Abstract

To research the attenuation performance of the AlGaN photocathode, three samples with the same structures grown by metalorganic chemical vapor deposition were activated with three different activation methods, which are called Cs-only, Cs–O, and Cs–O–Cs activation, respectively. The spectral responses and attenuated photocurrents of the three AlGaN photocathodes were measured. The results show that the Cs–O activated AlGaN photocathode exhibits the lowest attenuation speed in the first few hours, and the attenuation speed of the Cs-only activated one is fastest. After attenuating for 90 min, the attenuation photocurrent curve of the Cs–O–Cs activated sample is coincident with that of the Cs–O activated one. The main factor affecting the photocurrent attenuation is related to Cs atoms desorbed from the photocathode surface.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. B. Lee, P. J. Parbrook, T. Wang, F. Ranalli, and T. Martin, “Optical investigation of exciton localization in AlxGa1−xN,” J. Appl. Phys. 101, 053513 (2007).
    [CrossRef]
  2. T. Li, D. J. H. Lanmber, M. M. Wong, C. J. Collins, B. Yang, A. L. Beck, U. Chowdhury, R. D. Dupuis, and Campbell, “Low-noise black-illuminated AlxGa1−xN N-based p-i-n solar-blind ultraviolet photodetectors,” IEEE J. Quantum Electron. 37, 538–545 (2001).
    [CrossRef]
  3. E. Munoz, E. Monroy, J. L. Pau, F. Calle, F. Omnes, and P. Gibart, “III nitrides and UV detection,” J. Phys. Condens. Matter 13, 7115–7137 (2001).
    [CrossRef]
  4. D. Seghier and H. P. Gislason, “Characterization of photoconductivity in AlxGa1−xN materials,” J. Phys. D 42, 095103 (2009).
  5. E. Cicek, Z. Vashaei, E. K.-W. Huang, R. McClintock, and M. Razeghi, “AlxGa1−xN-based deep-ultraviolet 320×256 focal plane array,” Opt. Lett. 37, 896–898 (2012).
    [CrossRef]
  6. Y. Zhang, J. Niu, J. Zhao, J. Zou, B. Chang, S. Feng, and H. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathode,” J. Appl. Phys. 108, 093108 (2010).
    [CrossRef]
  7. X. Wang, B. Chang, Y. Du, and J. Qiao, “Quantum efficiency of GaN photocathode under different illumination,” Appl. Phys. Lett. 99, 042102 (2011).
    [CrossRef]
  8. A. D. Hanser, O.-H. Nam, M. D. Bremser, D. B. Thomson, T. Gehrke, T. S. Zheleva, and R. F. Davis, “Growth, doping and characterization of epitaxial thin films and patterned structures of AlN, GaN and AlxGa1−xN,” Diamond Relat. Mater. 8, 288–294 (1999).
  9. X.-H. Wang, P. Gao, H.-G. Wang, B. Li, and B.-K. Chang, “Influence of wet chemical cleaning on quantum efficiency of GaN photocathode,” Chin. Phys. B 22, 027901 (2013).
    [CrossRef]
  10. X. Wang, B. Chang, Y. Qian, Y. Du, H. Wang, and B. Li, “Preparation and evaluation system for NEA GaN photocathode,” Optoelectron. Adv. Mater. 5, 1007–1010 (2011).
  11. Y.-J. Zhang, J.-J. Zou, X.-H. Wang, B.-K. Chang, Y.-S. Qian, J.-J. Zhang, and P. Gao, “Comparison of the photoemission behavior between negative electron affinity GaAs and GaN photocathodes,” Chin. Phys. B 20, 048501 (2011).
    [CrossRef]
  12. Y. Zhang, J. Niu, J. Zou, B. Chang, and Y. Xiong, “Variation of spectral response for exponential-doped transmission-mode GaAs photocathodes in the preparation process,” Appl. Opt. 49, 3935–3940 (2010).
    [CrossRef]
  13. Y. Zhang, J. Zou, J. Niu, J. Zhao, and B. Chang, “Photoemission characteristics of different-structure reflection-mode GaAs photocathodes,” J. Appl. Phys. 110, 063113 (2011).
    [CrossRef]
  14. J.-L. Qiao, B.-K. Chang, X.-Q. Du, J. Niu, and J.-J. Zou, “Quantum efficiency decay mechanism for reflection-mode negative electron affinity GaN photocathode,” Chin. Phys. Soc. 59, 2855–2859 (2010).
  15. X.-Y. Guo, B.-K. Chang, J.-L. Qiao, and X.-H. Wang, “Comparison of stability of GaN and GaAs photocathode,” Infrared Technol. 32, 117–120 (2010).
  16. T. Wada, T. Nitta, T. Nomura, M. Miyao, and M. Hagino, “Influence of exposure to CO, CO2 and H2O on the stability of GaAs photocathodes,” Jpn. J. Appl. Phys. 29, 2087–2091 (1990).

