Abstract

A configuration of all-optical switching based on a Signac loop mirror that incorporates an ytterbium-doped fiber and uniform fiber Bragg grating (FBG) is proposed in this paper. It is found that the transmission spectrum of this structure is the narrow splitting of the reflection spectrum of the FBG. The shift of this ultranarrow transmission spectrum is very sensitive to the intensity of the pump power. Thus, the threshold switching power can be greatly reduced by shifting such narrow transmission spectrum. Compared with the single FBG, the threshold switching power of this configuration is reduced by 4 orders of magnitude. In addition, the results indicate that this optical switching has a high extinction ratio of 20 dB and a ultrafast response time of 3 ns. The operation regime and switching performance under the cross-phase modulation cases are also investigated.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Hartsuiker, P. J. Harding, Y. R. Nowicki-Bringuier, J. M. Gerard, and W. L. Vos, “Kerr and free carrier ultrafast all-optical switching of GaAs/AlAs nanostructures near the three photon edge of GaAs,” J. Appl. Phys. 104, 83105–83111 (2008).
    [CrossRef]
  2. S. Larochelle, Y. Hibino, V. Mizrahi, and G. L. Stegman, “All-optical switching of grating transmission using cross phase modulation in optical fibers,” Electron. Lett. 26, 1459–1460 (1990).
    [CrossRef]
  3. Z. G. Zang and W. X. Yang, “Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fiber,” J. Appl. Phys. 109, 103106 (2011).
    [CrossRef]
  4. A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 42–44 (2000).
    [CrossRef]
  5. R. M. Ribeiro, L. R. Kawase, W. Margulis, B. Lesche, B. Sahlgren, R. Stubbe, and K. Kleveby, “All-optical control of Bragg grating in semiconductor-coated D-shaped fiber,” Opt. Lett. 24, 454–456 (1999).
    [CrossRef]
  6. M. Janos, J. Arkwight, and Z. Brodzeli, “Low power nonlinear response of Yb3+-doped optical fiber Bragg gratings,” Electron. Lett. 33, 2150–2151 (1997).
    [CrossRef]
  7. Z. G. Zang, “Numerical analysis of optical bistability based on Fiber Bragg Grating cavity containing a high nonlinearity doped-fiber,” Opt. Commun. 285, 521–526 (2012).
    [CrossRef]
  8. N. G. R. Broderick, D. Taverner, and D. J. Richardson, “Nonlinear switching in fiber Bragg grating,” Opt. Express 3, 447–453 (1998).
    [CrossRef]
  9. K. O. Hill, D. C. Johnson, F. Bilodeau, and S. Faucher, “Narrow-bandwidth optical waveguide transmission filters,” Electron. Lett. 23, 465–466 (1987).
    [CrossRef]
  10. X. W. Shu, L. Z. Yu, D. H. Zhao, L. Zhang, K. Sugden, and I. Bennion, “Transmission characteristics of Sagnac interferometers based on fiber Bragg gratings,” J. Opt. Soc. Am. B 19, 2770–2780 (2002).
    [CrossRef]
  11. L. Men, P. Lu, and Q. Chen, “Spectral filtering using fibre Bragg grating embedded Sagnac loop mirror,” Electron. Lett. 45, 402–403 (2009).
    [CrossRef]
  12. R. I. Álvarez-Tamayo, M. Durán-Sánchez, O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, and A. Flores-Rosas, “Theoretical and experimental analysis of tunable Sagnac high-birefringence loop filter for dual-wavelength laser application,” Appl. Opt. 50, 253–260 (2011).
    [CrossRef]
  13. D. S. Moon, G. Sun, A. Lin, X. Liu, and Y. J. Chung, “Tunable dual-wavelength fiber laser based on a single fiber Bragg grating in a Sagnac loop interferometer,” Opt. Commun. 281, 2513–2516 (2008).
    [CrossRef]
  14. C. Wang and J. P. Yao, “Chirped microwave pulse generation based on optical spectral shaping and wavelength-to-time mapping using a Sagnac-loop mirror incorporating a chirped fiber Bragg grating,” J. Lightwave Technol. 27, 3336–3341(2009).
    [CrossRef]
  15. D. Zhao, X. Shu, Y. Lai, L. Zhang, and I. Bennion, “Fiber Bragg grating sensor interrogation using chirped fiber grating-based Sagnac loop,” IEEE Sens. J. 3, 734–738 (2003).
    [CrossRef]
  16. J. H. Lee, D. A. Wang, Y. W. Kiang, H. J. Chiang, D. W. Huang, and C. C. Yang, “Nonlinear switching behaviors in a compact all-semiconductor optical-amplifier Sagnac interferometer device,” IEEE J. Quantum Electron. 35, 1469–1477 (1999).
    [CrossRef]
  17. Z. G. Zang and Y. J. Zhang, “Analysis of optical switching in a Yb3+-doped fiber Bragg grating by using self-phase modulation and cross-phase modulation,” Appl. Opt. 51, 3424–3430 (2012).
    [CrossRef]
  18. R. H. Pantell, M. J. F. Digonnet, R. W. Sadowski, and H. J. Shaw, “Analysis of nonlinear optical switching in an erbium-doped fiber,” J. Lightwave Technol. 11, 1416–1424 (1993).
    [CrossRef]

