C. L. Zha, J. Akerman, L. M. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97, 231121 (2010).
[CrossRef]

Lo, G. Q.

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Nanoplasmonic power splitters based on the horizontal nanoplasmonic slot waveguide,” Appl. Phys. Lett. 99, 031112 (2011).
[CrossRef]

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19, 8888–8902 (2011).
[CrossRef]

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98, 021107 (2011).
[CrossRef]

Lu, C. C.

C. C. Lu, X. Y. Hu, Y. Song, Y. L. Fu, H. Yang, and Q. H. Gong, “Ferroelectric hybrid plasmonic waveguide for all-optical logic gate applications,” Plasmonics 8, 749–754 (2013).
[CrossRef]

Lu, F. F.

Lu, Q. J.

Q. J. Lu, D. R. Chen, and G. Z. Wu, “Low-loss hybrid plasmonic waveguide based on metal ridge and semiconductor nanowire,” Opt. Commun. 289, 64–68 (2013).
[CrossRef]

Ma, R. M.

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. A. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2010).
[CrossRef]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef]

Ma, R.-M.

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophoton. 1, 17–22 (2012).
[CrossRef]

Ma, Z.

J. Tian, Z. Ma, Q. A. Li, Y. Song, Z. H. Liu, Q. Yang, C. L. Zha, J. Akerman, L. M. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97, 231121 (2010).
[CrossRef]

Mahmoud, T.

T. Mahmoud, M. Noghani, and S. H. Vadjed, “Analysis and optimum design of hybrid plasmonic slab waveguides,” Plasmonics 8, 1155–1168 (2013).
[CrossRef]

Martin, O. J. F.

Martin-Moreno, L.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef]

Meier, J.

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Super mode propagation in low index medium,” in Conference on Laser and Electro-Optics (IEEE2007), paper JThD112.

Mojahedi, M.

M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer,” Opt. Lett. 37, 55–57 (2012).
[CrossRef]

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Super mode propagation in low index medium,” in Conference on Laser and Electro-Optics (IEEE2007), paper JThD112.

Moreno, E.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef]

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16, 5252–5260 (2008).
[CrossRef]

Nielsen, R. B.

Noghani, M.

T. Mahmoud, M. Noghani, and S. H. Vadjed, “Analysis and optimum design of hybrid plasmonic slab waveguides,” Plasmonics 8, 1155–1168 (2013).
[CrossRef]

Noh, J. W.

Oulton, R. F.

X. D. Yang, Y. M. Liu, R. F. Oulton, X. B. Yin, and X. A. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett. 11, 321–328 (2011).
[CrossRef]

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun 2, 331 (2011).
[CrossRef]

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. A. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2010).
[CrossRef]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef]

Pan, Z.

Park, S.

Park, S. K.

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Polman, A.

E. Verhagen, M. Spasenovic, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef]

Qiu, M.

Y. Song, M. Yan, Q. Yang, L. M. Tong, and M. Qiu, “Reducing crosstalk between nanowire-based hybrid plasmonic waveguides,” Opt. Commun. 284, 480–484 (2011).
[CrossRef]

Y. Song, J. Wang, Q. A. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18, 13173–13179 (2010).
[CrossRef]

J. Tian, Z. Ma, Q. A. Li, Y. Song, Z. H. Liu, Q. Yang, C. L. Zha, J. Akerman, L. M. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97, 231121 (2010).
[CrossRef]

Rodrigo, S. G.

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16, 5252–5260 (2008).
[CrossRef]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef]

Shakya, J.

Shin, S. Y.

Song, G. F.

Song, Y.

C. C. Lu, X. Y. Hu, Y. Song, Y. L. Fu, H. Yang, and Q. H. Gong, “Ferroelectric hybrid plasmonic waveguide for all-optical logic gate applications,” Plasmonics 8, 749–754 (2013).
[CrossRef]

Y. Song, M. Yan, Q. Yang, L. M. Tong, and M. Qiu, “Reducing crosstalk between nanowire-based hybrid plasmonic waveguides,” Opt. Commun. 284, 480–484 (2011).
[CrossRef]

J. Tian, Z. Ma, Q. A. Li, Y. Song, Z. H. Liu, Q. Yang, C. L. Zha, J. Akerman, L. M. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97, 231121 (2010).
[CrossRef]

Y. Song, J. Wang, Q. A. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18, 13173–13179 (2010).
[CrossRef]

Soref, R.

