Abstract

Gasolines of two different octane numbers are experimentally distinguished using a thin metal sheet perforated with a periodic hole array terahertz surface plasmon (SP) sensor. This sensor is proved to be very sensitive to the change in permittivities of analytes. The differences between the gasolines 93# and 97# in composition lead to various refractive indices, permittivities, and absorption coefficients, thus varying their interactions with surface waves on the sensor, which enables a distinction of 6 GHz between the two octane numbers in the transmission peaks. The freestanding SP sensor is effective and reliable and can be simply employed in analyte distinction, which has potential applications in the petroleum industry.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Li, J. Li, Z. Zeng, J. Li, Z. Tian, and W. Wang, “Terahertz spectroscopy for quantifying refined oil mixtures,” Appl. Opt. 51, 5885–5889 (2012).
    [CrossRef]
  2. J. Li, Z. Tian, Y. Chen, W. Cao, and Z. Zeng, “Distinguishing octane grades in gasoline using terahertz metamaterials,” Appl. Opt. 51, 3258–3262 (2012).
    [CrossRef]
  3. W. Zhang, “Resonant terahertz transmission in plasmonic arrays of subwavelength holes,” Eur. Phys. J. Appl. Phys. 43, 1–18 (2008).
    [CrossRef]
  4. J. Han, X. Lu, and W. Zhang, “Terahertz transmission in subwavelength holes of asymmetric metal-dielectric interfaces: the effect of a dielectric layer,” J. Appl. Phys. 103, 033108 (2008).
    [CrossRef]
  5. A. K. Azad, Y. Zhao, W. Zhang, and M. He, “Effect of dielectric properties of metals on terahertz transmission in subwavelength hole arrays,” Opt. Lett. 31, 2637–2639 (2006).
    [CrossRef]
  6. A. K. Azad and W. Zhang, “Resonant terahertz transmission in subwavelength metallic hole arrays of sub-skin-depth thickness,” Opt. Lett. 30, 2945–2947 (2005).
    [CrossRef]
  7. W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X.-C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98, 183901 (2007).
    [CrossRef]
  8. X. Lu, J. Han, and W. Zhang, “Resonant terahertz reflection of periodic arrays of subwavelength metallic rectangles,” Appl. Phys. Lett. 92, 121103 (2008).
    [CrossRef]
  9. F. Miyamaru, M. W. Takeda, T. Suzuki, and C. Otani, “Highly sensitive surface plasmon terahertz imaging with planar plasmonic crystals,” Opt. Lett. 15, 14804–14809 (2007).
    [CrossRef]
  10. Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface Plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475, 132–134 (2009).
    [CrossRef]
  11. M. He, J. Li, G. Liu, J. Han, Z. Tian, J. Gu, T. Chen, and R. Qin, “Surface plasmon-enhanced terahertz spectroscopic distinguishing between isomers in powder form,” Appl. Opt. 52, 824–828 (2013).
    [CrossRef]
  12. H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
    [CrossRef]
  13. D. Qu, D. Grischkowsky, and W. Zhang, “Terahertz transmission properties of thin subwavelength metallic hole arrays,” Opt. Lett. 29, 896–898 (2004).
    [CrossRef]
  14. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
    [CrossRef]
  15. H. Raether, “Surface plasmons on smooth surfaces,” in Surface Plasmons on Smooth and Rough Surfaces and on Gratings, G. Höhler and E. A. Niekisch, eds. (Springer-Verlag, 1988), pp. 4–39.
  16. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
    [CrossRef]
  17. C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225, 331–336 (2003).
    [CrossRef]
  18. J. Han, A. K. Azad, M. Gong, X. Lu, and W. Zhang, “Coupling between surface plasmons and nonresonant transmission in subwavelength holes at terahertz frequencies,” Appl. Phys. Lett. 91, 071122 (2007).
    [CrossRef]
  19. J. Sun and C. C. Chan, “Photonic bandgap fiber for refractive index measurement,” Sens. Actuators B 128, 46–50 (2007).
    [CrossRef]
  20. C. Sayin, I. Kilicaslan, M. Canakci, and N. Ozsezen, “An experimental study of the effect of octane number higher than engine requirement on the engine performance and emissions,” Appl. Therm. Eng. 25, 1315–1324 (2005).
    [CrossRef]
  21. A. J. Vreugdenhil and I. S. Butler, “Detection of the engine anti-knock additive methylcyclopentadienyl manganese tricarbonyl (MMT) from unleaded gasoline in soil by diffuse reflectance infrared Fourier transform spectroscopy and mass spectrometry,” Appl. Spectrosc. 49, 482–485 (1995).
    [CrossRef]
  22. G. L. Ter Haar, M. E. Griffing, M. Brandt, D. G. Oberding, and M. Kapron, “Methylcyclopentadienyl manganese tricarbonyl as an antiknock: composition and fate of manganese exhaust products,” J. Air Pollut. Control Assoc. 25, 858–859 (1975).