2012

Z. G. Zang, “Numerical analysis of optical bistability based on Fiber Bragg Grating cavity containing a high nonlinearity doped-fiber,” Opt. Commun. 285, 521–526 (2012).
[CrossRef]

Z. G. Zang and Y. J. Zhang, “Analysis of optical switching in a Yb3+-doped fiber Bragg grating by using self-phase modulation and cross-phase modulation,” Appl. Opt. 51, 3424–3430 (2012).
[CrossRef]

2011

R. I. Álvarez-Tamayo, M. Durán-Sánchez, O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, and A. Flores-Rosas, “Theoretical and experimental analysis of tunable Sagnac high-birefringence loop filter for dual-wavelength laser application,” Appl. Opt. 50, 253–260 (2011).
[CrossRef]

Z. G. Zang and W. X. Yang, “Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fiber,” J. Appl. Phys. 109, 103106 (2011).
[CrossRef]

2009

2008

D. S. Moon, G. Sun, A. Lin, X. Liu, and Y. J. Chung, “Tunable dual-wavelength fiber laser based on a single fiber Bragg grating in a Sagnac loop interferometer,” Opt. Commun. 281, 2513–2516 (2008).
[CrossRef]

A. Hartsuiker, P. J. Harding, Y. R. Nowicki-Bringuier, J. M. Gerard, and W. L. Vos, “Kerr and free carrier ultrafast all-optical switching of GaAs/AlAs nanostructures near the three photon edge of GaAs,” J. Appl. Phys. 104, 83105–83111 (2008).
[CrossRef]

2003

D. Zhao, X. Shu, Y. Lai, L. Zhang, and I. Bennion, “Fiber Bragg grating sensor interrogation using chirped fiber grating-based Sagnac loop,” IEEE Sens. J. 3, 734–738 (2003).
[CrossRef]

2002

2000

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 42–44 (2000).
[CrossRef]

1999

R. M. Ribeiro, L. R. Kawase, W. Margulis, B. Lesche, B. Sahlgren, R. Stubbe, and K. Kleveby, “All-optical control of Bragg grating in semiconductor-coated D-shaped fiber,” Opt. Lett. 24, 454–456 (1999).
[CrossRef]

J. H. Lee, D. A. Wang, Y. W. Kiang, H. J. Chiang, D. W. Huang, and C. C. Yang, “Nonlinear switching behaviors in a compact all-semiconductor optical-amplifier Sagnac interferometer device,” IEEE J. Quantum Electron. 35, 1469–1477 (1999).
[CrossRef]

1998

1997

M. Janos, J. Arkwight, and Z. Brodzeli, “Low power nonlinear response of Yb3+-doped optical fiber Bragg gratings,” Electron. Lett. 33, 2150–2151 (1997).
[CrossRef]

