Abstract

Orthogonal dual-pulse laser-ablation laser-induced breakdown spectroscopy was first used to determine the laser-ablation threshold of samples. In this technique, the first laser pulse was used to ablate samples and the second time-delayed laser pulse was used to break down the ablated samples. Orthogonal geometric arrangement was adopted in this technique to ensure both high spatial resolution and high detection sensitivity. By monitoring the intensities of the atomic emission of the plasma under different pulse energies of the ablation laser and using an extrapolation method, the minimum pulse energy needed for the ablation of copper alloy under the tightly focused condition with a nanosecond 532 nm ablation laser was determined to be 1.9±0.1μJ. After experimentally determining the beam spot size on the focal plan, the fluence threshold of the studied sample was determined to be 0.64±0.06J/cm2. This technique is able to realize direct and sensitive determination of a laser-ablation threshold of solid samples, and it is possible to find some important applications in different fields.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. L. Mao, O. V. Borisov, and R. E. Russo, “Enhancements in laser ablation inductively coupled plasma-atomic emission spectrometry based on laser properties and ambient environment,” Spectrochim. Acta Part B 53,731–739 (1998).
    [CrossRef]
  2. D. Drescher, C. Giesen, H. Traub, U. Panne, J. Kneipp, and N. Jakubowski, “Quantitative imaging of gold and silver nanoparticles in single eukaryotic cells by laser ablation ICP-MS,” Anal. Chem. 84, 9684–9688 (2012).
    [CrossRef]
  3. K. W. Liu, Z. NiCkolov, J. Oh, and H. M. Noh, “KrF excimer laser micromachining of MEMS materials: characterization and applications,” J. Micromech. Microeng. 22, 015012 (2012).
    [CrossRef]
  4. A. A. Melaibari and P. Molian, “Pulsed laser deposition to synthesize the bridge structure of artificial nacre: comparison of nano- and femtosecond lasers,” J. Appl. Phys. 112, 104303 (2012).
    [CrossRef]
  5. J. Miller, P. K. Yu, S. J. Cringle, and D. Y. Yu, “Laser-fiber system for ablation of intraocular tissue using the fourth harmonic of a pulsed Nd:YAG laser,” Appl. Opt. 46, 413–420 (2007).
    [CrossRef]
  6. A. Borowiec, H. F. Tiedje, and H. K. Huagen, “Wavelength dependence of the single pulse femtosecond laser ablation threshold of indium phosphide in the 400–2050 nm range,” Appl. Surf. Sci. 243, 129–137 (2005).
    [CrossRef]
  7. S. Tao, R. L. Jacobsen, and B. X. Wu, “Physical mechanisms for picosecond laser ablation of silicon carbide at infrared and ultraviolet wavelengths,” Appl. Phys. Lett. 97, 181918 (2010).
    [CrossRef]
  8. W. Marine, N. M. Bulgakova, L. Patrone, and I. Ozerov, “Insight into electronic mechanisms of nanosecond-laser ablation of silicon,” J. Appl. Phys. 103, 094902 (2008).
    [CrossRef]
  9. R. F. Huang, Q. Yu, Q. G. Tong, W. Hang, J. He, and B. L. Huang, “Influence of wavelength, irradiance, and the buffer gas pressure on high irradiance laser ablation and ionization source coupled with an orthogonal time of flight mass spectrometer,” Spectrochim. Acta Part B 64, 255–261 (2009).
    [CrossRef]
  10. F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Towards nanostructuring with femtosecond laser pulses,” Appl. Phys. A 77, 229–235 (2003).
  11. D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film,” Appl. Phys. Lett. 91, 251118 (2007).
    [CrossRef]
  12. V. Zorba, X. L. Mao, and R. E. Russo, “Ultrafast laser induced breakdown spectroscopy for high spatial resolution chemical analysis,” Spectrochim. Acta Part B 66, 189–192 (2011).
    [CrossRef]
  13. D. E. Hare, S. T. Rhea, and D. D. Dlott, “New method for exposure threshold measurement of laser thermal imaging materials,” J. Imaging Sci. Technol. 41, 588–593 (1997).
  14. G. Chang and Y. L. Tu, “The threshold intensity measurement in the femtosecond laser ablation by defocusing,” Opt. Lasers Eng. 50, 767–771 (2012).
    [CrossRef]
  15. Y. Domankevitz and N. S. Nishioka, “Measurement of laser ablation threshold with a high-speed framing camera,” IEEE J. Quantum Electron. 26, 2276–2278 (1990).
    [CrossRef]
  16. S. G. Koulikov and D. D. Dlott, “Ultrafast microscopy of laser ablation of refractory materials: ultra low threshold stress-induced ablation,” J. Photochem. Photobiol., A 145, 183–194 (2001).
    [CrossRef]
  17. W. P. Leung and A. C. Tam, “Noncontact monitoring of laser ablation using a miniature piezoelectric probe to detect photoacoustic pulses in air,” Appl. Phys. Lett. 60, 23–25 (1992).
    [CrossRef]
  18. P. E. Dyer, S. Farrar, and P. H. Key, “Investigation of excimer laser ablation of ceramic and thin film Y-BA-Cu-O using nanosecond photoacoustic techniques,” Appl. Phys. Lett. 60, 1890–1892 (1992).
    [CrossRef]
  19. J. Krüger, H. Niino, and A. Yabe, “Investigation of excimer laser ablation threshold of polymers using a microphone,” Appl. Surf. Sci. 197-198, 800–804 (2002).
    [CrossRef]
  20. A. V. Ravi Kumar, G. Padmaja, P. Radhakrishnan, V. P. N. Nampoori, and C. P. G. Vallabhan, “Evaluation of laser ablation threshold in polymer samples using pulsed photoacoustic technique,” Pramana 37, 345–351 (1991).
    [CrossRef]
  21. J. A. Sell and D. M. Heffelfinger, “Laser beam deflection as a probe of laser ablation of materials,” Appl. Phys. Lett. 55, 2435–2437 (1989).
    [CrossRef]
  22. R. Srinivasan, K. G. Gasey, B. Braren, and M. Yeh, “The significance of a fluence threshold for ultraviolet laser ablation and etching of polymers,” J. Appl. Phys. 67, 1604–1606 (1990).
    [CrossRef]
  23. K. Rajasree, V. Vidyalal, P. Radhakrishnan, V. P. N. Nampoori, and C. P. G. Vallabhan, “Measurement of laser ablation threshold on doped BiSrCaCuO high temperature superconductors by the pulsed photothermal deflection technique,” J. Appl. Phys. 74, 2004–2007 (1993).
    [CrossRef]
  24. M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82, 2394–2397 (1999).
    [CrossRef]
  25. Cs. Beleznai, D. Vouagner, J. P. Girardeau-Montaut, C. Templier, and H. Gonnord, “Laser ablation threshold determination by photoelectric emission,” Appl. Phys. A 69, S113–S116 (1999).
  26. S. Lazare, J. C. Soulignac, and P. Fragnaud, “Direct, and accurate measurement of etch rate of polymer films under far-UV irradiation,” Appl. Phys. Lett. 50, 624–626 (1987).
    [CrossRef]
  27. S. Küper, J. Brannon, and K. Brannon, “Threshold behavior in polyimide photoablation: single-shot rate measurements and surface temperature modeling,” Appl. Phys. A 56, 43–50 (1993).
    [CrossRef]
  28. Z. J. Chen, H. K. Li, M. Liu, and R. H. Li, “Fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy using wood slice substrates,” Spectrochim. Acta Part B 63, 64–68 (2008).
    [CrossRef]
  29. Y. Q. Chen, Q. Zhang, G. Li, R. H. Li, and J. Y. Zhou, “Laser ignition assisted spark-induced breakdown spectroscopy for the ultra-sensitive detection of trace mercury ions in aqueous solutions,” J. Anal. At. Spectrom. 25, 1969–1973 (2010).
    [CrossRef]
  30. P. Mottner, G. Wiedemann, G. Haber, W. Conrad, and A. Gervais, “Laser cleaning of metal surface—laboratory investigations” in Lasers in the Conservation of Artworks (Springer-Verlag, 2005), Vol. 100, pp. 79–86.
  31. Y. C. Kiang and R. W. Liang, “Measuring focused Gaussian beam spot sizes: a practical method,” Appl. Opt. 22, 1296–1297 (1983).
    [CrossRef]
  32. G. P. Gupta and B. M. Suri, “Vapour and plasma ignition thresholds for visible pulsed-laser ablation of metallic targets,” Appl. Surf. Sci. 230, 398–403 (2004).
    [CrossRef]