2013 (1)

X.-H. Wang, P. Gao, H.-G. Wang, B. Li, and B.-K. Chang, “Influence of wet chemical cleaning on quantum efficiency of GaN photocathode,” Chin. Phys. B 22, 027901 (2013).
[CrossRef]

2012 (1)

2011 (4)

X. Wang, B. Chang, Y. Du, and J. Qiao, “Quantum efficiency of GaN photocathode under different illumination,” Appl. Phys. Lett. 99, 042102 (2011).
[CrossRef]

X. Wang, B. Chang, Y. Qian, Y. Du, H. Wang, and B. Li, “Preparation and evaluation system for NEA GaN photocathode,” Optoelectron. Adv. Mater. 5, 1007–1010 (2011).

Y.-J. Zhang, J.-J. Zou, X.-H. Wang, B.-K. Chang, Y.-S. Qian, J.-J. Zhang, and P. Gao, “Comparison of the photoemission behavior between negative electron affinity GaAs and GaN photocathodes,” Chin. Phys. B 20, 048501 (2011).
[CrossRef]

Y. Zhang, J. Zou, J. Niu, J. Zhao, and B. Chang, “Photoemission characteristics of different-structure reflection-mode GaAs photocathodes,” J. Appl. Phys. 110, 063113 (2011).
[CrossRef]

2010 (4)

J.-L. Qiao, B.-K. Chang, X.-Q. Du, J. Niu, and J.-J. Zou, “Quantum efficiency decay mechanism for reflection-mode negative electron affinity GaN photocathode,” Chin. Phys. Soc. 59, 2855–2859 (2010).

X.-Y. Guo, B.-K. Chang, J.-L. Qiao, and X.-H. Wang, “Comparison of stability of GaN and GaAs photocathode,” Infrared Technol. 32, 117–120 (2010).

Y. Zhang, J. Niu, J. Zhao, J. Zou, B. Chang, S. Feng, and H. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathode,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

Y. Zhang, J. Niu, J. Zou, B. Chang, and Y. Xiong, “Variation of spectral response for exponential-doped transmission-mode GaAs photocathodes in the preparation process,” Appl. Opt. 49, 3935–3940 (2010).
[CrossRef]

2009 (1)

D. Seghier and H. P. Gislason, “Characterization of photoconductivity in AlxGa1−xN materials,” J. Phys. D 42, 095103 (2009).

2007 (1)

K. B. Lee, P. J. Parbrook, T. Wang, F. Ranalli, and T. Martin, “Optical investigation of exciton localization in AlxGa1−xN,” J. Appl. Phys. 101, 053513 (2007).
[CrossRef]

2001 (2)

T. Li, D. J. H. Lanmber, M. M. Wong, C. J. Collins, B. Yang, A. L. Beck, U. Chowdhury, R. D. Dupuis, and Campbell, “Low-noise black-illuminated AlxGa1−xN N-based p-i-n solar-blind ultraviolet photodetectors,” IEEE J. Quantum Electron. 37, 538–545 (2001).
[CrossRef]

E. Munoz, E. Monroy, J. L. Pau, F. Calle, F. Omnes, and P. Gibart, “III nitrides and UV detection,” J. Phys. Condens. Matter 13, 7115–7137 (2001).
[CrossRef]

1999 (1)

A. D. Hanser, O.-H. Nam, M. D. Bremser, D. B. Thomson, T. Gehrke, T. S. Zheleva, and R. F. Davis, “Growth, doping and characterization of epitaxial thin films and patterned structures of AlN, GaN and AlxGa1−xN,” Diamond Relat. Mater. 8, 288–294 (1999).

1990 (1)

T. Wada, T. Nitta, T. Nomura, M. Miyao, and M. Hagino, “Influence of exposure to CO, CO2 and H2O on the stability of GaAs photocathodes,” Jpn. J. Appl. Phys. 29, 2087–2091 (1990).

Beck, A. L.

T. Li, D. J. H. Lanmber, M. M. Wong, C. J. Collins, B. Yang, A. L. Beck, U. Chowdhury, R. D. Dupuis, and Campbell, “Low-noise black-illuminated AlxGa1−xN N-based p-i-n solar-blind ultraviolet photodetectors,” IEEE J. Quantum Electron. 37, 538–545 (2001).
[CrossRef]

Bremser, M. D.