1993

R. H. Pantell, M. J. F. Digonnet, R. W. Sadowski, and H. J. Shaw, “Analysis of nonlinear optical switching in an erbium-doped fiber,” J. Lightwave Technol. 11, 1416–1424 (1993).
[CrossRef]

1990

S. Larochelle, Y. Hibino, V. Mizrahi, and G. L. Stegman, “All-optical switching of grating transmission using cross phase modulation in optical fibers,” Electron. Lett. 26, 1459–1460 (1990).
[CrossRef]

1987

K. O. Hill, D. C. Johnson, F. Bilodeau, and S. Faucher, “Narrow-bandwidth optical waveguide transmission filters,” Electron. Lett. 23, 465–466 (1987).
[CrossRef]

Álvarez-Tamayo, R. I.

Arkwight, J.

M. Janos, J. Arkwight, and Z. Brodzeli, “Low power nonlinear response of Yb3+-doped optical fiber Bragg gratings,” Electron. Lett. 33, 2150–2151 (1997).
[CrossRef]

Bennion, I.

D. Zhao, X. Shu, Y. Lai, L. Zhang, and I. Bennion, “Fiber Bragg grating sensor interrogation using chirped fiber grating-based Sagnac loop,” IEEE Sens. J. 3, 734–738 (2003).
[CrossRef]

X. W. Shu, L. Z. Yu, D. H. Zhao, L. Zhang, K. Sugden, and I. Bennion, “Transmission characteristics of Sagnac interferometers based on fiber Bragg gratings,” J. Opt. Soc. Am. B 19, 2770–2780 (2002).
[CrossRef]

Bilodeau, F.

K. O. Hill, D. C. Johnson, F. Bilodeau, and S. Faucher, “Narrow-bandwidth optical waveguide transmission filters,” Electron. Lett. 23, 465–466 (1987).
[CrossRef]

Broderick, N. G. R.

Brodzeli, Z.

M. Janos, J. Arkwight, and Z. Brodzeli, “Low power nonlinear response of Yb3+-doped optical fiber Bragg gratings,” Electron. Lett. 33, 2150–2151 (1997).
[CrossRef]

Chen, Q.

L. Men, P. Lu, and Q. Chen, “Spectral filtering using fibre Bragg grating embedded Sagnac loop mirror,” Electron. Lett. 45, 402–403 (2009).
[CrossRef]

Chiang, H. J.

J. H. Lee, D. A. Wang, Y. W. Kiang, H. J. Chiang, D. W. Huang, and C. C. Yang, “Nonlinear switching behaviors in a compact all-semiconductor optical-amplifier Sagnac interferometer device,” IEEE J. Quantum Electron. 35, 1469–1477 (1999).
[CrossRef]

Chinello, M.

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 42–44 (2000).
[CrossRef]

Chung, Y. J.

D. S. Moon, G. Sun, A. Lin, X. Liu, and Y. J. Chung, “Tunable dual-wavelength fiber laser based on a single fiber Bragg grating in a Sagnac loop interferometer,” Opt. Commun. 281, 2513–2516 (2008).
[CrossRef]

Digonnet, M. J. F.

R. H. Pantell, M. J. F. Digonnet, R. W. Sadowski, and H. J. Shaw, “Analysis of nonlinear optical switching in an erbium-doped fiber,” J. Lightwave Technol. 11, 1416–1424 (1993).
[CrossRef]

Durán-Sánchez, M.

Faucher, S.

K. O. Hill, D. C. Johnson, F. Bilodeau, and S. Faucher, “Narrow-bandwidth optical waveguide transmission filters,” Electron. Lett. 23, 465–466 (1987).
[CrossRef]

Flores-Rosas, A.

Gerard, J. M.

A. Hartsuiker, P. J. Harding, Y. R. Nowicki-Bringuier, J. M. Gerard, and W. L. Vos, “Kerr and free carrier ultrafast all-optical switching of GaAs/AlAs nanostructures near the three photon edge of GaAs,” J. Appl. Phys. 104, 83105–83111 (2008).
[CrossRef]

Harding, P. J.

