Abstract

Reflective terahertz imaging with a first-order Hermite–Gaussian laser beam was experimentally investigated. High spatial resolution targets prepared by direct laser microprocessing were used to evaluate the performance. The reflection imaging system at 2.524 THz frequency demonstrated up to diffraction limited resolution using the single focusing mirror with the numerical aperture not smaller than 0.6. The TEM01 mode laser beam was also applied for practical samples such as silicon solar cell terahertz (THz) imaging. It is shown that usage of appropriate optics enables us to obtain high-quality THz images with the multimode laser beam.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theor. Tech. 50, 910–928 (2002).
    [CrossRef]
  2. Z. D. Taylor, R. S. Singh, M. O. Culjat, J. Y. Suen, W. S. Grundfest, H. Lee, and E. R. Brown, “Reflective terahertz imaging of porcine skin burns,” Opt. Lett. 33, 1258–1260 (2008).
    [CrossRef]
  3. L. Minkevičius, V. Tamosiūnas, I. Kašalynas, D. Seliuta, G. Valušis, A. Lisauskas, S. Boppel, H. G. Roskos, and K. Köhler, “Terahertz heterodyne imaging with InGaAs-based bow-tie diodes,” Appl. Phys. Lett. 99, 131101 (2011).
    [CrossRef]
  4. A. Ihring, E. Kessler, U. Dillner, F. Haenschke, U. Schinkel, M. Schubert, R. Haehle, and H.-G. Meyer, “High performance uncooled THz sensing structures based on antenna-coupled air-bridges,” Microelectron. Eng. 98, 512–515 (2012).
    [CrossRef]
  5. S. Boppel, A. Lisauskas, A. Max, V. Krozer, and H. G. Roskos, “CMOS detector arrays in a virtual 10-kilopixel camera for coherent terahertz real-time imaging,” Opt. Lett. 37, 536–538 (2012).
    [CrossRef]
  6. F. Schuster, D. Coquillat, H. Videlier, M. Sakowicz, F. Teppe, L. Dussopt, B. Giffard, T. Skotnicki, and W. Knap, “Broadband terahertz imaging with highly sensitive silicon CMOS detectors,” Opt. Express 19, 7827–7832 (2011).
    [CrossRef]
  7. H. Eisele, “State of the art and future of electronic sources at terahertz frequencies,” Electron. Lett. 46, S8–S11 (2010).
    [CrossRef]
  8. S. Kumar, C. W. I. Chan, Q. Hu, and J. L. Reno, “A 1.8 THz quantum cascade laser operating significantly above the temperature of hω/kB,” Nat. Phys. 7, 166–171 (2010).
    [CrossRef]
  9. Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High performance terahertz quantum cascade laser sources based on intracavity difference frequency generation,” Opt. Express 21, 968–973 (2013).
    [CrossRef]
  10. K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100, 251104 (2012).
    [CrossRef]
  11. M. I. Amanti, G. Scalari, M. Beck, and J. Faist, “Stand-alone system for high-resolution, real-time terahertz imaging,” Opt. Express 20, 2772–2778 (2012).
    [CrossRef]
  12. S. Ding, Q. Li, R. Yao, and Q. Wang, “High-resolution terahertz reflective imaging and image restoration,” Appl. Opt. 49, 6834–6839 (2010).
    [CrossRef]
  13. H. Richter, M. Greiner-Bär, S. G. Pavlov, A. D. Semenov, M. Wienold, L. Schrottke, M. Giehler, R. Hey, H. T. Grahn, and H. W. Hübers, “A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler,” Opt. Express 18, 10177–10187 (2010).
    [CrossRef]
  14. M. C. Kemp, “Explosives detection by terahertz spectroscopy—a bridge too far?,” IEEE Trans. Terahertz Sci. Technol. 1, 282–292 (2011).
    [CrossRef]
  15. J. L. Adam, I. Kašalynas, J. N. Hovenier, T. O. Klaassen, J. R. Gao, E. E. Orlova, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions,” Appl. Phys. Lett. 88, 151105 (2006).
    [CrossRef]
  16. M. Amanti, G. Scalari, F. Castellano, M. Beck, and J. Faist, “Low divergence terahertz photonic-wire laser,” Opt. Express 18, 6390–6395 (2010).
    [CrossRef]
  17. A. W. M. Lee and Q. Hu, “Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array,” Opt. Lett. 30, 2563–2565 (2005).
    [CrossRef]
  18. Q. Li, S.-H. Ding, R. Yao, and Q. Wang, “Real-time terahertz scanning imaging by use of a pyroelectric array camera and image denoising,” J. Opt. Soc. Am. A 27, 2381–2386 (2010).
    [CrossRef]
  19. I. Kašalynas, R. Venckevičius, D. Seliuta, I. Grigelionis, and G. Valušis, “InGaAs-based bow-tie diode for spectroscopic terahertz imaging,” J. Appl. Phys. 110, 114505 (2011).
    [CrossRef]
  20. I. Kašalynas, D. Seliuta, R. Simniškis, V. Tamošiūnas, V. Vaičikauskas, I. Grigelionis, R. Nedzinskas, K. Kohler, and G. Valušis, “The response rate of room temperature terahertz InGaAs-based bow-tie detector with broken symmetry,” in Publications of 33rd International Conference on Infrared, Millimeter, and Terahertz Waves, Pasadena, CA, September15–19, 2008, p. 4665701.
  21. C. B. Arnold and A. Piqué, “Laser direct-write processing,” MRS Bull. 32, 9–15 (2007).
    [CrossRef]
  22. A. Y. Vorobyev and C. Guo, “Direct creation of black silicon using femtosecond laser pulses,” Appl. Surf. Sci. 257, 7291–7294 (2011).
    [CrossRef]
  23. W. M. Steen and J. Mazumder, Laser Material Processing (Springer, 2010), pp. 79–129.