A. D. Hanser, O.-H. Nam, M. D. Bremser, D. B. Thomson, T. Gehrke, T. S. Zheleva, and R. F. Davis, “Growth, doping and characterization of epitaxial thin films and patterned structures of AlN, GaN and AlxGa1−xN,” Diamond Relat. Mater. 8, 288–294 (1999).

Calle, F.

E. Munoz, E. Monroy, J. L. Pau, F. Calle, F. Omnes, and P. Gibart, “III nitrides and UV detection,” J. Phys. Condens. Matter 13, 7115–7137 (2001).
[CrossRef]

Campbell,

T. Li, D. J. H. Lanmber, M. M. Wong, C. J. Collins, B. Yang, A. L. Beck, U. Chowdhury, R. D. Dupuis, and Campbell, “Low-noise black-illuminated AlxGa1−xN N-based p-i-n solar-blind ultraviolet photodetectors,” IEEE J. Quantum Electron. 37, 538–545 (2001).
[CrossRef]

Chang, B.

Y. Zhang, J. Zou, J. Niu, J. Zhao, and B. Chang, “Photoemission characteristics of different-structure reflection-mode GaAs photocathodes,” J. Appl. Phys. 110, 063113 (2011).
[CrossRef]

X. Wang, B. Chang, Y. Qian, Y. Du, H. Wang, and B. Li, “Preparation and evaluation system for NEA GaN photocathode,” Optoelectron. Adv. Mater. 5, 1007–1010 (2011).

X. Wang, B. Chang, Y. Du, and J. Qiao, “Quantum efficiency of GaN photocathode under different illumination,” Appl. Phys. Lett. 99, 042102 (2011).
[CrossRef]

Y. Zhang, J. Niu, J. Zhao, J. Zou, B. Chang, S. Feng, and H. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathode,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

Y. Zhang, J. Niu, J. Zou, B. Chang, and Y. Xiong, “Variation of spectral response for exponential-doped transmission-mode GaAs photocathodes in the preparation process,” Appl. Opt. 49, 3935–3940 (2010).
[CrossRef]

Chang, B.-K.

X.-H. Wang, P. Gao, H.-G. Wang, B. Li, and B.-K. Chang, “Influence of wet chemical cleaning on quantum efficiency of GaN photocathode,” Chin. Phys. B 22, 027901 (2013).
[CrossRef]

Y.-J. Zhang, J.-J. Zou, X.-H. Wang, B.-K. Chang, Y.-S. Qian, J.-J. Zhang, and P. Gao, “Comparison of the photoemission behavior between negative electron affinity GaAs and GaN photocathodes,” Chin. Phys. B 20, 048501 (2011).
[CrossRef]

X.-Y. Guo, B.-K. Chang, J.-L. Qiao, and X.-H. Wang, “Comparison of stability of GaN and GaAs photocathode,” Infrared Technol. 32, 117–120 (2010).

J.-L. Qiao, B.-K. Chang, X.-Q. Du, J. Niu, and J.-J. Zou, “Quantum efficiency decay mechanism for reflection-mode negative electron affinity GaN photocathode,” Chin. Phys. Soc. 59, 2855–2859 (2010).

Cheng, H.

Y. Zhang, J. Niu, J. Zhao, J. Zou, B. Chang, S. Feng, and H. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathode,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

Chowdhury, U.

T. Li, D. J. H. Lanmber, M. M. Wong, C. J. Collins, B. Yang, A. L. Beck, U. Chowdhury, R. D. Dupuis, and Campbell, “Low-noise black-illuminated AlxGa1−xN N-based p-i-n solar-blind ultraviolet photodetectors,” IEEE J. Quantum Electron. 37, 538–545 (2001).
[CrossRef]

Cicek, E.

Collins, C. J.

T. Li, D. J. H. Lanmber, M. M. Wong, C. J. Collins, B. Yang, A. L. Beck, U. Chowdhury, R. D. Dupuis, and Campbell, “Low-noise black-illuminated AlxGa1−xN N-based p-i-n solar-blind ultraviolet photodetectors,” IEEE J. Quantum Electron. 37, 538–545 (2001).
[CrossRef]

Davis, R. F.

A. D. Hanser, O.-H. Nam, M. D. Bremser, D. B. Thomson, T. Gehrke, T. S. Zheleva, and R. F. Davis, “Growth, doping and characterization of epitaxial thin films and patterned structures of AlN, GaN and AlxGa1−xN,” Diamond Relat. Mater. 8, 288–294 (1999).

Du, X.-Q.

J.-L. Qiao, B.-K. Chang, X.-Q. Du, J. Niu, and J.-J. Zou, “Quantum efficiency decay mechanism for reflection-mode negative electron affinity GaN photocathode,” Chin. Phys. Soc. 59, 2855–2859 (2010).