Sorger, V. J.

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophoton. 1, 17–22 (2012).
[CrossRef]

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun 2, 331 (2011).
[CrossRef]

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. A. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2010).
[CrossRef]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Spasenovic, M.

E. Verhagen, M. Spasenovic, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef]

Su, Y. L.

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Highly confined hybrid plasmonic modes guided by nanowire-embedded-metal grooves for low-loss propagation at 1550 nm,” IEEE J. Sel. Top. Quantum Electron. 19, 4800106 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metal/dielectric groove,” J. Opt. 15, 055011 (2013).
[CrossRef]

Sun, B. Q.

L. J. Wang, Y. Gu, X. Y. Hu, B. Q. Sun, L. M. Tong, and Q. H. Gong, “Subwavelength-confined hybrid surface modes of low attenuation in cylindrical metallic-dielectric waveguides,” Europhys. Lett. 96, 37002 (2011).
[CrossRef]

Sun, G.

Sun, X.

Sun, Z.

Tian, J.

J. Tian, Z. Ma, Q. A. Li, Y. Song, Z. H. Liu, Q. Yang, C. L. Zha, J. Akerman, L. M. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97, 231121 (2010).
[CrossRef]

Tong, L. M.

Y. Song, M. Yan, Q. Yang, L. M. Tong, and M. Qiu, “Reducing crosstalk between nanowire-based hybrid plasmonic waveguides,” Opt. Commun. 284, 480–484 (2011).
[CrossRef]

L. J. Wang, Y. Gu, X. Y. Hu, B. Q. Sun, L. M. Tong, and Q. H. Gong, “Subwavelength-confined hybrid surface modes of low attenuation in cylindrical metallic-dielectric waveguides,” Europhys. Lett. 96, 37002 (2011).
[CrossRef]

J. Tian, Z. Ma, Q. A. Li, Y. Song, Z. H. Liu, Q. Yang, C. L. Zha, J. Akerman, L. M. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97, 231121 (2010).
[CrossRef]

Vadjed, S. H.

T. Mahmoud, M. Noghani, and S. H. Vadjed, “Analysis and optimum design of hybrid plasmonic slab waveguides,” Plasmonics 8, 1155–1168 (2013).
[CrossRef]

Verhagen, E.

E. Verhagen, M. Spasenovic, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef]

Veronis, G.

Volkov, V. S.

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16, 5252–5260 (2008).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

Wang, G. P.

Wang, J.

Wang, L. J.

L. J. Wang, Y. Gu, X. Y. Hu, B. Q. Sun, L. M. Tong, and Q. H. Gong, “Subwavelength-confined hybrid surface modes of low attenuation in cylindrical metallic-dielectric waveguides,” Europhys. Lett. 96, 37002 (2011).
[CrossRef]

Wang, Y.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun 2, 331 (2011).
[CrossRef]

Wei, X. C.

Wen, J. Z.

Wu, G. Z.

Q. J. Lu, D. R. Chen, and G. Z. Wu, “Low-loss hybrid plasmonic waveguide based on metal ridge and semiconductor nanowire,” Opt. Commun. 289, 64–68 (2013).
[CrossRef]

Xiao, L.

Xiao, Y. F.

Y. F. Xiao, B. B. Li, X. Jiang, X. Y. Hu, Y. Li, and Q. H. Gong, “High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip,” J. Phys. B 43, 035402 (2010).
[CrossRef]

Xu, Y.

Xue, X. J.

Yan, M.

Y. Song, M. Yan, Q. Yang, L. M. Tong, and M. Qiu, “Reducing crosstalk between nanowire-based hybrid plasmonic waveguides,” Opt. Commun. 284, 480–484 (2011).
[CrossRef]

Y. Song, J. Wang, Q. A. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18, 13173–13179 (2010).
[CrossRef]

Yang, H.

C. C. Lu, X. Y. Hu, Y. Song, Y. L. Fu, H. Yang, and Q. H. Gong, “Ferroelectric hybrid plasmonic waveguide for all-optical logic gate applications,” Plasmonics 8, 749–754 (2013).
[CrossRef]

Yang, L.