2012 (4)

D. Drescher, C. Giesen, H. Traub, U. Panne, J. Kneipp, and N. Jakubowski, “Quantitative imaging of gold and silver nanoparticles in single eukaryotic cells by laser ablation ICP-MS,” Anal. Chem. 84, 9684–9688 (2012).
[CrossRef]

K. W. Liu, Z. NiCkolov, J. Oh, and H. M. Noh, “KrF excimer laser micromachining of MEMS materials: characterization and applications,” J. Micromech. Microeng. 22, 015012 (2012).
[CrossRef]

A. A. Melaibari and P. Molian, “Pulsed laser deposition to synthesize the bridge structure of artificial nacre: comparison of nano- and femtosecond lasers,” J. Appl. Phys. 112, 104303 (2012).
[CrossRef]

G. Chang and Y. L. Tu, “The threshold intensity measurement in the femtosecond laser ablation by defocusing,” Opt. Lasers Eng. 50, 767–771 (2012).
[CrossRef]

2011 (1)

V. Zorba, X. L. Mao, and R. E. Russo, “Ultrafast laser induced breakdown spectroscopy for high spatial resolution chemical analysis,” Spectrochim. Acta Part B 66, 189–192 (2011).
[CrossRef]

2010 (2)

S. Tao, R. L. Jacobsen, and B. X. Wu, “Physical mechanisms for picosecond laser ablation of silicon carbide at infrared and ultraviolet wavelengths,” Appl. Phys. Lett. 97, 181918 (2010).
[CrossRef]

Y. Q. Chen, Q. Zhang, G. Li, R. H. Li, and J. Y. Zhou, “Laser ignition assisted spark-induced breakdown spectroscopy for the ultra-sensitive detection of trace mercury ions in aqueous solutions,” J. Anal. At. Spectrom. 25, 1969–1973 (2010).
[CrossRef]

2009 (1)

R. F. Huang, Q. Yu, Q. G. Tong, W. Hang, J. He, and B. L. Huang, “Influence of wavelength, irradiance, and the buffer gas pressure on high irradiance laser ablation and ionization source coupled with an orthogonal time of flight mass spectrometer,” Spectrochim. Acta Part B 64, 255–261 (2009).
[CrossRef]

2008 (2)

W. Marine, N. M. Bulgakova, L. Patrone, and I. Ozerov, “Insight into electronic mechanisms of nanosecond-laser ablation of silicon,” J. Appl. Phys. 103, 094902 (2008).
[CrossRef]

Z. J. Chen, H. K. Li, M. Liu, and R. H. Li, “Fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy using wood slice substrates,” Spectrochim. Acta Part B 63, 64–68 (2008).
[CrossRef]

2007 (2)

J. Miller, P. K. Yu, S. J. Cringle, and D. Y. Yu, “Laser-fiber system for ablation of intraocular tissue using the fourth harmonic of a pulsed Nd:YAG laser,” Appl. Opt. 46, 413–420 (2007).
[CrossRef]

D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film,” Appl. Phys. Lett. 91, 251118 (2007).
[CrossRef]

2005 (1)

A. Borowiec, H. F. Tiedje, and H. K. Huagen, “Wavelength dependence of the single pulse femtosecond laser ablation threshold of indium phosphide in the 400–2050 nm range,” Appl. Surf. Sci. 243, 129–137 (2005).
[CrossRef]

2004 (1)

G. P. Gupta and B. M. Suri, “Vapour and plasma ignition thresholds for visible pulsed-laser ablation of metallic targets,” Appl. Surf. Sci. 230, 398–403 (2004).
[CrossRef]

2003 (1)

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Towards nanostructuring with femtosecond laser pulses,” Appl. Phys. A 77, 229–235 (2003).