Du, Y.

X. Wang, B. Chang, Y. Qian, Y. Du, H. Wang, and B. Li, “Preparation and evaluation system for NEA GaN photocathode,” Optoelectron. Adv. Mater. 5, 1007–1010 (2011).

X. Wang, B. Chang, Y. Du, and J. Qiao, “Quantum efficiency of GaN photocathode under different illumination,” Appl. Phys. Lett. 99, 042102 (2011).
[CrossRef]

Dupuis, R. D.

T. Li, D. J. H. Lanmber, M. M. Wong, C. J. Collins, B. Yang, A. L. Beck, U. Chowdhury, R. D. Dupuis, and Campbell, “Low-noise black-illuminated AlxGa1−xN N-based p-i-n solar-blind ultraviolet photodetectors,” IEEE J. Quantum Electron. 37, 538–545 (2001).
[CrossRef]

Feng, S.

Y. Zhang, J. Niu, J. Zhao, J. Zou, B. Chang, S. Feng, and H. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathode,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

Gao, P.

X.-H. Wang, P. Gao, H.-G. Wang, B. Li, and B.-K. Chang, “Influence of wet chemical cleaning on quantum efficiency of GaN photocathode,” Chin. Phys. B 22, 027901 (2013).
[CrossRef]

Y.-J. Zhang, J.-J. Zou, X.-H. Wang, B.-K. Chang, Y.-S. Qian, J.-J. Zhang, and P. Gao, “Comparison of the photoemission behavior between negative electron affinity GaAs and GaN photocathodes,” Chin. Phys. B 20, 048501 (2011).
[CrossRef]

Gehrke, T.

A. D. Hanser, O.-H. Nam, M. D. Bremser, D. B. Thomson, T. Gehrke, T. S. Zheleva, and R. F. Davis, “Growth, doping and characterization of epitaxial thin films and patterned structures of AlN, GaN and AlxGa1−xN,” Diamond Relat. Mater. 8, 288–294 (1999).

Gibart, P.

E. Munoz, E. Monroy, J. L. Pau, F. Calle, F. Omnes, and P. Gibart, “III nitrides and UV detection,” J. Phys. Condens. Matter 13, 7115–7137 (2001).
[CrossRef]

Gislason, H. P.

D. Seghier and H. P. Gislason, “Characterization of photoconductivity in AlxGa1−xN materials,” J. Phys. D 42, 095103 (2009).

Guo, X.-Y.

X.-Y. Guo, B.-K. Chang, J.-L. Qiao, and X.-H. Wang, “Comparison of stability of GaN and GaAs photocathode,” Infrared Technol. 32, 117–120 (2010).

Hagino, M.

T. Wada, T. Nitta, T. Nomura, M. Miyao, and M. Hagino, “Influence of exposure to CO, CO2 and H2O on the stability of GaAs photocathodes,” Jpn. J. Appl. Phys. 29, 2087–2091 (1990).

Hanser, A. D.

A. D. Hanser, O.-H. Nam, M. D. Bremser, D. B. Thomson, T. Gehrke, T. S. Zheleva, and R. F. Davis, “Growth, doping and characterization of epitaxial thin films and patterned structures of AlN, GaN and AlxGa1−xN,” Diamond Relat. Mater. 8, 288–294 (1999).

Huang, E. K.-W.

Lanmber, D. J. H.

T. Li, D. J. H. Lanmber, M. M. Wong, C. J. Collins, B. Yang, A. L. Beck, U. Chowdhury, R. D. Dupuis, and Campbell, “Low-noise black-illuminated AlxGa1−xN N-based p-i-n solar-blind ultraviolet photodetectors,” IEEE J. Quantum Electron. 37, 538–545 (2001).
[CrossRef]

Lee, K. B.

K. B. Lee, P. J. Parbrook, T. Wang, F. Ranalli, and T. Martin, “Optical investigation of exciton localization in AlxGa1−xN,” J. Appl. Phys. 101, 053513 (2007).
[CrossRef]

Li, B.

X.-H. Wang, P. Gao, H.-G. Wang, B. Li, and B.-K. Chang, “Influence of wet chemical cleaning on quantum efficiency of GaN photocathode,” Chin. Phys. B 22, 027901 (2013).
[CrossRef]

X. Wang, B. Chang, Y. Qian, Y. Du, H. Wang, and B. Li, “Preparation and evaluation system for NEA GaN photocathode,” Optoelectron. Adv. Mater. 5, 1007–1010 (2011).

Li, T.