Yang, Q.

Y. Song, M. Yan, Q. Yang, L. M. Tong, and M. Qiu, “Reducing crosstalk between nanowire-based hybrid plasmonic waveguides,” Opt. Commun. 284, 480–484 (2011).
[CrossRef]

J. Tian, Z. Ma, Q. A. Li, Y. Song, Z. H. Liu, Q. Yang, C. L. Zha, J. Akerman, L. M. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97, 231121 (2010).
[CrossRef]

Yang, T.

Yang, X. D.

X. D. Yang, Y. M. Liu, R. F. Oulton, X. B. Yin, and X. A. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett. 11, 321–328 (2011).
[CrossRef]

Ye, F.

Ye, Z.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun 2, 331 (2011).
[CrossRef]

Yin, X.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun 2, 331 (2011).
[CrossRef]

Yin, X. B.

X. D. Yang, Y. M. Liu, R. F. Oulton, X. B. Yin, and X. A. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett. 11, 321–328 (2011).
[CrossRef]

Yun, B. F.

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef]

Zha, C. L.

J. Tian, Z. Ma, Q. A. Li, Y. Song, Z. H. Liu, Q. Yang, C. L. Zha, J. Akerman, L. M. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97, 231121 (2010).
[CrossRef]

Zhang, J.

Zhang, T.

Zhang, X.

J. Zhang, P. Zhao, E. Cassan, and X. Zhang, “Phase regeneration of phase-shift keying signals in highly nonlinear hybrid plasmonic waveguides,” Opt. Lett. 38, 848–850 (2013).
[CrossRef]

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophoton. 1, 17–22 (2012).
[CrossRef]

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun 2, 331 (2011).
[CrossRef]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Zhang, X. A.

X. D. Yang, Y. M. Liu, R. F. Oulton, X. B. Yin, and X. A. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett. 11, 321–328 (2011).
[CrossRef]

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. A. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2010).
[CrossRef]

Zhang, X. Y.

Zhao, P.

Zhao, X.

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metal/dielectric groove,” J. Opt. 15, 055011 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Highly confined hybrid plasmonic modes guided by nanowire-embedded-metal grooves for low-loss propagation at 1550 nm,” IEEE J. Sel. Top. Quantum Electron. 19, 4800106 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express 17, 21320–21325 (2009).
[CrossRef]

Zhao, Y. S.

Zheng, Z.

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Highly confined hybrid plasmonic modes guided by nanowire-embedded-metal grooves for low-loss propagation at 1550 nm,” IEEE J. Sel. Top. Quantum Electron. 19, 4800106 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metal/dielectric groove,” J. Opt. 15, 055011 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, “Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement,” Opt. Express 19, 22417–22422 (2011).
[CrossRef]

Y. S. Bian, Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, “Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement,” Opt. Express 18, 23756–23762 (2010).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express 17, 21320–21325 (2009).
[CrossRef]

Zhou, L.

Zhou, T.

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Highly confined hybrid plasmonic modes guided by nanowire-embedded-metal grooves for low-loss propagation at 1550 nm,” IEEE J. Sel. Top. Quantum Electron. 19, 4800106 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metal/dielectric groove,” J. Opt. 15, 055011 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, “Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement,” Opt. Express 19, 22417–22422 (2011).
[CrossRef]

Y. S. Bian, Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, “Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement,” Opt. Express 18, 23756–23762 (2010).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express 17, 21320–21325 (2009).
[CrossRef]

Zhou, Y.

Zhu, J. S.

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metal/dielectric groove,” J. Opt. 15, 055011 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Highly confined hybrid plasmonic modes guided by nanowire-embedded-metal grooves for low-loss propagation at 1550 nm,” IEEE J. Sel. Top. Quantum Electron. 19, 4800106 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, “Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement,” Opt. Express 19, 22417–22422 (2011).
[CrossRef]

Y. S. Bian, Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, “Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement,” Opt. Express 18, 23756–23762 (2010).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express 17, 21320–21325 (2009).
[CrossRef]

Zhu, L.

Zhu, S. N.

Zhu, S. Y.