2013 (1)

2012 (2)

2009 (1)

Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface Plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475, 132–134 (2009).
[CrossRef]

2008 (3)

W. Zhang, “Resonant terahertz transmission in plasmonic arrays of subwavelength holes,” Eur. Phys. J. Appl. Phys. 43, 1–18 (2008).
[CrossRef]

J. Han, X. Lu, and W. Zhang, “Terahertz transmission in subwavelength holes of asymmetric metal-dielectric interfaces: the effect of a dielectric layer,” J. Appl. Phys. 103, 033108 (2008).
[CrossRef]

X. Lu, J. Han, and W. Zhang, “Resonant terahertz reflection of periodic arrays of subwavelength metallic rectangles,” Appl. Phys. Lett. 92, 121103 (2008).
[CrossRef]

2007 (5)

F. Miyamaru, M. W. Takeda, T. Suzuki, and C. Otani, “Highly sensitive surface plasmon terahertz imaging with planar plasmonic crystals,” Opt. Lett. 15, 14804–14809 (2007).
[CrossRef]

W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X.-C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98, 183901 (2007).
[CrossRef]

J. Han, A. K. Azad, M. Gong, X. Lu, and W. Zhang, “Coupling between surface plasmons and nonresonant transmission in subwavelength holes at terahertz frequencies,” Appl. Phys. Lett. 91, 071122 (2007).
[CrossRef]

J. Sun and C. C. Chan, “Photonic bandgap fiber for refractive index measurement,” Sens. Actuators B 128, 46–50 (2007).
[CrossRef]

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[CrossRef]

2006 (1)

2005 (2)

A. K. Azad and W. Zhang, “Resonant terahertz transmission in subwavelength metallic hole arrays of sub-skin-depth thickness,” Opt. Lett. 30, 2945–2947 (2005).
[CrossRef]

C. Sayin, I. Kilicaslan, M. Canakci, and N. Ozsezen, “An experimental study of the effect of octane number higher than engine requirement on the engine performance and emissions,” Appl. Therm. Eng. 25, 1315–1324 (2005).
[CrossRef]

2004 (1)

2003 (1)

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225, 331–336 (2003).
[CrossRef]

1998 (1)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

1995 (1)

1990 (1)

1975 (1)

G. L. Ter Haar, M. E. Griffing, M. Brandt, D. G. Oberding, and M. Kapron, “Methylcyclopentadienyl manganese tricarbonyl as an antiknock: composition and fate of manganese exhaust products,” J. Air Pollut. Control Assoc. 25, 858–859 (1975).

Azad, A. K.

J. Han, A. K. Azad, M. Gong, X. Lu, and W. Zhang, “Coupling between surface plasmons and nonresonant transmission in subwavelength holes at terahertz frequencies,” Appl. Phys. Lett. 91, 071122 (2007).
[CrossRef]

W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X.-C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98, 183901 (2007).
[CrossRef]

A. K. Azad, Y. Zhao, W. Zhang, and M. He, “Effect of dielectric properties of metals on terahertz transmission in subwavelength hole arrays,” Opt. Lett. 31, 2637–2639 (2006).
[CrossRef]

A. K. Azad and W. Zhang, “Resonant terahertz transmission in subwavelength metallic hole arrays of sub-skin-depth thickness,” Opt. Lett. 30, 2945–2947 (2005).
[CrossRef]

Brandt, M.

G. L. Ter Haar, M. E. Griffing, M. Brandt, D. G. Oberding, and M. Kapron, “Methylcyclopentadienyl manganese tricarbonyl as an antiknock: composition and fate of manganese exhaust products,” J. Air Pollut. Control Assoc. 25, 858–859 (1975).

Butler, I. S.

Canakci, M.

C. Sayin, I. Kilicaslan, M. Canakci, and N. Ozsezen, “An experimental study of the effect of octane number higher than engine requirement on the engine performance and emissions,” Appl. Therm. Eng. 25, 1315–1324 (2005).
[CrossRef]

Cao, W.

Chan, C. C.