A. Hartsuiker, P. J. Harding, Y. R. Nowicki-Bringuier, J. M. Gerard, and W. L. Vos, “Kerr and free carrier ultrafast all-optical switching of GaAs/AlAs nanostructures near the three photon edge of GaAs,” J. Appl. Phys. 104, 83105–83111 (2008).
[CrossRef]

Hartsuiker, A.

A. Hartsuiker, P. J. Harding, Y. R. Nowicki-Bringuier, J. M. Gerard, and W. L. Vos, “Kerr and free carrier ultrafast all-optical switching of GaAs/AlAs nanostructures near the three photon edge of GaAs,” J. Appl. Phys. 104, 83105–83111 (2008).
[CrossRef]

Hibino, Y.

S. Larochelle, Y. Hibino, V. Mizrahi, and G. L. Stegman, “All-optical switching of grating transmission using cross phase modulation in optical fibers,” Electron. Lett. 26, 1459–1460 (1990).
[CrossRef]

Hill, K. O.

K. O. Hill, D. C. Johnson, F. Bilodeau, and S. Faucher, “Narrow-bandwidth optical waveguide transmission filters,” Electron. Lett. 23, 465–466 (1987).
[CrossRef]

Huang, D. W.

J. H. Lee, D. A. Wang, Y. W. Kiang, H. J. Chiang, D. W. Huang, and C. C. Yang, “Nonlinear switching behaviors in a compact all-semiconductor optical-amplifier Sagnac interferometer device,” IEEE J. Quantum Electron. 35, 1469–1477 (1999).
[CrossRef]

Ibarra-Escamilla, B.

Janos, M.

M. Janos, J. Arkwight, and Z. Brodzeli, “Low power nonlinear response of Yb3+-doped optical fiber Bragg gratings,” Electron. Lett. 33, 2150–2151 (1997).
[CrossRef]

Johnson, D. C.

K. O. Hill, D. C. Johnson, F. Bilodeau, and S. Faucher, “Narrow-bandwidth optical waveguide transmission filters,” Electron. Lett. 23, 465–466 (1987).
[CrossRef]

Kawase, L. R.

Kiang, Y. W.

J. H. Lee, D. A. Wang, Y. W. Kiang, H. J. Chiang, D. W. Huang, and C. C. Yang, “Nonlinear switching behaviors in a compact all-semiconductor optical-amplifier Sagnac interferometer device,” IEEE J. Quantum Electron. 35, 1469–1477 (1999).
[CrossRef]

Kleveby, K.

Kuzin, E. A.

Lai, Y.

D. Zhao, X. Shu, Y. Lai, L. Zhang, and I. Bennion, “Fiber Bragg grating sensor interrogation using chirped fiber grating-based Sagnac loop,” IEEE Sens. J. 3, 734–738 (2003).
[CrossRef]

Larochelle, S.

S. Larochelle, Y. Hibino, V. Mizrahi, and G. L. Stegman, “All-optical switching of grating transmission using cross phase modulation in optical fibers,” Electron. Lett. 26, 1459–1460 (1990).
[CrossRef]

Lee, J. H.

J. H. Lee, D. A. Wang, Y. W. Kiang, H. J. Chiang, D. W. Huang, and C. C. Yang, “Nonlinear switching behaviors in a compact all-semiconductor optical-amplifier Sagnac interferometer device,” IEEE J. Quantum Electron. 35, 1469–1477 (1999).
[CrossRef]

Lesche, B.

Lin, A.

D. S. Moon, G. Sun, A. Lin, X. Liu, and Y. J. Chung, “Tunable dual-wavelength fiber laser based on a single fiber Bragg grating in a Sagnac loop interferometer,” Opt. Commun. 281, 2513–2516 (2008).
[CrossRef]

Liu, X.

D. S. Moon, G. Sun, A. Lin, X. Liu, and Y. J. Chung, “Tunable dual-wavelength fiber laser based on a single fiber Bragg grating in a Sagnac loop interferometer,” Opt. Commun. 281, 2513–2516 (2008).
[CrossRef]

Lu, P.

