Abstract

A procedure for thin lens structural design of a new class of pupil stabilized zoom systems is presented. This is facilitated by an implementation of evolutionary programming that searches a multivariate hyperspace formed by design variables, namely, powers of individual components and intercomponent separations. Two coupled components in the lens system act as the variator for the zoom system, and another component in the system acts as the compensator. A fixed axial location of the image plane is achieved by moving the coupled variator and the compensator nonlinearly, while the entrance and the exit pupils are allowed small shifts in their axial locations over the zooming range. The latter relaxation opens up the possibility for effective two-conjugate zoom systems with only two independent component movements. Illustrative examples for thin lens structures of two-conjugate zoom systems are presented.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Tanaka, “Zoom lens having close up focusing control,” U.S. patent4,124,274 (November7, 1978).
  2. Y. Kondo, “Zoom lens,” UK patent2,450,630 (July7, 2010).
  3. G. Wooters and E. W. Silvertooth, “Optically compensated zoom lenses,” J. Opt. Soc. Am. 55, 347–351 (1965).
    [CrossRef]
  4. H. H. Hopkins, “2-conjugate zoom system,” in Optical Instrumentation and Technique (Oriel, 1970), pp. 444–452.
  5. H. H. Hopkins, “Zoom lens system for maintaining two pairs of conjugate planes fixed,” U.S. patent3,619,035 (November9, 1971).
  6. S. J. Dobson, J. Farmer, and G. Smith, “Two-conjugate zoom system for an ophthalmoscope,” Opt. Laser Technol. 23, 79–83 (1991).
    [CrossRef]
  7. D. S. Grey, “Zoom lens design,” Proc. SPIE 39, 223–230 (1973).
    [CrossRef]
  8. K. M. Bystricky and P. R. Yoder, “An improved zoom lens with external entrance pupil,” Proc. SPIE 39, 299–304 (1973).
    [CrossRef]
  9. M.-S. Yeh, S.-G. Shiue, and M.-H. Lu, “First-order analysis of a two-conjugate zoom system,” Opt. Eng. 35, 3348–3360 (1996).
    [CrossRef]
  10. M.-S. Yeh, S.-G. Shiue, and M.-H. Lu, “Solution for first-order design of a two-conjugate zoom system,” Opt. Eng. 36, 2261–2267 (1997).
    [CrossRef]
  11. T. Kryszczyński, “Method to solve any paraxial pupil problems in zoom systems,” Proc. SPIE 3129, 193–204 (1997).
    [CrossRef]
  12. A. Mikš and J. Novák, “Three-component double conjugate zoom lens system from tunable focus lenses,” Appl. Opt. 52, 862–865 (2013).
    [CrossRef]
  13. S. Pal and L. N. Hazra, “Ab initio synthesis of linearly compensated zoom lenses by evolutionary programming,” Appl. Opt. 50, 1434–1441 (2011).
    [CrossRef]
  14. S. Pal and L. N. Hazra, “Structural design of optically compensated zoom lenses,” Optik 123, 1534–1541 (2012).
    [CrossRef]
  15. S. Pal and L. N. Hazra, “Structural design of mechanically compensated zoom lenses by evolutionary programming,” Opt. Eng. 51, 63001 (2012).
    [CrossRef]
  16. D. E. Goldberg, Genetic Algorithm in Search, Optimization and Machine Learning (Addison-Wesley, 1989).

2013

2012

S. Pal and L. N. Hazra, “Structural design of optically compensated zoom lenses,” Optik 123, 1534–1541 (2012).
[CrossRef]

S. Pal and L. N. Hazra, “Structural design of mechanically compensated zoom lenses by evolutionary programming,” Opt. Eng. 51, 63001 (2012).
[CrossRef]

2011

1997

M.-S. Yeh, S.-G. Shiue, and M.-H. Lu, “Solution for first-order design of a two-conjugate zoom system,” Opt. Eng. 36, 2261–2267 (1997).
[CrossRef]

T. Kryszczyński, “Method to solve any paraxial pupil problems in zoom systems,” Proc. SPIE 3129, 193–204 (1997).
[CrossRef]

1996

M.-S. Yeh, S.-G. Shiue, and M.-H. Lu, “First-order analysis of a two-conjugate zoom system,” Opt. Eng. 35, 3348–3360 (1996).
[CrossRef]

1991

S. J. Dobson, J. Farmer, and G. Smith, “Two-conjugate zoom system for an ophthalmoscope,” Opt. Laser Technol. 23, 79–83 (1991).
[CrossRef]

1973

D. S. Grey, “Zoom lens design,” Proc. SPIE 39, 223–230 (1973).
[CrossRef]

K. M. Bystricky and P. R. Yoder, “An improved zoom lens with external entrance pupil,” Proc. SPIE 39, 299–304 (1973).
[CrossRef]

1965

Bystricky, K. M.