2002 (1)

J. Krüger, H. Niino, and A. Yabe, “Investigation of excimer laser ablation threshold of polymers using a microphone,” Appl. Surf. Sci. 197-198, 800–804 (2002).
[CrossRef]

2001 (1)

S. G. Koulikov and D. D. Dlott, “Ultrafast microscopy of laser ablation of refractory materials: ultra low threshold stress-induced ablation,” J. Photochem. Photobiol., A 145, 183–194 (2001).
[CrossRef]

1999 (2)

M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82, 2394–2397 (1999).
[CrossRef]

Cs. Beleznai, D. Vouagner, J. P. Girardeau-Montaut, C. Templier, and H. Gonnord, “Laser ablation threshold determination by photoelectric emission,” Appl. Phys. A 69, S113–S116 (1999).

1998 (1)

X. L. Mao, O. V. Borisov, and R. E. Russo, “Enhancements in laser ablation inductively coupled plasma-atomic emission spectrometry based on laser properties and ambient environment,” Spectrochim. Acta Part B 53,731–739 (1998).
[CrossRef]

1997 (1)

D. E. Hare, S. T. Rhea, and D. D. Dlott, “New method for exposure threshold measurement of laser thermal imaging materials,” J. Imaging Sci. Technol. 41, 588–593 (1997).

1993 (2)

S. Küper, J. Brannon, and K. Brannon, “Threshold behavior in polyimide photoablation: single-shot rate measurements and surface temperature modeling,” Appl. Phys. A 56, 43–50 (1993).
[CrossRef]

K. Rajasree, V. Vidyalal, P. Radhakrishnan, V. P. N. Nampoori, and C. P. G. Vallabhan, “Measurement of laser ablation threshold on doped BiSrCaCuO high temperature superconductors by the pulsed photothermal deflection technique,” J. Appl. Phys. 74, 2004–2007 (1993).
[CrossRef]

1992 (2)

W. P. Leung and A. C. Tam, “Noncontact monitoring of laser ablation using a miniature piezoelectric probe to detect photoacoustic pulses in air,” Appl. Phys. Lett. 60, 23–25 (1992).
[CrossRef]

P. E. Dyer, S. Farrar, and P. H. Key, “Investigation of excimer laser ablation of ceramic and thin film Y-BA-Cu-O using nanosecond photoacoustic techniques,” Appl. Phys. Lett. 60, 1890–1892 (1992).
[CrossRef]

1991 (1)

A. V. Ravi Kumar, G. Padmaja, P. Radhakrishnan, V. P. N. Nampoori, and C. P. G. Vallabhan, “Evaluation of laser ablation threshold in polymer samples using pulsed photoacoustic technique,” Pramana 37, 345–351 (1991).
[CrossRef]

1990 (2)

R. Srinivasan, K. G. Gasey, B. Braren, and M. Yeh, “The significance of a fluence threshold for ultraviolet laser ablation and etching of polymers,” J. Appl. Phys. 67, 1604–1606 (1990).
[CrossRef]

Y. Domankevitz and N. S. Nishioka, “Measurement of laser ablation threshold with a high-speed framing camera,” IEEE J. Quantum Electron. 26, 2276–2278 (1990).
[CrossRef]

1989 (1)

J. A. Sell and D. M. Heffelfinger, “Laser beam deflection as a probe of laser ablation of materials,” Appl. Phys. Lett. 55, 2435–2437 (1989).
[CrossRef]

1987 (1)

S. Lazare, J. C. Soulignac, and P. Fragnaud, “Direct, and accurate measurement of etch rate of polymer films under far-UV irradiation,” Appl. Phys. Lett. 50, 624–626 (1987).
[CrossRef]

1983 (1)

Beleznai, Cs.

Cs. Beleznai, D. Vouagner, J. P. Girardeau-Montaut, C. Templier, and H. Gonnord, “Laser ablation threshold determination by photoelectric emission,” Appl. Phys. A 69, S113–S116 (1999).

Borisov, O. V.

X. L. Mao, O. V. Borisov, and R. E. Russo, “Enhancements in laser ablation inductively coupled plasma-atomic emission spectrometry based on laser properties and ambient environment,” Spectrochim. Acta Part B 53,731–739 (1998).
[CrossRef]

Borowiec, A.

A. Borowiec, H. F. Tiedje, and H. K. Huagen, “Wavelength dependence of the single pulse femtosecond laser ablation threshold of indium phosphide in the 400–2050 nm range,” Appl. Surf. Sci. 243, 129–137 (2005).
[CrossRef]

Brannon, J.

S. Küper, J. Brannon, and K. Brannon, “Threshold behavior in polyimide photoablation: single-shot rate measurements and surface temperature modeling,” Appl. Phys. A 56, 43–50 (1993).
[CrossRef]

Brannon, K.

S. Küper, J. Brannon, and K. Brannon, “Threshold behavior in polyimide photoablation: single-shot rate measurements and surface temperature modeling,” Appl. Phys. A 56, 43–50 (1993).
[CrossRef]

Braren, B.

R. Srinivasan, K. G. Gasey, B. Braren, and M. Yeh, “The significance of a fluence threshold for ultraviolet laser ablation and etching of polymers,” J. Appl. Phys. 67, 1604–1606 (1990).
[CrossRef]

Bulgakova, N. M.