L. Men, P. Lu, and Q. Chen, “Spectral filtering using fibre Bragg grating embedded Sagnac loop mirror,” Electron. Lett. 45, 402–403 (2009).
[CrossRef]

Margulis, W.

Martinelli, M.

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 42–44 (2000).
[CrossRef]

Melloni, A.

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 42–44 (2000).
[CrossRef]

Men, L.

L. Men, P. Lu, and Q. Chen, “Spectral filtering using fibre Bragg grating embedded Sagnac loop mirror,” Electron. Lett. 45, 402–403 (2009).
[CrossRef]

Mizrahi, V.

S. Larochelle, Y. Hibino, V. Mizrahi, and G. L. Stegman, “All-optical switching of grating transmission using cross phase modulation in optical fibers,” Electron. Lett. 26, 1459–1460 (1990).
[CrossRef]

Moon, D. S.

D. S. Moon, G. Sun, A. Lin, X. Liu, and Y. J. Chung, “Tunable dual-wavelength fiber laser based on a single fiber Bragg grating in a Sagnac loop interferometer,” Opt. Commun. 281, 2513–2516 (2008).
[CrossRef]

Nowicki-Bringuier, Y. R.

A. Hartsuiker, P. J. Harding, Y. R. Nowicki-Bringuier, J. M. Gerard, and W. L. Vos, “Kerr and free carrier ultrafast all-optical switching of GaAs/AlAs nanostructures near the three photon edge of GaAs,” J. Appl. Phys. 104, 83105–83111 (2008).
[CrossRef]

Pantell, R. H.

R. H. Pantell, M. J. F. Digonnet, R. W. Sadowski, and H. J. Shaw, “Analysis of nonlinear optical switching in an erbium-doped fiber,” J. Lightwave Technol. 11, 1416–1424 (1993).
[CrossRef]

Pottiez, O.

Ribeiro, R. M.

Richardson, D. J.

Sadowski, R. W.

R. H. Pantell, M. J. F. Digonnet, R. W. Sadowski, and H. J. Shaw, “Analysis of nonlinear optical switching in an erbium-doped fiber,” J. Lightwave Technol. 11, 1416–1424 (1993).
[CrossRef]

Sahlgren, B.

Shaw, H. J.

R. H. Pantell, M. J. F. Digonnet, R. W. Sadowski, and H. J. Shaw, “Analysis of nonlinear optical switching in an erbium-doped fiber,” J. Lightwave Technol. 11, 1416–1424 (1993).
[CrossRef]

Shu, X.

D. Zhao, X. Shu, Y. Lai, L. Zhang, and I. Bennion, “Fiber Bragg grating sensor interrogation using chirped fiber grating-based Sagnac loop,” IEEE Sens. J. 3, 734–738 (2003).
[CrossRef]

Shu, X. W.

Stegman, G. L.

S. Larochelle, Y. Hibino, V. Mizrahi, and G. L. Stegman, “All-optical switching of grating transmission using cross phase modulation in optical fibers,” Electron. Lett. 26, 1459–1460 (1990).
[CrossRef]

Stubbe, R.

Sugden, K.

Sun, G.

D. S. Moon, G. Sun, A. Lin, X. Liu, and Y. J. Chung, “Tunable dual-wavelength fiber laser based on a single fiber Bragg grating in a Sagnac loop interferometer,” Opt. Commun. 281, 2513–2516 (2008).
[CrossRef]

Taverner, D.

Vos, W. L.

A. Hartsuiker, P. J. Harding, Y. R. Nowicki-Bringuier, J. M. Gerard, and W. L. Vos, “Kerr and free carrier ultrafast all-optical switching of GaAs/AlAs nanostructures near the three photon edge of GaAs,” J. Appl. Phys. 104, 83105–83111 (2008).
[CrossRef]

Wang, C.

Wang, D. A.

J. H. Lee, D. A. Wang, Y. W. Kiang, H. J. Chiang, D. W. Huang, and C. C. Yang, “Nonlinear switching behaviors in a compact all-semiconductor optical-amplifier Sagnac interferometer device,” IEEE J. Quantum Electron. 35, 1469–1477 (1999).
[CrossRef]

Yang, C. C.