T. Li, D. J. H. Lanmber, M. M. Wong, C. J. Collins, B. Yang, A. L. Beck, U. Chowdhury, R. D. Dupuis, and Campbell, “Low-noise black-illuminated AlxGa1−xN N-based p-i-n solar-blind ultraviolet photodetectors,” IEEE J. Quantum Electron. 37, 538–545 (2001).
[CrossRef]

Martin, T.

K. B. Lee, P. J. Parbrook, T. Wang, F. Ranalli, and T. Martin, “Optical investigation of exciton localization in AlxGa1−xN,” J. Appl. Phys. 101, 053513 (2007).
[CrossRef]

McClintock, R.

Miyao, M.

T. Wada, T. Nitta, T. Nomura, M. Miyao, and M. Hagino, “Influence of exposure to CO, CO2 and H2O on the stability of GaAs photocathodes,” Jpn. J. Appl. Phys. 29, 2087–2091 (1990).

Monroy, E.

E. Munoz, E. Monroy, J. L. Pau, F. Calle, F. Omnes, and P. Gibart, “III nitrides and UV detection,” J. Phys. Condens. Matter 13, 7115–7137 (2001).
[CrossRef]

Munoz, E.

E. Munoz, E. Monroy, J. L. Pau, F. Calle, F. Omnes, and P. Gibart, “III nitrides and UV detection,” J. Phys. Condens. Matter 13, 7115–7137 (2001).
[CrossRef]

Nam, O.-H.

A. D. Hanser, O.-H. Nam, M. D. Bremser, D. B. Thomson, T. Gehrke, T. S. Zheleva, and R. F. Davis, “Growth, doping and characterization of epitaxial thin films and patterned structures of AlN, GaN and AlxGa1−xN,” Diamond Relat. Mater. 8, 288–294 (1999).

Nitta, T.

T. Wada, T. Nitta, T. Nomura, M. Miyao, and M. Hagino, “Influence of exposure to CO, CO2 and H2O on the stability of GaAs photocathodes,” Jpn. J. Appl. Phys. 29, 2087–2091 (1990).

Niu, J.

Y. Zhang, J. Zou, J. Niu, J. Zhao, and B. Chang, “Photoemission characteristics of different-structure reflection-mode GaAs photocathodes,” J. Appl. Phys. 110, 063113 (2011).
[CrossRef]

J.-L. Qiao, B.-K. Chang, X.-Q. Du, J. Niu, and J.-J. Zou, “Quantum efficiency decay mechanism for reflection-mode negative electron affinity GaN photocathode,” Chin. Phys. Soc. 59, 2855–2859 (2010).

Y. Zhang, J. Niu, J. Zhao, J. Zou, B. Chang, S. Feng, and H. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathode,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

Y. Zhang, J. Niu, J. Zou, B. Chang, and Y. Xiong, “Variation of spectral response for exponential-doped transmission-mode GaAs photocathodes in the preparation process,” Appl. Opt. 49, 3935–3940 (2010).
[CrossRef]

Nomura, T.

T. Wada, T. Nitta, T. Nomura, M. Miyao, and M. Hagino, “Influence of exposure to CO, CO2 and H2O on the stability of GaAs photocathodes,” Jpn. J. Appl. Phys. 29, 2087–2091 (1990).

Omnes, F.

E. Munoz, E. Monroy, J. L. Pau, F. Calle, F. Omnes, and P. Gibart, “III nitrides and UV detection,” J. Phys. Condens. Matter 13, 7115–7137 (2001).
[CrossRef]

Parbrook, P. J.

K. B. Lee, P. J. Parbrook, T. Wang, F. Ranalli, and T. Martin, “Optical investigation of exciton localization in AlxGa1−xN,” J. Appl. Phys. 101, 053513 (2007).
[CrossRef]

Pau, J. L.

E. Munoz, E. Monroy, J. L. Pau, F. Calle, F. Omnes, and P. Gibart, “III nitrides and UV detection,” J. Phys. Condens. Matter 13, 7115–7137 (2001).
[CrossRef]

Qian, Y.

X. Wang, B. Chang, Y. Qian, Y. Du, H. Wang, and B. Li, “Preparation and evaluation system for NEA GaN photocathode,” Optoelectron. Adv. Mater. 5, 1007–1010 (2011).

Qian, Y.-S.

Y.-J. Zhang, J.-J. Zou, X.-H. Wang, B.-K. Chang, Y.-S. Qian, J.-J. Zhang, and P. Gao, “Comparison of the photoemission behavior between negative electron affinity GaAs and GaN photocathodes,” Chin. Phys. B 20, 048501 (2011).
[CrossRef]

Qiao, J.