W. Marine, N. M. Bulgakova, L. Patrone, and I. Ozerov, “Insight into electronic mechanisms of nanosecond-laser ablation of silicon,” J. Appl. Phys. 103, 094902 (2008).
[CrossRef]

Chang, G.

G. Chang and Y. L. Tu, “The threshold intensity measurement in the femtosecond laser ablation by defocusing,” Opt. Lasers Eng. 50, 767–771 (2012).
[CrossRef]

Chen, Y. Q.

Y. Q. Chen, Q. Zhang, G. Li, R. H. Li, and J. Y. Zhou, “Laser ignition assisted spark-induced breakdown spectroscopy for the ultra-sensitive detection of trace mercury ions in aqueous solutions,” J. Anal. At. Spectrom. 25, 1969–1973 (2010).
[CrossRef]

Chen, Z. J.

Z. J. Chen, H. K. Li, M. Liu, and R. H. Li, “Fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy using wood slice substrates,” Spectrochim. Acta Part B 63, 64–68 (2008).
[CrossRef]

Chichkov, B. N.

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Towards nanostructuring with femtosecond laser pulses,” Appl. Phys. A 77, 229–235 (2003).

Conrad, W.

P. Mottner, G. Wiedemann, G. Haber, W. Conrad, and A. Gervais, “Laser cleaning of metal surface—laboratory investigations” in Lasers in the Conservation of Artworks (Springer-Verlag, 2005), Vol. 100, pp. 79–86.

Cringle, S. J.

Dlott, D. D.

S. G. Koulikov and D. D. Dlott, “Ultrafast microscopy of laser ablation of refractory materials: ultra low threshold stress-induced ablation,” J. Photochem. Photobiol., A 145, 183–194 (2001).
[CrossRef]

D. E. Hare, S. T. Rhea, and D. D. Dlott, “New method for exposure threshold measurement of laser thermal imaging materials,” J. Imaging Sci. Technol. 41, 588–593 (1997).

Domankevitz, Y.

Y. Domankevitz and N. S. Nishioka, “Measurement of laser ablation threshold with a high-speed framing camera,” IEEE J. Quantum Electron. 26, 2276–2278 (1990).
[CrossRef]

Drescher, D.

D. Drescher, C. Giesen, H. Traub, U. Panne, J. Kneipp, and N. Jakubowski, “Quantitative imaging of gold and silver nanoparticles in single eukaryotic cells by laser ablation ICP-MS,” Anal. Chem. 84, 9684–9688 (2012).
[CrossRef]

Dyer, P. E.

P. E. Dyer, S. Farrar, and P. H. Key, “Investigation of excimer laser ablation of ceramic and thin film Y-BA-Cu-O using nanosecond photoacoustic techniques,” Appl. Phys. Lett. 60, 1890–1892 (1992).
[CrossRef]

Egbert, A.

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Towards nanostructuring with femtosecond laser pulses,” Appl. Phys. A 77, 229–235 (2003).

Fallnich, C.

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Towards nanostructuring with femtosecond laser pulses,” Appl. Phys. A 77, 229–235 (2003).

Farrar, S.

P. E. Dyer, S. Farrar, and P. H. Key, “Investigation of excimer laser ablation of ceramic and thin film Y-BA-Cu-O using nanosecond photoacoustic techniques,” Appl. Phys. Lett. 60, 1890–1892 (1992).
[CrossRef]

Fragnaud, P.

S. Lazare, J. C. Soulignac, and P. Fragnaud, “Direct, and accurate measurement of etch rate of polymer films under far-UV irradiation,” Appl. Phys. Lett. 50, 624–626 (1987).
[CrossRef]

Gasey, K. G.

R. Srinivasan, K. G. Gasey, B. Braren, and M. Yeh, “The significance of a fluence threshold for ultraviolet laser ablation and etching of polymers,” J. Appl. Phys. 67, 1604–1606 (1990).
[CrossRef]

Gervais, A.

P. Mottner, G. Wiedemann, G. Haber, W. Conrad, and A. Gervais, “Laser cleaning of metal surface—laboratory investigations” in Lasers in the Conservation of Artworks (Springer-Verlag, 2005), Vol. 100, pp. 79–86.

Gibson, G. N.

M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82, 2394–2397 (1999).
[CrossRef]

Giesen, C.

D. Drescher, C. Giesen, H. Traub, U. Panne, J. Kneipp, and N. Jakubowski, “Quantitative imaging of gold and silver nanoparticles in single eukaryotic cells by laser ablation ICP-MS,” Anal. Chem. 84, 9684–9688 (2012).
[CrossRef]

Girardeau-Montaut, J. P.

Cs. Beleznai, D. Vouagner, J. P. Girardeau-Montaut, C. Templier, and H. Gonnord, “Laser ablation threshold determination by photoelectric emission,” Appl. Phys. A 69, S113–S116 (1999).

Gonnord, H.

Cs. Beleznai, D. Vouagner, J. P. Girardeau-Montaut, C. Templier, and H. Gonnord, “Laser ablation threshold determination by photoelectric emission,” Appl. Phys. A 69, S113–S116 (1999).

Grigoropoulos, C. P.

D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film,” Appl. Phys. Lett. 91, 251118 (2007).
[CrossRef]

Gupta, G. P.

G. P. Gupta and B. M. Suri, “Vapour and plasma ignition thresholds for visible pulsed-laser ablation of metallic targets,” Appl. Surf. Sci. 230, 398–403 (2004).
[CrossRef]

Haber, G.

P. Mottner, G. Wiedemann, G. Haber, W. Conrad, and A. Gervais, “Laser cleaning of metal surface—laboratory investigations” in Lasers in the Conservation of Artworks (Springer-Verlag, 2005), Vol. 100, pp. 79–86.