J. Sun and C. C. Chan, “Photonic bandgap fiber for refractive index measurement,” Sens. Actuators B 128, 46–50 (2007).
[CrossRef]

Chen, J.

W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X.-C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98, 183901 (2007).
[CrossRef]

Chen, T.

Chen, Y.

Ebbesen, T. W.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Fattinger, Ch.

Genet, C.

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225, 331–336 (2003).
[CrossRef]

Ghaemi, H. F.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Gong, M.

J. Han, A. K. Azad, M. Gong, X. Lu, and W. Zhang, “Coupling between surface plasmons and nonresonant transmission in subwavelength holes at terahertz frequencies,” Appl. Phys. Lett. 91, 071122 (2007).
[CrossRef]

Griffing, M. E.

G. L. Ter Haar, M. E. Griffing, M. Brandt, D. G. Oberding, and M. Kapron, “Methylcyclopentadienyl manganese tricarbonyl as an antiknock: composition and fate of manganese exhaust products,” J. Air Pollut. Control Assoc. 25, 858–859 (1975).

Grischkowsky, D.

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Gu, J.

M. He, J. Li, G. Liu, J. Han, Z. Tian, J. Gu, T. Chen, and R. Qin, “Surface plasmon-enhanced terahertz spectroscopic distinguishing between isomers in powder form,” Appl. Opt. 52, 824–828 (2013).
[CrossRef]

Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface Plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475, 132–134 (2009).
[CrossRef]

Han, J.

M. He, J. Li, G. Liu, J. Han, Z. Tian, J. Gu, T. Chen, and R. Qin, “Surface plasmon-enhanced terahertz spectroscopic distinguishing between isomers in powder form,” Appl. Opt. 52, 824–828 (2013).
[CrossRef]

Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface Plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475, 132–134 (2009).
[CrossRef]

J. Han, X. Lu, and W. Zhang, “Terahertz transmission in subwavelength holes of asymmetric metal-dielectric interfaces: the effect of a dielectric layer,” J. Appl. Phys. 103, 033108 (2008).
[CrossRef]

X. Lu, J. Han, and W. Zhang, “Resonant terahertz reflection of periodic arrays of subwavelength metallic rectangles,” Appl. Phys. Lett. 92, 121103 (2008).
[CrossRef]

W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X.-C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98, 183901 (2007).
[CrossRef]

J. Han, A. K. Azad, M. Gong, X. Lu, and W. Zhang, “Coupling between surface plasmons and nonresonant transmission in subwavelength holes at terahertz frequencies,” Appl. Phys. Lett. 91, 071122 (2007).
[CrossRef]

Hayashi, A.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[CrossRef]

Hayashi, S.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[CrossRef]

He, M.

Kapron, M.

G. L. Ter Haar, M. E. Griffing, M. Brandt, D. G. Oberding, and M. Kapron, “Methylcyclopentadienyl manganese tricarbonyl as an antiknock: composition and fate of manganese exhaust products,” J. Air Pollut. Control Assoc. 25, 858–859 (1975).

Kato, E.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[CrossRef]

Kawai, Y.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[CrossRef]

Kawase, K.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[CrossRef]

Keiding, S.

Kilicaslan, I.

C. Sayin, I. Kilicaslan, M. Canakci, and N. Ozsezen, “An experimental study of the effect of octane number higher than engine requirement on the engine performance and emissions,” Appl. Therm. Eng. 25, 1315–1324 (2005).
[CrossRef]

Lezec, H. J.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Li, J.

Li, Y.

Liu, G.

Lu, X.

Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface Plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475, 132–134 (2009).
[CrossRef]

J. Han, X. Lu, and W. Zhang, “Terahertz transmission in subwavelength holes of asymmetric metal-dielectric interfaces: the effect of a dielectric layer,” J. Appl. Phys. 103, 033108 (2008).
[CrossRef]

X. Lu, J. Han, and W. Zhang, “Resonant terahertz reflection of periodic arrays of subwavelength metallic rectangles,” Appl. Phys. Lett. 92, 121103 (2008).
[CrossRef]

J. Han, A. K. Azad, M. Gong, X. Lu, and W. Zhang, “Coupling between surface plasmons and nonresonant transmission in subwavelength holes at terahertz frequencies,” Appl. Phys. Lett. 91, 071122 (2007).
[CrossRef]

Miyamaru, F.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[CrossRef]

F. Miyamaru, M. W. Takeda, T. Suzuki, and C. Otani, “Highly sensitive surface plasmon terahertz imaging with planar plasmonic crystals,” Opt. Lett. 15, 14804–14809 (2007).
[CrossRef]

Oberding, D. G.