J. H. Lee, D. A. Wang, Y. W. Kiang, H. J. Chiang, D. W. Huang, and C. C. Yang, “Nonlinear switching behaviors in a compact all-semiconductor optical-amplifier Sagnac interferometer device,” IEEE J. Quantum Electron. 35, 1469–1477 (1999).
[CrossRef]

Yang, W. X.

Z. G. Zang and W. X. Yang, “Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fiber,” J. Appl. Phys. 109, 103106 (2011).
[CrossRef]

Yao, J. P.

Yu, L. Z.

Zang, Z. G.

Z. G. Zang, “Numerical analysis of optical bistability based on Fiber Bragg Grating cavity containing a high nonlinearity doped-fiber,” Opt. Commun. 285, 521–526 (2012).
[CrossRef]

Z. G. Zang and Y. J. Zhang, “Analysis of optical switching in a Yb3+-doped fiber Bragg grating by using self-phase modulation and cross-phase modulation,” Appl. Opt. 51, 3424–3430 (2012).
[CrossRef]

Z. G. Zang and W. X. Yang, “Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fiber,” J. Appl. Phys. 109, 103106 (2011).
[CrossRef]

Zhang, L.

D. Zhao, X. Shu, Y. Lai, L. Zhang, and I. Bennion, “Fiber Bragg grating sensor interrogation using chirped fiber grating-based Sagnac loop,” IEEE Sens. J. 3, 734–738 (2003).
[CrossRef]

X. W. Shu, L. Z. Yu, D. H. Zhao, L. Zhang, K. Sugden, and I. Bennion, “Transmission characteristics of Sagnac interferometers based on fiber Bragg gratings,” J. Opt. Soc. Am. B 19, 2770–2780 (2002).
[CrossRef]

Zhang, Y. J.

Zhao, D.

D. Zhao, X. Shu, Y. Lai, L. Zhang, and I. Bennion, “Fiber Bragg grating sensor interrogation using chirped fiber grating-based Sagnac loop,” IEEE Sens. J. 3, 734–738 (2003).
[CrossRef]

Zhao, D. H.

Appl. Opt.

Electron. Lett.

S. Larochelle, Y. Hibino, V. Mizrahi, and G. L. Stegman, “All-optical switching of grating transmission using cross phase modulation in optical fibers,” Electron. Lett. 26, 1459–1460 (1990).
[CrossRef]

M. Janos, J. Arkwight, and Z. Brodzeli, “Low power nonlinear response of Yb3+-doped optical fiber Bragg gratings,” Electron. Lett. 33, 2150–2151 (1997).
[CrossRef]

K. O. Hill, D. C. Johnson, F. Bilodeau, and S. Faucher, “Narrow-bandwidth optical waveguide transmission filters,” Electron. Lett. 23, 465–466 (1987).
[CrossRef]

L. Men, P. Lu, and Q. Chen, “Spectral filtering using fibre Bragg grating embedded Sagnac loop mirror,” Electron. Lett. 45, 402–403 (2009).
[CrossRef]

IEEE J. Quantum Electron.

J. H. Lee, D. A. Wang, Y. W. Kiang, H. J. Chiang, D. W. Huang, and C. C. Yang, “Nonlinear switching behaviors in a compact all-semiconductor optical-amplifier Sagnac interferometer device,” IEEE J. Quantum Electron. 35, 1469–1477 (1999).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Melloni, M. Chinello, and M. Martinelli, “All-optical switching in phase-shifted fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 42–44 (2000).
[CrossRef]

IEEE Sens. J.