X. Wang, B. Chang, Y. Du, and J. Qiao, “Quantum efficiency of GaN photocathode under different illumination,” Appl. Phys. Lett. 99, 042102 (2011).
[CrossRef]

Qiao, J.-L.

J.-L. Qiao, B.-K. Chang, X.-Q. Du, J. Niu, and J.-J. Zou, “Quantum efficiency decay mechanism for reflection-mode negative electron affinity GaN photocathode,” Chin. Phys. Soc. 59, 2855–2859 (2010).

X.-Y. Guo, B.-K. Chang, J.-L. Qiao, and X.-H. Wang, “Comparison of stability of GaN and GaAs photocathode,” Infrared Technol. 32, 117–120 (2010).

Ranalli, F.

K. B. Lee, P. J. Parbrook, T. Wang, F. Ranalli, and T. Martin, “Optical investigation of exciton localization in AlxGa1−xN,” J. Appl. Phys. 101, 053513 (2007).
[CrossRef]

Razeghi, M.

Seghier, D.

D. Seghier and H. P. Gislason, “Characterization of photoconductivity in AlxGa1−xN materials,” J. Phys. D 42, 095103 (2009).

Thomson, D. B.

A. D. Hanser, O.-H. Nam, M. D. Bremser, D. B. Thomson, T. Gehrke, T. S. Zheleva, and R. F. Davis, “Growth, doping and characterization of epitaxial thin films and patterned structures of AlN, GaN and AlxGa1−xN,” Diamond Relat. Mater. 8, 288–294 (1999).

Vashaei, Z.

Wada, T.

T. Wada, T. Nitta, T. Nomura, M. Miyao, and M. Hagino, “Influence of exposure to CO, CO2 and H2O on the stability of GaAs photocathodes,” Jpn. J. Appl. Phys. 29, 2087–2091 (1990).

Wang, H.

X. Wang, B. Chang, Y. Qian, Y. Du, H. Wang, and B. Li, “Preparation and evaluation system for NEA GaN photocathode,” Optoelectron. Adv. Mater. 5, 1007–1010 (2011).

Wang, H.-G.

X.-H. Wang, P. Gao, H.-G. Wang, B. Li, and B.-K. Chang, “Influence of wet chemical cleaning on quantum efficiency of GaN photocathode,” Chin. Phys. B 22, 027901 (2013).
[CrossRef]

Wang, T.

K. B. Lee, P. J. Parbrook, T. Wang, F. Ranalli, and T. Martin, “Optical investigation of exciton localization in AlxGa1−xN,” J. Appl. Phys. 101, 053513 (2007).
[CrossRef]

Wang, X.

X. Wang, B. Chang, Y. Qian, Y. Du, H. Wang, and B. Li, “Preparation and evaluation system for NEA GaN photocathode,” Optoelectron. Adv. Mater. 5, 1007–1010 (2011).

X. Wang, B. Chang, Y. Du, and J. Qiao, “Quantum efficiency of GaN photocathode under different illumination,” Appl. Phys. Lett. 99, 042102 (2011).
[CrossRef]

Wang, X.-H.

X.-H. Wang, P. Gao, H.-G. Wang, B. Li, and B.-K. Chang, “Influence of wet chemical cleaning on quantum efficiency of GaN photocathode,” Chin. Phys. B 22, 027901 (2013).
[CrossRef]

Y.-J. Zhang, J.-J. Zou, X.-H. Wang, B.-K. Chang, Y.-S. Qian, J.-J. Zhang, and P. Gao, “Comparison of the photoemission behavior between negative electron affinity GaAs and GaN photocathodes,” Chin. Phys. B 20, 048501 (2011).
[CrossRef]

X.-Y. Guo, B.-K. Chang, J.-L. Qiao, and X.-H. Wang, “Comparison of stability of GaN and GaAs photocathode,” Infrared Technol. 32, 117–120 (2010).

Wong, M. M.

T. Li, D. J. H. Lanmber, M. M. Wong, C. J. Collins, B. Yang, A. L. Beck, U. Chowdhury, R. D. Dupuis, and Campbell, “Low-noise black-illuminated AlxGa1−xN N-based p-i-n solar-blind ultraviolet photodetectors,” IEEE J. Quantum Electron. 37, 538–545 (2001).
[CrossRef]

Xiong, Y.

Yang, B.

T. Li, D. J. H. Lanmber, M. M. Wong, C. J. Collins, B. Yang, A. L. Beck, U. Chowdhury, R. D. Dupuis, and Campbell, “Low-noise black-illuminated AlxGa1−xN N-based p-i-n solar-blind ultraviolet photodetectors,” IEEE J. Quantum Electron. 37, 538–545 (2001).
[CrossRef]

Zhang, J.-J.