G. L. Ter Haar, M. E. Griffing, M. Brandt, D. G. Oberding, and M. Kapron, “Methylcyclopentadienyl manganese tricarbonyl as an antiknock: composition and fate of manganese exhaust products,” J. Air Pollut. Control Assoc. 25, 858–859 (1975).

Ogawa, Y.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[CrossRef]

Otani, C.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[CrossRef]

F. Miyamaru, M. W. Takeda, T. Suzuki, and C. Otani, “Highly sensitive surface plasmon terahertz imaging with planar plasmonic crystals,” Opt. Lett. 15, 14804–14809 (2007).
[CrossRef]

Ozsezen, N.

C. Sayin, I. Kilicaslan, M. Canakci, and N. Ozsezen, “An experimental study of the effect of octane number higher than engine requirement on the engine performance and emissions,” Appl. Therm. Eng. 25, 1315–1324 (2005).
[CrossRef]

Qin, R.

Qu, D.

Raether, H.

H. Raether, “Surface plasmons on smooth surfaces,” in Surface Plasmons on Smooth and Rough Surfaces and on Gratings, G. Höhler and E. A. Niekisch, eds. (Springer-Verlag, 1988), pp. 4–39.

Sayin, C.

C. Sayin, I. Kilicaslan, M. Canakci, and N. Ozsezen, “An experimental study of the effect of octane number higher than engine requirement on the engine performance and emissions,” Appl. Therm. Eng. 25, 1315–1324 (2005).
[CrossRef]

Sun, J.

J. Sun and C. C. Chan, “Photonic bandgap fiber for refractive index measurement,” Sens. Actuators B 128, 46–50 (2007).
[CrossRef]

Suzuki, T.

F. Miyamaru, M. W. Takeda, T. Suzuki, and C. Otani, “Highly sensitive surface plasmon terahertz imaging with planar plasmonic crystals,” Opt. Lett. 15, 14804–14809 (2007).
[CrossRef]

Takeda, M. W.

F. Miyamaru, M. W. Takeda, T. Suzuki, and C. Otani, “Highly sensitive surface plasmon terahertz imaging with planar plasmonic crystals,” Opt. Lett. 15, 14804–14809 (2007).
[CrossRef]

Ter Haar, G. L.

G. L. Ter Haar, M. E. Griffing, M. Brandt, D. G. Oberding, and M. Kapron, “Methylcyclopentadienyl manganese tricarbonyl as an antiknock: composition and fate of manganese exhaust products,” J. Air Pollut. Control Assoc. 25, 858–859 (1975).

Thio, T.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Tian, Z.

van Exter, M.

van Exter, M. P.

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225, 331–336 (2003).
[CrossRef]

Vreugdenhil, A. J.

Wang, W.

Woerdman, J. P.

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225, 331–336 (2003).
[CrossRef]

Xing, Q.

Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface Plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475, 132–134 (2009).
[CrossRef]

Xu, J.

W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X.-C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98, 183901 (2007).
[CrossRef]

Yoshida, H.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[CrossRef]

Zeng, Z.

Zhang, W.

Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface Plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475, 132–134 (2009).
[CrossRef]

W. Zhang, “Resonant terahertz transmission in plasmonic arrays of subwavelength holes,” Eur. Phys. J. Appl. Phys. 43, 1–18 (2008).
[CrossRef]

X. Lu, J. Han, and W. Zhang, “Resonant terahertz reflection of periodic arrays of subwavelength metallic rectangles,” Appl. Phys. Lett. 92, 121103 (2008).
[CrossRef]

J. Han, X. Lu, and W. Zhang, “Terahertz transmission in subwavelength holes of asymmetric metal-dielectric interfaces: the effect of a dielectric layer,” J. Appl. Phys. 103, 033108 (2008).
[CrossRef]

J. Han, A. K. Azad, M. Gong, X. Lu, and W. Zhang, “Coupling between surface plasmons and nonresonant transmission in subwavelength holes at terahertz frequencies,” Appl. Phys. Lett. 91, 071122 (2007).
[CrossRef]

W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X.-C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98, 183901 (2007).
[CrossRef]

A. K. Azad, Y. Zhao, W. Zhang, and M. He, “Effect of dielectric properties of metals on terahertz transmission in subwavelength hole arrays,” Opt. Lett. 31, 2637–2639 (2006).
[CrossRef]

A. K. Azad and W. Zhang, “Resonant terahertz transmission in subwavelength metallic hole arrays of sub-skin-depth thickness,” Opt. Lett. 30, 2945–2947 (2005).
[CrossRef]

D. Qu, D. Grischkowsky, and W. Zhang, “Terahertz transmission properties of thin subwavelength metallic hole arrays,” Opt. Lett. 29, 896–898 (2004).
[CrossRef]

Zhang, X.-C.