Hang, W.

R. F. Huang, Q. Yu, Q. G. Tong, W. Hang, J. He, and B. L. Huang, “Influence of wavelength, irradiance, and the buffer gas pressure on high irradiance laser ablation and ionization source coupled with an orthogonal time of flight mass spectrometer,” Spectrochim. Acta Part B 64, 255–261 (2009).
[CrossRef]

Hare, D. E.

D. E. Hare, S. T. Rhea, and D. D. Dlott, “New method for exposure threshold measurement of laser thermal imaging materials,” J. Imaging Sci. Technol. 41, 588–593 (1997).

He, J.

R. F. Huang, Q. Yu, Q. G. Tong, W. Hang, J. He, and B. L. Huang, “Influence of wavelength, irradiance, and the buffer gas pressure on high irradiance laser ablation and ionization source coupled with an orthogonal time of flight mass spectrometer,” Spectrochim. Acta Part B 64, 255–261 (2009).
[CrossRef]

Heffelfinger, D. M.

J. A. Sell and D. M. Heffelfinger, “Laser beam deflection as a probe of laser ablation of materials,” Appl. Phys. Lett. 55, 2435–2437 (1989).
[CrossRef]

Huagen, H. K.

A. Borowiec, H. F. Tiedje, and H. K. Huagen, “Wavelength dependence of the single pulse femtosecond laser ablation threshold of indium phosphide in the 400–2050 nm range,” Appl. Surf. Sci. 243, 129–137 (2005).
[CrossRef]

Huang, B. L.

R. F. Huang, Q. Yu, Q. G. Tong, W. Hang, J. He, and B. L. Huang, “Influence of wavelength, irradiance, and the buffer gas pressure on high irradiance laser ablation and ionization source coupled with an orthogonal time of flight mass spectrometer,” Spectrochim. Acta Part B 64, 255–261 (2009).
[CrossRef]

Huang, R. F.

R. F. Huang, Q. Yu, Q. G. Tong, W. Hang, J. He, and B. L. Huang, “Influence of wavelength, irradiance, and the buffer gas pressure on high irradiance laser ablation and ionization source coupled with an orthogonal time of flight mass spectrometer,” Spectrochim. Acta Part B 64, 255–261 (2009).
[CrossRef]

Hwang, D. J.

D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film,” Appl. Phys. Lett. 91, 251118 (2007).
[CrossRef]

Jacobsen, R. L.

S. Tao, R. L. Jacobsen, and B. X. Wu, “Physical mechanisms for picosecond laser ablation of silicon carbide at infrared and ultraviolet wavelengths,” Appl. Phys. Lett. 97, 181918 (2010).
[CrossRef]

Jakubowski, N.

D. Drescher, C. Giesen, H. Traub, U. Panne, J. Kneipp, and N. Jakubowski, “Quantitative imaging of gold and silver nanoparticles in single eukaryotic cells by laser ablation ICP-MS,” Anal. Chem. 84, 9684–9688 (2012).
[CrossRef]

Jeon, H.

D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film,” Appl. Phys. Lett. 91, 251118 (2007).
[CrossRef]

Key, P. H.

P. E. Dyer, S. Farrar, and P. H. Key, “Investigation of excimer laser ablation of ceramic and thin film Y-BA-Cu-O using nanosecond photoacoustic techniques,” Appl. Phys. Lett. 60, 1890–1892 (1992).
[CrossRef]

Kiang, Y. C.

Kneipp, J.

D. Drescher, C. Giesen, H. Traub, U. Panne, J. Kneipp, and N. Jakubowski, “Quantitative imaging of gold and silver nanoparticles in single eukaryotic cells by laser ablation ICP-MS,” Anal. Chem. 84, 9684–9688 (2012).
[CrossRef]

Koch, J.

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Towards nanostructuring with femtosecond laser pulses,” Appl. Phys. A 77, 229–235 (2003).

Korte, F.

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Towards nanostructuring with femtosecond laser pulses,” Appl. Phys. A 77, 229–235 (2003).

Koulikov, S. G.

S. G. Koulikov and D. D. Dlott, “Ultrafast microscopy of laser ablation of refractory materials: ultra low threshold stress-induced ablation,” J. Photochem. Photobiol., A 145, 183–194 (2001).
[CrossRef]

Krüger, J.

J. Krüger, H. Niino, and A. Yabe, “Investigation of excimer laser ablation threshold of polymers using a microphone,” Appl. Surf. Sci. 197-198, 800–804 (2002).
[CrossRef]

Küper, S.

S. Küper, J. Brannon, and K. Brannon, “Threshold behavior in polyimide photoablation: single-shot rate measurements and surface temperature modeling,” Appl. Phys. A 56, 43–50 (1993).
[CrossRef]

Lazare, S.

S. Lazare, J. C. Soulignac, and P. Fragnaud, “Direct, and accurate measurement of etch rate of polymer films under far-UV irradiation,” Appl. Phys. Lett. 50, 624–626 (1987).
[CrossRef]

Leung, W. P.

W. P. Leung and A. C. Tam, “Noncontact monitoring of laser ablation using a miniature piezoelectric probe to detect photoacoustic pulses in air,” Appl. Phys. Lett. 60, 23–25 (1992).
[CrossRef]

Li, G.

Y. Q. Chen, Q. Zhang, G. Li, R. H. Li, and J. Y. Zhou, “Laser ignition assisted spark-induced breakdown spectroscopy for the ultra-sensitive detection of trace mercury ions in aqueous solutions,” J. Anal. At. Spectrom. 25, 1969–1973 (2010).
[CrossRef]

Li, H. K.

Z. J. Chen, H. K. Li, M. Liu, and R. H. Li, “Fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy using wood slice substrates,” Spectrochim. Acta Part B 63, 64–68 (2008).
[CrossRef]

Li, M.