Y.-J. Zhang, J.-J. Zou, X.-H. Wang, B.-K. Chang, Y.-S. Qian, J.-J. Zhang, and P. Gao, “Comparison of the photoemission behavior between negative electron affinity GaAs and GaN photocathodes,” Chin. Phys. B 20, 048501 (2011).
[CrossRef]

Zhang, Y.

Y. Zhang, J. Zou, J. Niu, J. Zhao, and B. Chang, “Photoemission characteristics of different-structure reflection-mode GaAs photocathodes,” J. Appl. Phys. 110, 063113 (2011).
[CrossRef]

Y. Zhang, J. Niu, J. Zhao, J. Zou, B. Chang, S. Feng, and H. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathode,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

Y. Zhang, J. Niu, J. Zou, B. Chang, and Y. Xiong, “Variation of spectral response for exponential-doped transmission-mode GaAs photocathodes in the preparation process,” Appl. Opt. 49, 3935–3940 (2010).
[CrossRef]

Zhang, Y.-J.

Y.-J. Zhang, J.-J. Zou, X.-H. Wang, B.-K. Chang, Y.-S. Qian, J.-J. Zhang, and P. Gao, “Comparison of the photoemission behavior between negative electron affinity GaAs and GaN photocathodes,” Chin. Phys. B 20, 048501 (2011).
[CrossRef]

Zhao, J.

Y. Zhang, J. Zou, J. Niu, J. Zhao, and B. Chang, “Photoemission characteristics of different-structure reflection-mode GaAs photocathodes,” J. Appl. Phys. 110, 063113 (2011).
[CrossRef]

Y. Zhang, J. Niu, J. Zhao, J. Zou, B. Chang, S. Feng, and H. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathode,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

Zheleva, T. S.

A. D. Hanser, O.-H. Nam, M. D. Bremser, D. B. Thomson, T. Gehrke, T. S. Zheleva, and R. F. Davis, “Growth, doping and characterization of epitaxial thin films and patterned structures of AlN, GaN and AlxGa1−xN,” Diamond Relat. Mater. 8, 288–294 (1999).

Zou, J.

Y. Zhang, J. Zou, J. Niu, J. Zhao, and B. Chang, “Photoemission characteristics of different-structure reflection-mode GaAs photocathodes,” J. Appl. Phys. 110, 063113 (2011).
[CrossRef]

Y. Zhang, J. Niu, J. Zhao, J. Zou, B. Chang, S. Feng, and H. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathode,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

Y. Zhang, J. Niu, J. Zou, B. Chang, and Y. Xiong, “Variation of spectral response for exponential-doped transmission-mode GaAs photocathodes in the preparation process,” Appl. Opt. 49, 3935–3940 (2010).
[CrossRef]

Zou, J.-J.

Y.-J. Zhang, J.-J. Zou, X.-H. Wang, B.-K. Chang, Y.-S. Qian, J.-J. Zhang, and P. Gao, “Comparison of the photoemission behavior between negative electron affinity GaAs and GaN photocathodes,” Chin. Phys. B 20, 048501 (2011).
[CrossRef]

J.-L. Qiao, B.-K. Chang, X.-Q. Du, J. Niu, and J.-J. Zou, “Quantum efficiency decay mechanism for reflection-mode negative electron affinity GaN photocathode,” Chin. Phys. Soc. 59, 2855–2859 (2010).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

X. Wang, B. Chang, Y. Du, and J. Qiao, “Quantum efficiency of GaN photocathode under different illumination,” Appl. Phys. Lett. 99, 042102 (2011).
[CrossRef]

Chin. Phys. B (2)

X.-H. Wang, P. Gao, H.-G. Wang, B. Li, and B.-K. Chang, “Influence of wet chemical cleaning on quantum efficiency of GaN photocathode,” Chin. Phys. B 22, 027901 (2013).
[CrossRef]

Y.-J. Zhang, J.-J. Zou, X.-H. Wang, B.-K. Chang, Y.-S. Qian, J.-J. Zhang, and P. Gao, “Comparison of the photoemission behavior between negative electron affinity GaAs and GaN photocathodes,” Chin. Phys. B 20, 048501 (2011).
[CrossRef]

Chin. Phys. Soc. (1)

J.-L. Qiao, B.-K. Chang, X.-Q. Du, J. Niu, and J.-J. Zou, “Quantum efficiency decay mechanism for reflection-mode negative electron affinity GaN photocathode,” Chin. Phys. Soc. 59, 2855–2859 (2010).