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Nanoplasmonic power splitters based on the horizontal nanoplasmonic slot waveguide,” Appl. Phys. Lett. 99, 031112 (2011).
[CrossRef]

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19, 8888–8902 (2011).
[CrossRef]

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98, 021107 (2011).
[CrossRef]

Zhu, Y. Y.

Zuo, X.

Appl. Opt. (2)

Appl. Phys. B (1)

L. Chen, X. Li, and D. S. Gao, “An efficient directional coupling from dielectric waveguide to hybrid long-range plasmonic waveguide on a silicon platform,” Appl. Phys. B 111, 15–19 (2013).
[CrossRef]

Appl. Phys. Lett. (3)

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Nanoplasmonic power splitters based on the horizontal nanoplasmonic slot waveguide,” Appl. Phys. Lett. 99, 031112 (2011).
[CrossRef]

J. Tian, Z. Ma, Q. A. Li, Y. Song, Z. H. Liu, Q. Yang, C. L. Zha, J. Akerman, L. M. Tong, and M. Qiu, “Nanowaveguides and couplers based on hybrid plasmonic modes,” Appl. Phys. Lett. 97, 231121 (2010).
[CrossRef]

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett. 98, 021107 (2011).
[CrossRef]

Europhys. Lett. (1)

L. J. Wang, Y. Gu, X. Y. Hu, B. Q. Sun, L. M. Tong, and Q. H. Gong, “Subwavelength-confined hybrid surface modes of low attenuation in cylindrical metallic-dielectric waveguides,” Europhys. Lett. 96, 37002 (2011).
[CrossRef]

IEEE J. Quantum Electron. (1)

N. N. Feng, M. L. Brongersma, and L. Dal Negro, “Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm,” IEEE J. Quantum Electron. 43, 479–485 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

C. C. Huang, “Hybrid plasmonic waveguide comprising a semiconductor nanowire and metal ridge for low-loss propagation and nanoscale confinement,” IEEE J. Sel. Top. Quantum Electron. 18, 1661–1668 (2012).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Highly confined hybrid plasmonic modes guided by nanowire-embedded-metal grooves for low-loss propagation at 1550 nm,” IEEE J. Sel. Top. Quantum Electron. 19, 4800106 (2013).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. T. Kim, “CMOS-compatible hybrid plasmonic waveguide for subwavelength light confinement and on-chip integration,” IEEE Photon. Technol. Lett. 23, 206–208 (2011).
[CrossRef]

J. Appl. Phys. (1)

H. Benisty and M. Besbes, “Plasmonic inverse rib waveguiding for tight confinement and smooth interface definition,” J. Appl. Phys. 108, 063108 (2010).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. (1)

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metal/dielectric groove,” J. Opt. 15, 055011 (2013).
[CrossRef]

J. Opt. A (1)

A. Boltasseva, “Plasmonic components fabrication via nanoimprint,” J. Opt. A 11, 114001 (2009).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (3)

J. Phys. B (1)

Y. F. Xiao, B. B. Li, X. Jiang, X. Y. Hu, Y. Li, and Q. H. Gong, “High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip,” J. Phys. B 43, 035402 (2010).
[CrossRef]

Nano Lett. (1)

X. D. Yang, Y. M. Liu, R. F. Oulton, X. B. Yin, and X. A. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett. 11, 321–328 (2011).
[CrossRef]

Nanophoton. (1)

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophoton. 1, 17–22 (2012).
[CrossRef]

Nat. Commun (1)

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun 2, 331 (2011).
[CrossRef]

Nat. Mater. (1)

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. A. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10, 110–113 (2010).
[CrossRef]

Nat. Photonics (2)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

Nature (3)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[CrossRef]

Opt. Commun. (2)

Q. J. Lu, D. R. Chen, and G. Z. Wu, “Low-loss hybrid plasmonic waveguide based on metal ridge and semiconductor nanowire,” Opt. Commun. 289, 64–68 (2013).
[CrossRef]

Y. Song, M. Yan, Q. Yang, L. M. Tong, and M. Qiu, “Reducing crosstalk between nanowire-based hybrid plasmonic waveguides,” Opt. Commun. 284, 480–484 (2011).
[CrossRef]

Opt. Express (18)