M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82, 2394–2397 (1999).
[CrossRef]

Li, R. H.

Y. Q. Chen, Q. Zhang, G. Li, R. H. Li, and J. Y. Zhou, “Laser ignition assisted spark-induced breakdown spectroscopy for the ultra-sensitive detection of trace mercury ions in aqueous solutions,” J. Anal. At. Spectrom. 25, 1969–1973 (2010).
[CrossRef]

Z. J. Chen, H. K. Li, M. Liu, and R. H. Li, “Fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy using wood slice substrates,” Spectrochim. Acta Part B 63, 64–68 (2008).
[CrossRef]

Liang, R. W.

Liu, K. W.

K. W. Liu, Z. NiCkolov, J. Oh, and H. M. Noh, “KrF excimer laser micromachining of MEMS materials: characterization and applications,” J. Micromech. Microeng. 22, 015012 (2012).
[CrossRef]

Liu, M.

Z. J. Chen, H. K. Li, M. Liu, and R. H. Li, “Fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy using wood slice substrates,” Spectrochim. Acta Part B 63, 64–68 (2008).
[CrossRef]

Mao, X. L.

V. Zorba, X. L. Mao, and R. E. Russo, “Ultrafast laser induced breakdown spectroscopy for high spatial resolution chemical analysis,” Spectrochim. Acta Part B 66, 189–192 (2011).
[CrossRef]

X. L. Mao, O. V. Borisov, and R. E. Russo, “Enhancements in laser ablation inductively coupled plasma-atomic emission spectrometry based on laser properties and ambient environment,” Spectrochim. Acta Part B 53,731–739 (1998).
[CrossRef]

Marine, W.

W. Marine, N. M. Bulgakova, L. Patrone, and I. Ozerov, “Insight into electronic mechanisms of nanosecond-laser ablation of silicon,” J. Appl. Phys. 103, 094902 (2008).
[CrossRef]

Melaibari, A. A.

A. A. Melaibari and P. Molian, “Pulsed laser deposition to synthesize the bridge structure of artificial nacre: comparison of nano- and femtosecond lasers,” J. Appl. Phys. 112, 104303 (2012).
[CrossRef]

Menon, S.

M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82, 2394–2397 (1999).
[CrossRef]

Miller, J.

Molian, P.

A. A. Melaibari and P. Molian, “Pulsed laser deposition to synthesize the bridge structure of artificial nacre: comparison of nano- and femtosecond lasers,” J. Appl. Phys. 112, 104303 (2012).
[CrossRef]

Mottner, P.

P. Mottner, G. Wiedemann, G. Haber, W. Conrad, and A. Gervais, “Laser cleaning of metal surface—laboratory investigations” in Lasers in the Conservation of Artworks (Springer-Verlag, 2005), Vol. 100, pp. 79–86.

Nampoori, V. P. N.

K. Rajasree, V. Vidyalal, P. Radhakrishnan, V. P. N. Nampoori, and C. P. G. Vallabhan, “Measurement of laser ablation threshold on doped BiSrCaCuO high temperature superconductors by the pulsed photothermal deflection technique,” J. Appl. Phys. 74, 2004–2007 (1993).
[CrossRef]

A. V. Ravi Kumar, G. Padmaja, P. Radhakrishnan, V. P. N. Nampoori, and C. P. G. Vallabhan, “Evaluation of laser ablation threshold in polymer samples using pulsed photoacoustic technique,” Pramana 37, 345–351 (1991).
[CrossRef]

Nibarger, J. P.

M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82, 2394–2397 (1999).
[CrossRef]

NiCkolov, Z.

K. W. Liu, Z. NiCkolov, J. Oh, and H. M. Noh, “KrF excimer laser micromachining of MEMS materials: characterization and applications,” J. Micromech. Microeng. 22, 015012 (2012).
[CrossRef]

Niino, H.

J. Krüger, H. Niino, and A. Yabe, “Investigation of excimer laser ablation threshold of polymers using a microphone,” Appl. Surf. Sci. 197-198, 800–804 (2002).
[CrossRef]

Nishioka, N. S.

Y. Domankevitz and N. S. Nishioka, “Measurement of laser ablation threshold with a high-speed framing camera,” IEEE J. Quantum Electron. 26, 2276–2278 (1990).
[CrossRef]

Noh, H. M.

K. W. Liu, Z. NiCkolov, J. Oh, and H. M. Noh, “KrF excimer laser micromachining of MEMS materials: characterization and applications,” J. Micromech. Microeng. 22, 015012 (2012).
[CrossRef]

Oh, J.

K. W. Liu, Z. NiCkolov, J. Oh, and H. M. Noh, “KrF excimer laser micromachining of MEMS materials: characterization and applications,” J. Micromech. Microeng. 22, 015012 (2012).
[CrossRef]

Ostendorf, A.

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Towards nanostructuring with femtosecond laser pulses,” Appl. Phys. A 77, 229–235 (2003).

Ozerov, I.

W. Marine, N. M. Bulgakova, L. Patrone, and I. Ozerov, “Insight into electronic mechanisms of nanosecond-laser ablation of silicon,” J. Appl. Phys. 103, 094902 (2008).
[CrossRef]

Padmaja, G.

A. V. Ravi Kumar, G. Padmaja, P. Radhakrishnan, V. P. N. Nampoori, and C. P. G. Vallabhan, “Evaluation of laser ablation threshold in polymer samples using pulsed photoacoustic technique,” Pramana 37, 345–351 (1991).
[CrossRef]

Panne, U.

D. Drescher, C. Giesen, H. Traub, U. Panne, J. Kneipp, and N. Jakubowski, “Quantitative imaging of gold and silver nanoparticles in single eukaryotic cells by laser ablation ICP-MS,” Anal. Chem. 84, 9684–9688 (2012).
[CrossRef]

Patrone, L.