2013 (1)

2012 (4)

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100, 251104 (2012).
[CrossRef]

M. I. Amanti, G. Scalari, M. Beck, and J. Faist, “Stand-alone system for high-resolution, real-time terahertz imaging,” Opt. Express 20, 2772–2778 (2012).
[CrossRef]

A. Ihring, E. Kessler, U. Dillner, F. Haenschke, U. Schinkel, M. Schubert, R. Haehle, and H.-G. Meyer, “High performance uncooled THz sensing structures based on antenna-coupled air-bridges,” Microelectron. Eng. 98, 512–515 (2012).
[CrossRef]

S. Boppel, A. Lisauskas, A. Max, V. Krozer, and H. G. Roskos, “CMOS detector arrays in a virtual 10-kilopixel camera for coherent terahertz real-time imaging,” Opt. Lett. 37, 536–538 (2012).
[CrossRef]

2011 (5)

F. Schuster, D. Coquillat, H. Videlier, M. Sakowicz, F. Teppe, L. Dussopt, B. Giffard, T. Skotnicki, and W. Knap, “Broadband terahertz imaging with highly sensitive silicon CMOS detectors,” Opt. Express 19, 7827–7832 (2011).
[CrossRef]

M. C. Kemp, “Explosives detection by terahertz spectroscopy—a bridge too far?,” IEEE Trans. Terahertz Sci. Technol. 1, 282–292 (2011).
[CrossRef]

L. Minkevičius, V. Tamosiūnas, I. Kašalynas, D. Seliuta, G. Valušis, A. Lisauskas, S. Boppel, H. G. Roskos, and K. Köhler, “Terahertz heterodyne imaging with InGaAs-based bow-tie diodes,” Appl. Phys. Lett. 99, 131101 (2011).
[CrossRef]

I. Kašalynas, R. Venckevičius, D. Seliuta, I. Grigelionis, and G. Valušis, “InGaAs-based bow-tie diode for spectroscopic terahertz imaging,” J. Appl. Phys. 110, 114505 (2011).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Direct creation of black silicon using femtosecond laser pulses,” Appl. Surf. Sci. 257, 7291–7294 (2011).
[CrossRef]

2010 (6)

2008 (1)

2007 (1)

C. B. Arnold and A. Piqué, “Laser direct-write processing,” MRS Bull. 32, 9–15 (2007).
[CrossRef]

2006 (1)

J. L. Adam, I. Kašalynas, J. N. Hovenier, T. O. Klaassen, J. R. Gao, E. E. Orlova, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions,” Appl. Phys. Lett. 88, 151105 (2006).
[CrossRef]

2005 (1)

2002 (1)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theor. Tech. 50, 910–928 (2002).
[CrossRef]

Adam, J. L.