W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X.-C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98, 183901 (2007).
[CrossRef]

Zhao, Y.

Appl. Opt. (3)

Appl. Phys. Lett. (3)

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[CrossRef]

X. Lu, J. Han, and W. Zhang, “Resonant terahertz reflection of periodic arrays of subwavelength metallic rectangles,” Appl. Phys. Lett. 92, 121103 (2008).
[CrossRef]

J. Han, A. K. Azad, M. Gong, X. Lu, and W. Zhang, “Coupling between surface plasmons and nonresonant transmission in subwavelength holes at terahertz frequencies,” Appl. Phys. Lett. 91, 071122 (2007).
[CrossRef]

Appl. Spectrosc. (1)

Appl. Therm. Eng. (1)

C. Sayin, I. Kilicaslan, M. Canakci, and N. Ozsezen, “An experimental study of the effect of octane number higher than engine requirement on the engine performance and emissions,” Appl. Therm. Eng. 25, 1315–1324 (2005).
[CrossRef]

Chem. Phys. Lett. (1)

Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface Plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475, 132–134 (2009).
[CrossRef]

Eur. Phys. J. Appl. Phys. (1)

W. Zhang, “Resonant terahertz transmission in plasmonic arrays of subwavelength holes,” Eur. Phys. J. Appl. Phys. 43, 1–18 (2008).
[CrossRef]

J. Air Pollut. Control Assoc. (1)

G. L. Ter Haar, M. E. Griffing, M. Brandt, D. G. Oberding, and M. Kapron, “Methylcyclopentadienyl manganese tricarbonyl as an antiknock: composition and fate of manganese exhaust products,” J. Air Pollut. Control Assoc. 25, 858–859 (1975).

J. Appl. Phys. (1)

J. Han, X. Lu, and W. Zhang, “Terahertz transmission in subwavelength holes of asymmetric metal-dielectric interfaces: the effect of a dielectric layer,” J. Appl. Phys. 103, 033108 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225, 331–336 (2003).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. B (1)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Phys. Rev. Lett. (1)

W. Zhang, A. K. Azad, J. Han, J. Xu, J. Chen, and X.-C. Zhang, “Direct observation of a transition of a surface plasmon resonance from a photonic crystal effect,” Phys. Rev. Lett. 98, 183901 (2007).
[CrossRef]

Sens. Actuators B (1)

J. Sun and C. C. Chan, “Photonic bandgap fiber for refractive index measurement,” Sens. Actuators B 128, 46–50 (2007).
[CrossRef]

Other (1)

H. Raether, “Surface plasmons on smooth surfaces,” in Surface Plasmons on Smooth and Rough Surfaces and on Gratings, G. Höhler and E. A. Niekisch, eds. (Springer-Verlag, 1988), pp. 4–39.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the terahertz optical path of THz time-domain spectroscopy. Inset: schematic of the THz SP sensor.

Fig. 2.
Fig. 2.

(a) Measured amplitude transmission through the SP sensor with 93# and 97# gasoline samples and air. (b) Enlarged partial view of the transmission results. (c) Multiple measurements of gasoline samples (93# and 97#) with the SP sensor.

Fig. 3.
Fig. 3.

Measured refractive indices of the gasoline samples (93# and 97#).

Fig. 4.
Fig. 4.

Results of a time-domain signal truncated at different time positions: (a) a truncated time-domain signal of a 97# gasoline sample with the SP sensor, and (b) the FFT results of different time lengths.

Fig. 5.
Fig. 5.

Measured time-domain transmitted THz pulses of the gasoline samples with the SP sensor.

Fig. 6.
Fig. 6.

Measured absorption coefficient of the gasoline samples. Inset: measured transmission through the gasoline samples.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ksp=ksp0+δksp=ωcεm+εdεmεd+δksp,
ωspm,n=cGεm+εdεmεdcGnd1.
SRI=δfspm,nδnd.
α(υ)=2dlnnsample(υ)[n0(υ)+nquartz(υ)]2t·n0(υ)[nquartz(υ)+nsample(υ)]2,

Metrics