W. Marine, N. M. Bulgakova, L. Patrone, and I. Ozerov, “Insight into electronic mechanisms of nanosecond-laser ablation of silicon,” J. Appl. Phys. 103, 094902 (2008).
[CrossRef]

Radhakrishnan, P.

K. Rajasree, V. Vidyalal, P. Radhakrishnan, V. P. N. Nampoori, and C. P. G. Vallabhan, “Measurement of laser ablation threshold on doped BiSrCaCuO high temperature superconductors by the pulsed photothermal deflection technique,” J. Appl. Phys. 74, 2004–2007 (1993).
[CrossRef]

A. V. Ravi Kumar, G. Padmaja, P. Radhakrishnan, V. P. N. Nampoori, and C. P. G. Vallabhan, “Evaluation of laser ablation threshold in polymer samples using pulsed photoacoustic technique,” Pramana 37, 345–351 (1991).
[CrossRef]

Rajasree, K.

K. Rajasree, V. Vidyalal, P. Radhakrishnan, V. P. N. Nampoori, and C. P. G. Vallabhan, “Measurement of laser ablation threshold on doped BiSrCaCuO high temperature superconductors by the pulsed photothermal deflection technique,” J. Appl. Phys. 74, 2004–2007 (1993).
[CrossRef]

Ravi Kumar, A. V.

A. V. Ravi Kumar, G. Padmaja, P. Radhakrishnan, V. P. N. Nampoori, and C. P. G. Vallabhan, “Evaluation of laser ablation threshold in polymer samples using pulsed photoacoustic technique,” Pramana 37, 345–351 (1991).
[CrossRef]

Rhea, S. T.

D. E. Hare, S. T. Rhea, and D. D. Dlott, “New method for exposure threshold measurement of laser thermal imaging materials,” J. Imaging Sci. Technol. 41, 588–593 (1997).

Russo, R. E.

V. Zorba, X. L. Mao, and R. E. Russo, “Ultrafast laser induced breakdown spectroscopy for high spatial resolution chemical analysis,” Spectrochim. Acta Part B 66, 189–192 (2011).
[CrossRef]

D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film,” Appl. Phys. Lett. 91, 251118 (2007).
[CrossRef]

X. L. Mao, O. V. Borisov, and R. E. Russo, “Enhancements in laser ablation inductively coupled plasma-atomic emission spectrometry based on laser properties and ambient environment,” Spectrochim. Acta Part B 53,731–739 (1998).
[CrossRef]

Sell, J. A.

J. A. Sell and D. M. Heffelfinger, “Laser beam deflection as a probe of laser ablation of materials,” Appl. Phys. Lett. 55, 2435–2437 (1989).
[CrossRef]

Serbin, J.

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Towards nanostructuring with femtosecond laser pulses,” Appl. Phys. A 77, 229–235 (2003).

Soulignac, J. C.

S. Lazare, J. C. Soulignac, and P. Fragnaud, “Direct, and accurate measurement of etch rate of polymer films under far-UV irradiation,” Appl. Phys. Lett. 50, 624–626 (1987).
[CrossRef]

Srinivasan, R.

R. Srinivasan, K. G. Gasey, B. Braren, and M. Yeh, “The significance of a fluence threshold for ultraviolet laser ablation and etching of polymers,” J. Appl. Phys. 67, 1604–1606 (1990).
[CrossRef]

Suri, B. M.

G. P. Gupta and B. M. Suri, “Vapour and plasma ignition thresholds for visible pulsed-laser ablation of metallic targets,” Appl. Surf. Sci. 230, 398–403 (2004).
[CrossRef]

Tam, A. C.

W. P. Leung and A. C. Tam, “Noncontact monitoring of laser ablation using a miniature piezoelectric probe to detect photoacoustic pulses in air,” Appl. Phys. Lett. 60, 23–25 (1992).
[CrossRef]

Tao, S.

S. Tao, R. L. Jacobsen, and B. X. Wu, “Physical mechanisms for picosecond laser ablation of silicon carbide at infrared and ultraviolet wavelengths,” Appl. Phys. Lett. 97, 181918 (2010).
[CrossRef]

Templier, C.

Cs. Beleznai, D. Vouagner, J. P. Girardeau-Montaut, C. Templier, and H. Gonnord, “Laser ablation threshold determination by photoelectric emission,” Appl. Phys. A 69, S113–S116 (1999).

Tiedje, H. F.

A. Borowiec, H. F. Tiedje, and H. K. Huagen, “Wavelength dependence of the single pulse femtosecond laser ablation threshold of indium phosphide in the 400–2050 nm range,” Appl. Surf. Sci. 243, 129–137 (2005).
[CrossRef]

Tong, Q. G.

R. F. Huang, Q. Yu, Q. G. Tong, W. Hang, J. He, and B. L. Huang, “Influence of wavelength, irradiance, and the buffer gas pressure on high irradiance laser ablation and ionization source coupled with an orthogonal time of flight mass spectrometer,” Spectrochim. Acta Part B 64, 255–261 (2009).
[CrossRef]

Traub, H.

D. Drescher, C. Giesen, H. Traub, U. Panne, J. Kneipp, and N. Jakubowski, “Quantitative imaging of gold and silver nanoparticles in single eukaryotic cells by laser ablation ICP-MS,” Anal. Chem. 84, 9684–9688 (2012).
[CrossRef]

Tu, Y. L.

G. Chang and Y. L. Tu, “The threshold intensity measurement in the femtosecond laser ablation by defocusing,” Opt. Lasers Eng. 50, 767–771 (2012).
[CrossRef]

Vallabhan, C. P. G.