G. Veronis and S. H. Fan, “Crosstalk between three-dimensional plasmonic slot waveguides,” Opt. Express 16, 2129–2140 (2008).
[CrossRef]

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16, 5252–5260 (2008).
[CrossRef]

J. Dintinger and O. J. F. Martin, “Channel and wedge plasmon modes of metallic V-grooves with finite metal thickness,” Opt. Express 17, 2364–2374 (2009).
[CrossRef]

Q. Huang, F. Bao, and S. He, “Nonlocal effects in a hybrid plasmonic waveguide for nanoscale confinement,” Opt. Express 21, 1430–1439 (2013).
[CrossRef]

J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and S. Y. Shin, “Hybrid plasmonic waveguide for low-loss lightwave guiding,” Opt. Express 18, 2808–2813 (2010).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express 17, 21320–21325 (2009).
[CrossRef]

D. X. Dai and S. L. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express 18, 17958–17966 (2010).
[CrossRef]

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19, 8888–8902 (2011).
[CrossRef]

M. S. Kwon, “Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology,” Opt. Express 19, 8379–8393 (2011).
[CrossRef]

Y. Song, J. Wang, Q. A. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18, 13173–13179 (2010).
[CrossRef]

X. Y. Zhang, A. Hu, J. Z. Wen, T. Zhang, X. J. Xue, Y. Zhou, and W. W. Duley, “Numerical analysis of deep sub-wavelength integrated plasmonic devices based on semiconductor-insulator-metal strip waveguides,” Opt. Express 18, 18945–18959 (2010).
[CrossRef]

H. Li, J. W. Noh, Y. Chen, and M. Li, “Enhanced optical forces in integrated hybrid plasmonic waveguides,” Opt. Express 21, 11839–11851 (2013).
[CrossRef]

D. X. Dai and S. L. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17, 16646–16653 (2009).
[CrossRef]

I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express 18, 348–363 (2010).
[CrossRef]

Y. Kou, F. Ye, and X. Chen, “Low-loss hybrid plasmonic waveguide for compact and high-efficient photonic integration,” Opt. Express 19, 11746–11752 (2011).
[CrossRef]

X. He, L. Yang, and T. Yang, “Optical nanofocusing by tapering coupled photonic-plasmonic waveguides,” Opt. Express 19, 12865–12872 (2011).

Y. S. Bian, Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, “Dielectric-loaded surface plasmon polariton waveguide with a holey ridge for propagation-loss reduction and subwavelength mode confinement,” Opt. Express 18, 23756–23762 (2010).
[CrossRef]

Y. S. Bian, Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, “Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement,” Opt. Express 19, 22417–22422 (2011).
[CrossRef]

Opt. Lett. (8)

Optics Express (1)

P. D. Flammer, J. M. Banks, T. E. Furtak, C. G. Durfee, R. E. Hollingsworth, and R. T. Collins, “Hybrid plasmon/dielectric waveguide for integrated silicon-on-insulator optical elements,” Optics Express 18, 21013–21023 (2010).
[CrossRef]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (2)

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008).
[CrossRef]

E. Verhagen, M. Spasenovic, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[CrossRef]

Plasmonics (3)

T. Mahmoud, M. Noghani, and S. H. Vadjed, “Analysis and optimum design of hybrid plasmonic slab waveguides,” Plasmonics 8, 1155–1168 (2013).
[CrossRef]

C. C. Lu, X. Y. Hu, Y. Song, Y. L. Fu, H. Yang, and Q. H. Gong, “Ferroelectric hybrid plasmonic waveguide for all-optical logic gate applications,” Plasmonics 8, 749–754 (2013).
[CrossRef]

H. S. Chu, P. Bai, E. P. Li, and W. R. J. Hoefer, “Hybrid dielectric-loaded plasmonic waveguide-based power splitter and ring resonator: compact size and high optical performance for nanophotonic circuits,” Plasmonics 6, 591–597 (2011).
[CrossRef]

Rep. Prog. Phys. (1)

Z. H. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys. 76, 016402 (2013).
[CrossRef]

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef]

Other (1)

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Super mode propagation in low index medium,” in Conference on Laser and Electro-Optics (IEEE2007), paper JThD112.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of the studied hybrid waveguide, which comprises a silica buffer layer sandwiched between a silver cladding and a triangular silicon wedge. (a) Three-dimensional (3D) geometry. (b) Two-dimensional (2D) cross-sectional view. The considered gap region during the following investigations is highlighted in the 2D geometry.