K. M. Bystricky and P. R. Yoder, “An improved zoom lens with external entrance pupil,” Proc. SPIE 39, 299–304 (1973).
[CrossRef]

Dobson, S. J.

S. J. Dobson, J. Farmer, and G. Smith, “Two-conjugate zoom system for an ophthalmoscope,” Opt. Laser Technol. 23, 79–83 (1991).
[CrossRef]

Farmer, J.

S. J. Dobson, J. Farmer, and G. Smith, “Two-conjugate zoom system for an ophthalmoscope,” Opt. Laser Technol. 23, 79–83 (1991).
[CrossRef]

Goldberg, D. E.

D. E. Goldberg, Genetic Algorithm in Search, Optimization and Machine Learning (Addison-Wesley, 1989).

Grey, D. S.

D. S. Grey, “Zoom lens design,” Proc. SPIE 39, 223–230 (1973).
[CrossRef]

Hazra, L. N.

S. Pal and L. N. Hazra, “Structural design of optically compensated zoom lenses,” Optik 123, 1534–1541 (2012).
[CrossRef]

S. Pal and L. N. Hazra, “Structural design of mechanically compensated zoom lenses by evolutionary programming,” Opt. Eng. 51, 63001 (2012).
[CrossRef]

S. Pal and L. N. Hazra, “Ab initio synthesis of linearly compensated zoom lenses by evolutionary programming,” Appl. Opt. 50, 1434–1441 (2011).
[CrossRef]

Hopkins, H. H.

H. H. Hopkins, “2-conjugate zoom system,” in Optical Instrumentation and Technique (Oriel, 1970), pp. 444–452.

H. H. Hopkins, “Zoom lens system for maintaining two pairs of conjugate planes fixed,” U.S. patent3,619,035 (November9, 1971).

Kondo, Y.

Y. Kondo, “Zoom lens,” UK patent2,450,630 (July7, 2010).

Kryszczynski, T.

T. Kryszczyński, “Method to solve any paraxial pupil problems in zoom systems,” Proc. SPIE 3129, 193–204 (1997).
[CrossRef]

Lu, M.-H.

M.-S. Yeh, S.-G. Shiue, and M.-H. Lu, “Solution for first-order design of a two-conjugate zoom system,” Opt. Eng. 36, 2261–2267 (1997).
[CrossRef]

M.-S. Yeh, S.-G. Shiue, and M.-H. Lu, “First-order analysis of a two-conjugate zoom system,” Opt. Eng. 35, 3348–3360 (1996).
[CrossRef]

Mikš, A.

Novák, J.

Pal, S.

S. Pal and L. N. Hazra, “Structural design of mechanically compensated zoom lenses by evolutionary programming,” Opt. Eng. 51, 63001 (2012).
[CrossRef]

S. Pal and L. N. Hazra, “Structural design of optically compensated zoom lenses,” Optik 123, 1534–1541 (2012).
[CrossRef]

S. Pal and L. N. Hazra, “Ab initio synthesis of linearly compensated zoom lenses by evolutionary programming,” Appl. Opt. 50, 1434–1441 (2011).
[CrossRef]

Shiue, S.-G.

M.-S. Yeh, S.-G. Shiue, and M.-H. Lu, “Solution for first-order design of a two-conjugate zoom system,” Opt. Eng. 36, 2261–2267 (1997).
[CrossRef]

M.-S. Yeh, S.-G. Shiue, and M.-H. Lu, “First-order analysis of a two-conjugate zoom system,” Opt. Eng. 35, 3348–3360 (1996).
[CrossRef]

Silvertooth, E. W.

Smith, G.

S. J. Dobson, J. Farmer, and G. Smith, “Two-conjugate zoom system for an ophthalmoscope,” Opt. Laser Technol. 23, 79–83 (1991).
[CrossRef]

Tanaka, K.

K. Tanaka, “Zoom lens having close up focusing control,” U.S. patent4,124,274 (November7, 1978).

Wooters, G.

Yeh, M.-S.

M.-S. Yeh, S.-G. Shiue, and M.-H. Lu, “Solution for first-order design of a two-conjugate zoom system,” Opt. Eng. 36, 2261–2267 (1997).
[CrossRef]

M.-S. Yeh, S.-G. Shiue, and M.-H. Lu, “First-order analysis of a two-conjugate zoom system,” Opt. Eng. 35, 3348–3360 (1996).
[CrossRef]

Yoder, P. R.