D. Zhao, X. Shu, Y. Lai, L. Zhang, and I. Bennion, “Fiber Bragg grating sensor interrogation using chirped fiber grating-based Sagnac loop,” IEEE Sens. J. 3, 734–738 (2003).
[CrossRef]

J. Appl. Phys.

A. Hartsuiker, P. J. Harding, Y. R. Nowicki-Bringuier, J. M. Gerard, and W. L. Vos, “Kerr and free carrier ultrafast all-optical switching of GaAs/AlAs nanostructures near the three photon edge of GaAs,” J. Appl. Phys. 104, 83105–83111 (2008).
[CrossRef]

Z. G. Zang and W. X. Yang, “Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fiber,” J. Appl. Phys. 109, 103106 (2011).
[CrossRef]

J. Lightwave Technol.

R. H. Pantell, M. J. F. Digonnet, R. W. Sadowski, and H. J. Shaw, “Analysis of nonlinear optical switching in an erbium-doped fiber,” J. Lightwave Technol. 11, 1416–1424 (1993).
[CrossRef]

C. Wang and J. P. Yao, “Chirped microwave pulse generation based on optical spectral shaping and wavelength-to-time mapping using a Sagnac-loop mirror incorporating a chirped fiber Bragg grating,” J. Lightwave Technol. 27, 3336–3341(2009).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

D. S. Moon, G. Sun, A. Lin, X. Liu, and Y. J. Chung, “Tunable dual-wavelength fiber laser based on a single fiber Bragg grating in a Sagnac loop interferometer,” Opt. Commun. 281, 2513–2516 (2008).
[CrossRef]

Z. G. Zang, “Numerical analysis of optical bistability based on Fiber Bragg Grating cavity containing a high nonlinearity doped-fiber,” Opt. Commun. 285, 521–526 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Reflective spectrum shift because of the optical nonlinearity under pump power (red curve, no nonlinearity and blue curve, with nonlinearity).

Fig. 2.
Fig. 2.

Schematic of AOS in SLM containing a YDF and FBG.

Fig. 3.
Fig. 3.

Transmission spectrum of the YDF SLM-FBG switching with different length difference ΔL. (a) ΔL=0.7mm, (b) ΔL=1.1mm, (c) ΔL=1.3mm, and (d) ΔL=3mm.

Fig. 4.
Fig. 4.

Dependence of the fringe spacing on the different fiber length difference of ΔL.

Fig. 5.
Fig. 5.

Transmission spectra of the YDF SLM-FBG switching under different pump power.

Fig. 6.
Fig. 6.

Transmission of the YDF SLM-FBG switching as a function of the pump power under different loss coefficient.

Fig. 7.
Fig. 7.

Extinction of YDF SLM-FBG switching as a function of the pump power.

Fig. 8.
Fig. 8.

Response time of YDF SLM-FBG under different fiber length difference of ΔL.

Tables (1)

Tables Icon

Table 1. Device Parameter Values for Simulation

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

λB=2nΛ.
Δλ=λκλBπn1+(πκL)2.
n=n0+2n2I,
I=λκ4πn21+(πκL)2,
(E1E2)=1γ(2/2i2/2i2/22/2)(Ei0)
(E1E2)=(ejk0nL100ejk0nL1)(exp(αL1)00exp(αL2))×(rttr)(E1E2)
(ErEt)=1γ(2/2i2/2i2/22/2)(ejk0nL200ejk0nL2)×(exp(αL1)00exp(αL2))(E1E2).
T=|Et/Ei|2=(1γ)exp[(4α(L1+L2)]|r|2cos2(βΔL)=(1γ)exp[(4α(L1+L2)]×sinh2(k2δ2Lg)cosh2(k2δ2Lg)(δk)2cos2[2πnλ(L2L1)],
Δϕ0=2πnλΔL.
Δϕ=Δϕ0+ΔϕNL.
ΔϕNL=πe22hn0mε0c2(n02+2)29λpλsτsPabsAeffξ,
P=Pabs1exp[αL2+(Pabs/AeffIp,sat)],
S=λ22neffΔL.
τg=λ22πcdφdλ,
φ=atan(EtEi)=atan[cos(2βL1+φFBG)+cos(2βL2+φFBG)sin(2βL1+φFBG)+sin(2βL2+φFBG)].
τg=λ22πcdφdλ=[τFBG+n0(L1+L2)c],

Metrics