J. L. Adam, I. Kašalynas, J. N. Hovenier, T. O. Klaassen, J. R. Gao, E. E. Orlova, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions,” Appl. Phys. Lett. 88, 151105 (2006).
[CrossRef]

Adams, R. W.

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100, 251104 (2012).
[CrossRef]

Amann, M. C.

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100, 251104 (2012).
[CrossRef]

Amanti, M.

Amanti, M. I.

Arnold, C. B.

C. B. Arnold and A. Piqué, “Laser direct-write processing,” MRS Bull. 32, 9–15 (2007).
[CrossRef]

Bai, Y.

Bandyopadhyay, N.

Beck, M.

Belkin, M. A.

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100, 251104 (2012).
[CrossRef]

Boehm, G.

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100, 251104 (2012).
[CrossRef]

Boppel, S.

S. Boppel, A. Lisauskas, A. Max, V. Krozer, and H. G. Roskos, “CMOS detector arrays in a virtual 10-kilopixel camera for coherent terahertz real-time imaging,” Opt. Lett. 37, 536–538 (2012).
[CrossRef]

L. Minkevičius, V. Tamosiūnas, I. Kašalynas, D. Seliuta, G. Valušis, A. Lisauskas, S. Boppel, H. G. Roskos, and K. Köhler, “Terahertz heterodyne imaging with InGaAs-based bow-tie diodes,” Appl. Phys. Lett. 99, 131101 (2011).
[CrossRef]

Brown, E. R.

Castellano, F.

Chan, C. W. I.

S. Kumar, C. W. I. Chan, Q. Hu, and J. L. Reno, “A 1.8 THz quantum cascade laser operating significantly above the temperature of hω/kB,” Nat. Phys. 7, 166–171 (2010).
[CrossRef]

Coquillat, D.

Culjat, M. O.

Dillner, U.

A. Ihring, E. Kessler, U. Dillner, F. Haenschke, U. Schinkel, M. Schubert, R. Haehle, and H.-G. Meyer, “High performance uncooled THz sensing structures based on antenna-coupled air-bridges,” Microelectron. Eng. 98, 512–515 (2012).
[CrossRef]

Ding, S.

Ding, S.-H.

Dussopt, L.

Eisele, H.

H. Eisele, “State of the art and future of electronic sources at terahertz frequencies,” Electron. Lett. 46, S8–S11 (2010).
[CrossRef]

Faist, J.

Gao, J. R.

J. L. Adam, I. Kašalynas, J. N. Hovenier, T. O. Klaassen, J. R. Gao, E. E. Orlova, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions,” Appl. Phys. Lett. 88, 151105 (2006).
[CrossRef]

Giehler, M.

Giffard, B.

Grahn, H. T.

Grasse, C.

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100, 251104 (2012).
[CrossRef]

Greiner-Bär, M.

Grigelionis, I.

I. Kašalynas, R. Venckevičius, D. Seliuta, I. Grigelionis, and G. Valušis, “InGaAs-based bow-tie diode for spectroscopic terahertz imaging,” J. Appl. Phys. 110, 114505 (2011).
[CrossRef]

I. Kašalynas, D. Seliuta, R. Simniškis, V. Tamošiūnas, V. Vaičikauskas, I. Grigelionis, R. Nedzinskas, K. Kohler, and G. Valušis, “The response rate of room temperature terahertz InGaAs-based bow-tie detector with broken symmetry,” in Publications of 33rd International Conference on Infrared, Millimeter, and Terahertz Waves, Pasadena, CA, September15–19, 2008, p. 4665701.

Grundfest, W. S.

Guo, C.

A. Y. Vorobyev and C. Guo, “Direct creation of black silicon using femtosecond laser pulses,” Appl. Surf. Sci. 257, 7291–7294 (2011).
[CrossRef]

Haehle, R.

A. Ihring, E. Kessler, U. Dillner, F. Haenschke, U. Schinkel, M. Schubert, R. Haehle, and H.-G. Meyer, “High performance uncooled THz sensing structures based on antenna-coupled air-bridges,” Microelectron. Eng. 98, 512–515 (2012).
[CrossRef]

Haenschke, F.