Diamond Relat. Mater. (1)

A. D. Hanser, O.-H. Nam, M. D. Bremser, D. B. Thomson, T. Gehrke, T. S. Zheleva, and R. F. Davis, “Growth, doping and characterization of epitaxial thin films and patterned structures of AlN, GaN and AlxGa1−xN,” Diamond Relat. Mater. 8, 288–294 (1999).

IEEE J. Quantum Electron. (1)

T. Li, D. J. H. Lanmber, M. M. Wong, C. J. Collins, B. Yang, A. L. Beck, U. Chowdhury, R. D. Dupuis, and Campbell, “Low-noise black-illuminated AlxGa1−xN N-based p-i-n solar-blind ultraviolet photodetectors,” IEEE J. Quantum Electron. 37, 538–545 (2001).
[CrossRef]

Infrared Technol. (1)

X.-Y. Guo, B.-K. Chang, J.-L. Qiao, and X.-H. Wang, “Comparison of stability of GaN and GaAs photocathode,” Infrared Technol. 32, 117–120 (2010).

J. Appl. Phys. (3)

Y. Zhang, J. Zou, J. Niu, J. Zhao, and B. Chang, “Photoemission characteristics of different-structure reflection-mode GaAs photocathodes,” J. Appl. Phys. 110, 063113 (2011).
[CrossRef]

K. B. Lee, P. J. Parbrook, T. Wang, F. Ranalli, and T. Martin, “Optical investigation of exciton localization in AlxGa1−xN,” J. Appl. Phys. 101, 053513 (2007).
[CrossRef]

Y. Zhang, J. Niu, J. Zhao, J. Zou, B. Chang, S. Feng, and H. Cheng, “Influence of exponential-doping structure on photoemission capability of transmission-mode GaAs photocathode,” J. Appl. Phys. 108, 093108 (2010).
[CrossRef]

J. Phys. Condens. Matter (1)

E. Munoz, E. Monroy, J. L. Pau, F. Calle, F. Omnes, and P. Gibart, “III nitrides and UV detection,” J. Phys. Condens. Matter 13, 7115–7137 (2001).
[CrossRef]

J. Phys. D (1)

D. Seghier and H. P. Gislason, “Characterization of photoconductivity in AlxGa1−xN materials,” J. Phys. D 42, 095103 (2009).

Jpn. J. Appl. Phys. (1)

T. Wada, T. Nitta, T. Nomura, M. Miyao, and M. Hagino, “Influence of exposure to CO, CO2 and H2O on the stability of GaAs photocathodes,” Jpn. J. Appl. Phys. 29, 2087–2091 (1990).

Opt. Lett. (1)

Optoelectron. Adv. Mater. (1)

X. Wang, B. Chang, Y. Qian, Y. Du, H. Wang, and B. Li, “Preparation and evaluation system for NEA GaN photocathode,” Optoelectron. Adv. Mater. 5, 1007–1010 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Structure of AlGaN photocathodes.

Fig. 2.
Fig. 2.

Photocurrent curves of three AlGaN photocathodes in the activation process. In experiment, point 1 is a turning moment where the Cs source was turned off and the O source was opened. And point 2 was another turning moment, in which the O source was closed while the Cs source was opened.

Fig. 3.
Fig. 3.

Attenuation photocurrent of the three samples.

Fig. 4.
Fig. 4.

Spectral response curves of the AlGaN photocathodes (a) before the attenuation test and (b) after the attenuation test.

Fig. 5.
Fig. 5.

Attenuate speed of three samples.

Fig. 6.
Fig. 6.

Band structure of r -mode AlGaN photocathode. E c is the conduction-band minimum, E v represents the valence-band maximum, E F is the Fermi level, E g is the bandgap, E vac stands for vacuum level, δ s and d s are the height and width of the surface BBR, respectively, h v is the photon energy.

Tables (2)

Tables Icon

Table 1. Parameters of the Three Samples Attenuation Photocurrent Curves

Tables Icon

Table 2. Parameters of the Three AlGaN Photocathodes

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

η ( t ) = A exp ( t τ ) + η 0 ,
V ( t ) = A τ exp ( t τ ) .
Y ( h v ) = 1.24 S λ / h ,
Y ( h v ) = P ( 1 R ) α h v L D α h v 2 L D 2 1 [ ( S v α h v D n ) exp ( α h v T e ) ( D n / L D ) cosh ( T e / L D ) + S v sinh ( T e / L D ) ( D n / L D ) sinh ( T e / L D ) + S v cosh ( T e / L D ) ( D n / L D ) cosh ( T e / L D ) + S v sinh ( T e / L D ) + α h v L D ] ,
P = P 0 exp [ k ( λ λ 0 ) ] ,

Metrics