Fig. 2.
Fig. 2.

Electric field distribution of the fundamental quasi-TE and quasi-TM plasmonic modes guided by the metal-coated dielectric wedge structure (w=300nm, h=340nm, t=100nm, and g=50nm). The arrows represent the orientation of the electric fields for different modes. The field profiles along the dashed lines in the 2D panels are also depicted to better illustrate the local enhancements inside the low-index gap regions. (a) Quasi-TE mode. (b) Quasi-TM mode.

Fig. 3.
Fig. 3.

Properties of the quasi-TE plasmonic mode for various metal thicknesses, with the width and height of the wedge fixed at 300 and 340 nm. (a) Modal effective index (neff), (b) propagation length (L), (c) normalized mode area (Aeff/A0), and (d) confinement factor (Γ). The insets in (b) and (d) depict the dependence of L and Γ on the gap size for different metal thicknesses.

Fig. 4.
Fig. 4.

Properties of the quasi-TM plasmonic mode for different metal thicknesses, where the width and height of the wedge are fixed at 300 and 340 nm. (a) Modal effective index (neff), (b) propagation length (L), (c) normalized mode area (Aeff/A0), and (d) confinement factor (Γ). The insets in (b) and (d) depict the dependence of L and Γ on the gap size for various metal thicknesses.

Fig. 5.
Fig. 5.

(a)–(d) Dependence of the modal properties of the quasi-TE mode on the bottom width of the silicon wedge, where h and t are fixed at 340 and 100 nm, respectively. (a) Modal effective index (neff), (b) propagation length (L), (c) normalized mode area (Aeff/A0), and (d) confinement factor (Γ). (e)–(m) Electric field distributions of the quasi-TE mode supported by different configurations: (e) w=100nm, g=10nm; (f) w=100nm, g=30nm; (g) w=100nm, g=100nm; (h) w=300nm, g=10nm; (i) w=300nm, g=30nm; (j) w=300nm, g=100nm; (k) w=500nm, g=10nm; (l) w=500nm, g=30nm; (m) w=500nm, g=100nm.

Fig. 6.
Fig. 6.

(a)–(d) Dependence of the modal properties of the quasi-TM mode on the bottom width of the silicon wedge, where h and t are fixed at 340 and 100 nm, respectively. (a) Modal effective index (neff), (b) propagation length (L), (c) normalized mode area (Aeff/A0), and (d) confinement factor (Γ). (e)–(m) Electric field distributions of the quasi-TE mode supported by different configurations: (e) w=100nm, g=10nm; (f) w=100nm, g=30nm; (g) w=100nm, g=100nm; (h) w=300nm, g=10nm; (i) w=300nm, g=30nm; (j) w=300nm, g=100nm; (k) w=500nm, g=10nm; (l) w=500nm, g=30nm; (m) w=500nm, g=100nm.

Fig. 7.
Fig. 7.

Geometry of the coupling system containing two horizontally parallel MCDWWs with a center-to-center separation of S.

Fig. 8.
Fig. 8.

(a) Ex field distributions of the symmetric and antisymmetric quasi-TE modes in the MCDWW-based coupling system (w=300nm, t=100nm, g=30nm, and S=1000nm). (b) Ey field distributions of the symmetric and antisymmetric quasi-TM modes supported by the same coupling system, (c), (d) Dependence of the coupling length (Lc) on the separation (S) between two hybrid waveguides: (c) quasi-TE modes of MCDWWs and fundamental modes of conventional HPPWs, (d) quasi-TM modes of MCDWWs and fundamental modes of conventional HPPWs. The inset in (c) shows the configuration of the coupling system based on conventional HPPWs with a center-to-center separation of S. The insets in (d) demonstrate the Ey field distributions of the symmetric and antisymmetric modes in a conventional HPPW-based coupling system with r=100nm, g=30nm, and S=1000nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Aeff=(W(r)dA)2/(W(r)2dA).
W(r)=12Re{d[ωε(r)]dω}|E(r)|2+12μ0|H(r)|2.
Lc=π/|kska|.

Metrics