A. Ihring, E. Kessler, U. Dillner, F. Haenschke, U. Schinkel, M. Schubert, R. Haehle, and H.-G. Meyer, “High performance uncooled THz sensing structures based on antenna-coupled air-bridges,” Microelectron. Eng. 98, 512–515 (2012).
[CrossRef]

Hey, R.

Hovenier, J. N.

J. L. Adam, I. Kašalynas, J. N. Hovenier, T. O. Klaassen, J. R. Gao, E. E. Orlova, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions,” Appl. Phys. Lett. 88, 151105 (2006).
[CrossRef]

Hu, Q.

S. Kumar, C. W. I. Chan, Q. Hu, and J. L. Reno, “A 1.8 THz quantum cascade laser operating significantly above the temperature of hω/kB,” Nat. Phys. 7, 166–171 (2010).
[CrossRef]

J. L. Adam, I. Kašalynas, J. N. Hovenier, T. O. Klaassen, J. R. Gao, E. E. Orlova, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions,” Appl. Phys. Lett. 88, 151105 (2006).
[CrossRef]

A. W. M. Lee and Q. Hu, “Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array,” Opt. Lett. 30, 2563–2565 (2005).
[CrossRef]

Hübers, H. W.

Ihring, A.

A. Ihring, E. Kessler, U. Dillner, F. Haenschke, U. Schinkel, M. Schubert, R. Haehle, and H.-G. Meyer, “High performance uncooled THz sensing structures based on antenna-coupled air-bridges,” Microelectron. Eng. 98, 512–515 (2012).
[CrossRef]

Jang, M.

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100, 251104 (2012).
[CrossRef]

Kašalynas, I.

L. Minkevičius, V. Tamosiūnas, I. Kašalynas, D. Seliuta, G. Valušis, A. Lisauskas, S. Boppel, H. G. Roskos, and K. Köhler, “Terahertz heterodyne imaging with InGaAs-based bow-tie diodes,” Appl. Phys. Lett. 99, 131101 (2011).
[CrossRef]

I. Kašalynas, R. Venckevičius, D. Seliuta, I. Grigelionis, and G. Valušis, “InGaAs-based bow-tie diode for spectroscopic terahertz imaging,” J. Appl. Phys. 110, 114505 (2011).
[CrossRef]

J. L. Adam, I. Kašalynas, J. N. Hovenier, T. O. Klaassen, J. R. Gao, E. E. Orlova, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions,” Appl. Phys. Lett. 88, 151105 (2006).
[CrossRef]

I. Kašalynas, D. Seliuta, R. Simniškis, V. Tamošiūnas, V. Vaičikauskas, I. Grigelionis, R. Nedzinskas, K. Kohler, and G. Valušis, “The response rate of room temperature terahertz InGaAs-based bow-tie detector with broken symmetry,” in Publications of 33rd International Conference on Infrared, Millimeter, and Terahertz Waves, Pasadena, CA, September15–19, 2008, p. 4665701.

Kemp, M. C.

M. C. Kemp, “Explosives detection by terahertz spectroscopy—a bridge too far?,” IEEE Trans. Terahertz Sci. Technol. 1, 282–292 (2011).
[CrossRef]

Kessler, E.

A. Ihring, E. Kessler, U. Dillner, F. Haenschke, U. Schinkel, M. Schubert, R. Haehle, and H.-G. Meyer, “High performance uncooled THz sensing structures based on antenna-coupled air-bridges,” Microelectron. Eng. 98, 512–515 (2012).
[CrossRef]

Klaassen, T. O.

J. L. Adam, I. Kašalynas, J. N. Hovenier, T. O. Klaassen, J. R. Gao, E. E. Orlova, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions,” Appl. Phys. Lett. 88, 151105 (2006).
[CrossRef]

Knap, W.

Kohler, K.

I. Kašalynas, D. Seliuta, R. Simniškis, V. Tamošiūnas, V. Vaičikauskas, I. Grigelionis, R. Nedzinskas, K. Kohler, and G. Valušis, “The response rate of room temperature terahertz InGaAs-based bow-tie detector with broken symmetry,” in Publications of 33rd International Conference on Infrared, Millimeter, and Terahertz Waves, Pasadena, CA, September15–19, 2008, p. 4665701.