K. M. Bystricky and P. R. Yoder, “An improved zoom lens with external entrance pupil,” Proc. SPIE 39, 299–304 (1973).
[CrossRef]

Appl. Opt.

J. Opt. Soc. Am.

Opt. Eng.

S. Pal and L. N. Hazra, “Structural design of mechanically compensated zoom lenses by evolutionary programming,” Opt. Eng. 51, 63001 (2012).
[CrossRef]

M.-S. Yeh, S.-G. Shiue, and M.-H. Lu, “First-order analysis of a two-conjugate zoom system,” Opt. Eng. 35, 3348–3360 (1996).
[CrossRef]

M.-S. Yeh, S.-G. Shiue, and M.-H. Lu, “Solution for first-order design of a two-conjugate zoom system,” Opt. Eng. 36, 2261–2267 (1997).
[CrossRef]

Opt. Laser Technol.

S. J. Dobson, J. Farmer, and G. Smith, “Two-conjugate zoom system for an ophthalmoscope,” Opt. Laser Technol. 23, 79–83 (1991).
[CrossRef]

Optik

S. Pal and L. N. Hazra, “Structural design of optically compensated zoom lenses,” Optik 123, 1534–1541 (2012).
[CrossRef]

Proc. SPIE

D. S. Grey, “Zoom lens design,” Proc. SPIE 39, 223–230 (1973).
[CrossRef]

K. M. Bystricky and P. R. Yoder, “An improved zoom lens with external entrance pupil,” Proc. SPIE 39, 299–304 (1973).
[CrossRef]

T. Kryszczyński, “Method to solve any paraxial pupil problems in zoom systems,” Proc. SPIE 3129, 193–204 (1997).
[CrossRef]

Other

K. Tanaka, “Zoom lens having close up focusing control,” U.S. patent4,124,274 (November7, 1978).

Y. Kondo, “Zoom lens,” UK patent2,450,630 (July7, 2010).

H. H. Hopkins, “2-conjugate zoom system,” in Optical Instrumentation and Technique (Oriel, 1970), pp. 444–452.

H. H. Hopkins, “Zoom lens system for maintaining two pairs of conjugate planes fixed,” U.S. patent3,619,035 (November9, 1971).

D. E. Goldberg, Genetic Algorithm in Search, Optimization and Machine Learning (Addison-Wesley, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Typical chromosome representing a four-component zoom lens.

Fig. 2.
Fig. 2.

Flowchart of the optimization technique.

Fig. 3.
Fig. 3.

Three-component optical system. O, object; O, image; E, entrance pupil; E, exit pupil; S, aperture stop; PMR, paraxial marginal ray; PPR, paraxial pupil ray; LE, axial distance of the entrance pupil from the object plane; LE, axial distance of the exit pupil from the image plane.

Fig. 4.
Fig. 4.

Synthesis of zoom structure corresponding to a chromosome.

Fig. 5.
Fig. 5.

Axial shifts of (a) entrance pupil and (b) exit pupil over the zoom range from their axial locations ETel and ETel at the telephoto position.

Fig. 6.
Fig. 6.

5× four-component zoom lens having stable entrance and exit pupils. The first and the fourth components are coupled together, and the combination acts as the variator. The second component is the compensator. The stop is on the fixed third component. Powers of individual components are written at the bottom.

Fig. 7.
Fig. 7.

Percentage axial shifts of (a) entrance pupil and (b) exit pupil versus magnification for the zoom lens of Fig. 6.

Fig. 8.
Fig. 8.

8× five-component zoom lens having stable entrance and exit pupils. The second and the fifth components are coupled together, and the combination acts as the variator. The fourth component is the compensator. The stop is on the fixed third component. Powers of individual components are written at the bottom.

Fig. 9.
Fig. 9.

Percentage axial shifts of (a) entrance pupil and (b) exit pupil versus magnification for the zoom lens of Fig. 8.

Tables (2)

Tables Icon

Table 1. Intercomponent Separations at Five Zoom Positions of a 5× Four-Component Zoom Lensa

Tables Icon

Table 2. Intercomponent Separations at Five Zoom Positions of an 8× Five-Component Zoom Lensa

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

k˜i=(Tm)ki,
d˜i=diT,
m=mTelmWA,
lGi=log2xmaxixminiεi,
g=1lPop×lchrilPop(HD)i,
ΔLE=ΔLE+ΔLE,ΔLE=ΔLE+ΔLE,
Φ=ω1(mWAmminmWA)2+ω2(mTelmmaxmTel)2+ω3(ΔLELE)2+ω4(ΔLELE)2+ω5(T˜TT˜)2+ω6(1kWAi=1NkiKT)2.
Ψ=11+Φ.

Metrics