Köhler, K.

L. Minkevičius, V. Tamosiūnas, I. Kašalynas, D. Seliuta, G. Valušis, A. Lisauskas, S. Boppel, H. G. Roskos, and K. Köhler, “Terahertz heterodyne imaging with InGaAs-based bow-tie diodes,” Appl. Phys. Lett. 99, 131101 (2011).
[CrossRef]

Krozer, V.

Kumar, S.

S. Kumar, C. W. I. Chan, Q. Hu, and J. L. Reno, “A 1.8 THz quantum cascade laser operating significantly above the temperature of hω/kB,” Nat. Phys. 7, 166–171 (2010).
[CrossRef]

J. L. Adam, I. Kašalynas, J. N. Hovenier, T. O. Klaassen, J. R. Gao, E. E. Orlova, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions,” Appl. Phys. Lett. 88, 151105 (2006).
[CrossRef]

Lee, A. W. M.

Lee, H.

Li, Q.

Lisauskas, A.

S. Boppel, A. Lisauskas, A. Max, V. Krozer, and H. G. Roskos, “CMOS detector arrays in a virtual 10-kilopixel camera for coherent terahertz real-time imaging,” Opt. Lett. 37, 536–538 (2012).
[CrossRef]

L. Minkevičius, V. Tamosiūnas, I. Kašalynas, D. Seliuta, G. Valušis, A. Lisauskas, S. Boppel, H. G. Roskos, and K. Köhler, “Terahertz heterodyne imaging with InGaAs-based bow-tie diodes,” Appl. Phys. Lett. 99, 131101 (2011).
[CrossRef]

Lu, Q. Y.

Max, A.

Mazumder, J.

W. M. Steen and J. Mazumder, Laser Material Processing (Springer, 2010), pp. 79–129.

Meyer, H.-G.

A. Ihring, E. Kessler, U. Dillner, F. Haenschke, U. Schinkel, M. Schubert, R. Haehle, and H.-G. Meyer, “High performance uncooled THz sensing structures based on antenna-coupled air-bridges,” Microelectron. Eng. 98, 512–515 (2012).
[CrossRef]

Minkevicius, L.

L. Minkevičius, V. Tamosiūnas, I. Kašalynas, D. Seliuta, G. Valušis, A. Lisauskas, S. Boppel, H. G. Roskos, and K. Köhler, “Terahertz heterodyne imaging with InGaAs-based bow-tie diodes,” Appl. Phys. Lett. 99, 131101 (2011).
[CrossRef]

Nedzinskas, R.

I. Kašalynas, D. Seliuta, R. Simniškis, V. Tamošiūnas, V. Vaičikauskas, I. Grigelionis, R. Nedzinskas, K. Kohler, and G. Valušis, “The response rate of room temperature terahertz InGaAs-based bow-tie detector with broken symmetry,” in Publications of 33rd International Conference on Infrared, Millimeter, and Terahertz Waves, Pasadena, CA, September15–19, 2008, p. 4665701.

Orlova, E. E.

J. L. Adam, I. Kašalynas, J. N. Hovenier, T. O. Klaassen, J. R. Gao, E. E. Orlova, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions,” Appl. Phys. Lett. 88, 151105 (2006).
[CrossRef]

Pavlov, S. G.

Piqué, A.

C. B. Arnold and A. Piqué, “Laser direct-write processing,” MRS Bull. 32, 9–15 (2007).
[CrossRef]

Razeghi, M.

Reno, J. L.

S. Kumar, C. W. I. Chan, Q. Hu, and J. L. Reno, “A 1.8 THz quantum cascade laser operating significantly above the temperature of hω/kB,” Nat. Phys. 7, 166–171 (2010).
[CrossRef]

J. L. Adam, I. Kašalynas, J. N. Hovenier, T. O. Klaassen, J. R. Gao, E. E. Orlova, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions,” Appl. Phys. Lett. 88, 151105 (2006).
[CrossRef]

Richter, H.

Roskos, H. G.

S. Boppel, A. Lisauskas, A. Max, V. Krozer, and H. G. Roskos, “CMOS detector arrays in a virtual 10-kilopixel camera for coherent terahertz real-time imaging,” Opt. Lett. 37, 536–538 (2012).
[CrossRef]

L. Minkevičius, V. Tamosiūnas, I. Kašalynas, D. Seliuta, G. Valušis, A. Lisauskas, S. Boppel, H. G. Roskos, and K. Köhler, “Terahertz heterodyne imaging with InGaAs-based bow-tie diodes,” Appl. Phys. Lett. 99, 131101 (2011).
[CrossRef]

Sakowicz, M.

Scalari, G.

Schinkel, U.

A. Ihring, E. Kessler, U. Dillner, F. Haenschke, U. Schinkel, M. Schubert, R. Haehle, and H.-G. Meyer, “High performance uncooled THz sensing structures based on antenna-coupled air-bridges,” Microelectron. Eng. 98, 512–515 (2012).
[CrossRef]

Schrottke, L.

Schubert, M.

A. Ihring, E. Kessler, U. Dillner, F. Haenschke, U. Schinkel, M. Schubert, R. Haehle, and H.-G. Meyer, “High performance uncooled THz sensing structures based on antenna-coupled air-bridges,” Microelectron. Eng. 98, 512–515 (2012).
[CrossRef]

Schuster, F.

Seliuta, D.

L. Minkevičius, V. Tamosiūnas, I. Kašalynas, D. Seliuta, G. Valušis, A. Lisauskas, S. Boppel, H. G. Roskos, and K. Köhler, “Terahertz heterodyne imaging with InGaAs-based bow-tie diodes,” Appl. Phys. Lett. 99, 131101 (2011).
[CrossRef]

I. Kašalynas, R. Venckevičius, D. Seliuta, I. Grigelionis, and G. Valušis, “InGaAs-based bow-tie diode for spectroscopic terahertz imaging,” J. Appl. Phys. 110, 114505 (2011).
[CrossRef]

I. Kašalynas, D. Seliuta, R. Simniškis, V. Tamošiūnas, V. Vaičikauskas, I. Grigelionis, R. Nedzinskas, K. Kohler, and G. Valušis, “The response rate of room temperature terahertz InGaAs-based bow-tie detector with broken symmetry,” in Publications of 33rd International Conference on Infrared, Millimeter, and Terahertz Waves, Pasadena, CA, September15–19, 2008, p. 4665701.

Semenov, A. D.

Siegel, P. H.

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theor. Tech. 50, 910–928 (2002).
[CrossRef]

Simniškis, R.

I. Kašalynas, D. Seliuta, R. Simniškis, V. Tamošiūnas, V. Vaičikauskas, I. Grigelionis, R. Nedzinskas, K. Kohler, and G. Valušis, “The response rate of room temperature terahertz InGaAs-based bow-tie detector with broken symmetry,” in Publications of 33rd International Conference on Infrared, Millimeter, and Terahertz Waves, Pasadena, CA, September15–19, 2008, p. 4665701.

Singh, R. S.

Skotnicki, T.

Slivken, S.

Steen, W. M.

W. M. Steen and J. Mazumder, Laser Material Processing (Springer, 2010), pp. 79–129.

Suen, J. Y.

Tamosiunas, V.

L. Minkevičius, V. Tamosiūnas, I. Kašalynas, D. Seliuta, G. Valušis, A. Lisauskas, S. Boppel, H. G. Roskos, and K. Köhler, “Terahertz heterodyne imaging with InGaAs-based bow-tie diodes,” Appl. Phys. Lett. 99, 131101 (2011).
[CrossRef]

Tamošiunas, V.

I. Kašalynas, D. Seliuta, R. Simniškis, V. Tamošiūnas, V. Vaičikauskas, I. Grigelionis, R. Nedzinskas, K. Kohler, and G. Valušis, “The response rate of room temperature terahertz InGaAs-based bow-tie detector with broken symmetry,” in Publications of 33rd International Conference on Infrared, Millimeter, and Terahertz Waves, Pasadena, CA, September15–19, 2008, p. 4665701.

Taylor, Z. D.

Teppe, F.

Vaicikauskas, V.

I. Kašalynas, D. Seliuta, R. Simniškis, V. Tamošiūnas, V. Vaičikauskas, I. Grigelionis, R. Nedzinskas, K. Kohler, and G. Valušis, “The response rate of room temperature terahertz InGaAs-based bow-tie detector with broken symmetry,” in Publications of 33rd International Conference on Infrared, Millimeter, and Terahertz Waves, Pasadena, CA, September15–19, 2008, p. 4665701.

Valušis, G.

I. Kašalynas, R. Venckevičius, D. Seliuta, I. Grigelionis, and G. Valušis, “InGaAs-based bow-tie diode for spectroscopic terahertz imaging,” J. Appl. Phys. 110, 114505 (2011).
[CrossRef]

L. Minkevičius, V. Tamosiūnas, I. Kašalynas, D. Seliuta, G. Valušis, A. Lisauskas, S. Boppel, H. G. Roskos, and K. Köhler, “Terahertz heterodyne imaging with InGaAs-based bow-tie diodes,” Appl. Phys. Lett. 99, 131101 (2011).
[CrossRef]

I. Kašalynas, D. Seliuta, R. Simniškis, V. Tamošiūnas, V. Vaičikauskas, I. Grigelionis, R. Nedzinskas, K. Kohler, and G. Valušis, “The response rate of room temperature terahertz InGaAs-based bow-tie detector with broken symmetry,” in Publications of 33rd International Conference on Infrared, Millimeter, and Terahertz Waves, Pasadena, CA, September15–19, 2008, p. 4665701.

Venckevicius, R.

I. Kašalynas, R. Venckevičius, D. Seliuta, I. Grigelionis, and G. Valušis, “InGaAs-based bow-tie diode for spectroscopic terahertz imaging,” J. Appl. Phys. 110, 114505 (2011).
[CrossRef]

Videlier, H.

Vijayraghavan, K.

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100, 251104 (2012).
[CrossRef]

Vizbaras, A.

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100, 251104 (2012).
[CrossRef]

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Direct creation of black silicon using femtosecond laser pulses,” Appl. Surf. Sci. 257, 7291–7294 (2011).
[CrossRef]

Wang, Q.

Wienold, M.

Williams, B. S.

J. L. Adam, I. Kašalynas, J. N. Hovenier, T. O. Klaassen, J. R. Gao, E. E. Orlova, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions,” Appl. Phys. Lett. 88, 151105 (2006).
[CrossRef]

Yao, R.

Appl. Opt. (1)

Appl. Phys. Lett. (3)

J. L. Adam, I. Kašalynas, J. N. Hovenier, T. O. Klaassen, J. R. Gao, E. E. Orlova, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions,” Appl. Phys. Lett. 88, 151105 (2006).
[CrossRef]

L. Minkevičius, V. Tamosiūnas, I. Kašalynas, D. Seliuta, G. Valušis, A. Lisauskas, S. Boppel, H. G. Roskos, and K. Köhler, “Terahertz heterodyne imaging with InGaAs-based bow-tie diodes,” Appl. Phys. Lett. 99, 131101 (2011).
[CrossRef]

K. Vijayraghavan, R. W. Adams, A. Vizbaras, M. Jang, C. Grasse, G. Boehm, M. C. Amann, and M. A. Belkin, “Terahertz sources based on Čerenkov difference-frequency generation in quantum cascade lasers,” Appl. Phys. Lett. 100, 251104 (2012).
[CrossRef]

Appl. Surf. Sci. (1)

A. Y. Vorobyev and C. Guo, “Direct creation of black silicon using femtosecond laser pulses,” Appl. Surf. Sci. 257, 7291–7294 (2011).
[CrossRef]

Electron. Lett. (1)

H. Eisele, “State of the art and future of electronic sources at terahertz frequencies,” Electron. Lett. 46, S8–S11 (2010).
[CrossRef]

IEEE Trans. Microwave Theor. Tech. (1)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theor. Tech. 50, 910–928 (2002).
[CrossRef]

IEEE Trans. Terahertz Sci. Technol. (1)

M. C. Kemp, “Explosives detection by terahertz spectroscopy—a bridge too far?,” IEEE Trans. Terahertz Sci. Technol. 1, 282–292 (2011).
[CrossRef]

J. Appl. Phys. (1)

I. Kašalynas, R. Venckevičius, D. Seliuta, I. Grigelionis, and G. Valušis, “InGaAs-based bow-tie diode for spectroscopic terahertz imaging,” J. Appl. Phys. 110, 114505 (2011).
[CrossRef]

J. Opt. Soc. Am. A (1)

Microelectron. Eng. (1)

A. Ihring, E. Kessler, U. Dillner, F. Haenschke, U. Schinkel, M. Schubert, R. Haehle, and H.-G. Meyer, “High performance uncooled THz sensing structures based on antenna-coupled air-bridges,” Microelectron. Eng. 98, 512–515 (2012).
[CrossRef]

MRS Bull. (1)

C. B. Arnold and A. Piqué, “Laser direct-write processing,” MRS Bull. 32, 9–15 (2007).
[CrossRef]

Nat. Phys. (1)

S. Kumar, C. W. I. Chan, Q. Hu, and J. L. Reno, “A 1.8 THz quantum cascade laser operating significantly above the temperature of hω/kB,” Nat. Phys. 7, 166–171 (2010).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Other (2)

I. Kašalynas, D. Seliuta, R. Simniškis, V. Tamošiūnas, V. Vaičikauskas, I. Grigelionis, R. Nedzinskas, K. Kohler, and G. Valušis, “The response rate of room temperature terahertz InGaAs-based bow-tie detector with broken symmetry,” in Publications of 33rd International Conference on Infrared, Millimeter, and Terahertz Waves, Pasadena, CA, September15–19, 2008, p. 4665701.

W. M. Steen and J. Mazumder, Laser Material Processing (Springer, 2010), pp. 79–129.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Setup for THz imaging in reflection mode. M1 and M2, the spherical mirror; M3, flat mirror; M4, off-axis 90° parabolic mirror; BS1 and BS2, the beam splitter; D1 and D2, THz detector.

Fig. 2.
Fig. 2.

Beam profiles of generated (a)  TEM 00 and (b)  TEM 01 modes of the commercial THz laser operating at 2.524 THz frequency. The emitted power in the beam was 10 and 20 mW, respectively.

Fig. 3.
Fig. 3.

(a) Processing scheme of the “Siemens star” by the DLW technique. (b) Picture of the sample made of copper on silicon substrate. The outer diameter of the “Siemens star” is of 20 mm.

Fig. 4.
Fig. 4.

Reflectance image of the “Siemens star” measured by the system based on the TEM 01 mode laser beam and large-pixel-area detector with the focusing mirror M4 of (a)  f = 15 cm , (b)  f = 10 cm , (c)  f = 5 cm , and (d)  f = 15 cm . For the case (d), the pinhole of 1 mm in diameter was inserted in front of the THz detector for single lobe of multimode laser beam selection for imaging. The concentric circle of r R = 42 mm radius calculated by Eq. (1) is shown in dashed red color line. Recorded in less than 4 min one THz image consists of 147 × 73 pixels of 150 μm × 300 μm size.

Fig. 5.
Fig. 5.

Reflectance position profile along circular concentric line sketched on top of each plot in Figs. 4(a)4(c). The radius of the virtual concentric circle was 4 mm.

Fig. 6.
Fig. 6.

THz image of the “Siemens start” measured with the TEM 01 -laser beam and 0.6 NA focusing lens ( f = 5 cm ). A concentric circle calculated by Eq. (1) is drawn in dashed red line. The THz image consists of 280 × 140 pixels of 75 μm × 150 μm size. It was scanned in 14 min. Reflectance intensity is presented in log scale. The black region corresponds to an area with 1% and lower reflectance.

Fig. 7.
Fig. 7.

(a) Reflection THz image of the solar cell sample measured with the 118.8 μm wavelength TEM 01 mode laser beam and 0.3 NA ( f = 10 cm ) focusing mirror. The THz image consists of 300 × 38 pixels of 300 μm × 300 μm size. Imaging time was about 12 min. (b) and (c) Photographed sample areas with curved stripe electrode marked by white color rectangle in the THz image.

Tables (1)

Tables Icon

Table 1. THz Imaging Resolution Achieved with the TEM 01 Laser Beam and the Single Focusing Mirror

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

r R = 1.22 λ N f / π w .

Metrics