K. Rajasree, V. Vidyalal, P. Radhakrishnan, V. P. N. Nampoori, and C. P. G. Vallabhan, “Measurement of laser ablation threshold on doped BiSrCaCuO high temperature superconductors by the pulsed photothermal deflection technique,” J. Appl. Phys. 74, 2004–2007 (1993).
[CrossRef]

A. V. Ravi Kumar, G. Padmaja, P. Radhakrishnan, V. P. N. Nampoori, and C. P. G. Vallabhan, “Evaluation of laser ablation threshold in polymer samples using pulsed photoacoustic technique,” Pramana 37, 345–351 (1991).
[CrossRef]

Vidyalal, V.

K. Rajasree, V. Vidyalal, P. Radhakrishnan, V. P. N. Nampoori, and C. P. G. Vallabhan, “Measurement of laser ablation threshold on doped BiSrCaCuO high temperature superconductors by the pulsed photothermal deflection technique,” J. Appl. Phys. 74, 2004–2007 (1993).
[CrossRef]

Vouagner, D.

Cs. Beleznai, D. Vouagner, J. P. Girardeau-Montaut, C. Templier, and H. Gonnord, “Laser ablation threshold determination by photoelectric emission,” Appl. Phys. A 69, S113–S116 (1999).

Wiedemann, G.

P. Mottner, G. Wiedemann, G. Haber, W. Conrad, and A. Gervais, “Laser cleaning of metal surface—laboratory investigations” in Lasers in the Conservation of Artworks (Springer-Verlag, 2005), Vol. 100, pp. 79–86.

Wu, B. X.

S. Tao, R. L. Jacobsen, and B. X. Wu, “Physical mechanisms for picosecond laser ablation of silicon carbide at infrared and ultraviolet wavelengths,” Appl. Phys. Lett. 97, 181918 (2010).
[CrossRef]

Yabe, A.

J. Krüger, H. Niino, and A. Yabe, “Investigation of excimer laser ablation threshold of polymers using a microphone,” Appl. Surf. Sci. 197-198, 800–804 (2002).
[CrossRef]

Yeh, M.

R. Srinivasan, K. G. Gasey, B. Braren, and M. Yeh, “The significance of a fluence threshold for ultraviolet laser ablation and etching of polymers,” J. Appl. Phys. 67, 1604–1606 (1990).
[CrossRef]

Yoo, J.

D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film,” Appl. Phys. Lett. 91, 251118 (2007).
[CrossRef]

Yu, D. Y.

Yu, P. K.

Yu, Q.

R. F. Huang, Q. Yu, Q. G. Tong, W. Hang, J. He, and B. L. Huang, “Influence of wavelength, irradiance, and the buffer gas pressure on high irradiance laser ablation and ionization source coupled with an orthogonal time of flight mass spectrometer,” Spectrochim. Acta Part B 64, 255–261 (2009).
[CrossRef]

Zhang, Q.

Y. Q. Chen, Q. Zhang, G. Li, R. H. Li, and J. Y. Zhou, “Laser ignition assisted spark-induced breakdown spectroscopy for the ultra-sensitive detection of trace mercury ions in aqueous solutions,” J. Anal. At. Spectrom. 25, 1969–1973 (2010).
[CrossRef]

Zhou, J. Y.

Y. Q. Chen, Q. Zhang, G. Li, R. H. Li, and J. Y. Zhou, “Laser ignition assisted spark-induced breakdown spectroscopy for the ultra-sensitive detection of trace mercury ions in aqueous solutions,” J. Anal. At. Spectrom. 25, 1969–1973 (2010).
[CrossRef]

Zorba, V.

V. Zorba, X. L. Mao, and R. E. Russo, “Ultrafast laser induced breakdown spectroscopy for high spatial resolution chemical analysis,” Spectrochim. Acta Part B 66, 189–192 (2011).
[CrossRef]

Anal. Chem. (1)

D. Drescher, C. Giesen, H. Traub, U. Panne, J. Kneipp, and N. Jakubowski, “Quantitative imaging of gold and silver nanoparticles in single eukaryotic cells by laser ablation ICP-MS,” Anal. Chem. 84, 9684–9688 (2012).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. A (3)

S. Küper, J. Brannon, and K. Brannon, “Threshold behavior in polyimide photoablation: single-shot rate measurements and surface temperature modeling,” Appl. Phys. A 56, 43–50 (1993).
[CrossRef]

Cs. Beleznai, D. Vouagner, J. P. Girardeau-Montaut, C. Templier, and H. Gonnord, “Laser ablation threshold determination by photoelectric emission,” Appl. Phys. A 69, S113–S116 (1999).

F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, and B. N. Chichkov, “Towards nanostructuring with femtosecond laser pulses,” Appl. Phys. A 77, 229–235 (2003).

Appl. Phys. Lett. (6)

D. J. Hwang, H. Jeon, C. P. Grigoropoulos, J. Yoo, and R. E. Russo, “Femtosecond laser ablation induced plasma characteristics from submicron craters in thin metal film,” Appl. Phys. Lett. 91, 251118 (2007).
[CrossRef]

W. P. Leung and A. C. Tam, “Noncontact monitoring of laser ablation using a miniature piezoelectric probe to detect photoacoustic pulses in air,” Appl. Phys. Lett. 60, 23–25 (1992).
[CrossRef]

P. E. Dyer, S. Farrar, and P. H. Key, “Investigation of excimer laser ablation of ceramic and thin film Y-BA-Cu-O using nanosecond photoacoustic techniques,” Appl. Phys. Lett. 60, 1890–1892 (1992).
[CrossRef]

S. Tao, R. L. Jacobsen, and B. X. Wu, “Physical mechanisms for picosecond laser ablation of silicon carbide at infrared and ultraviolet wavelengths,” Appl. Phys. Lett. 97, 181918 (2010).
[CrossRef]

S. Lazare, J. C. Soulignac, and P. Fragnaud, “Direct, and accurate measurement of etch rate of polymer films under far-UV irradiation,” Appl. Phys. Lett. 50, 624–626 (1987).
[CrossRef]

J. A. Sell and D. M. Heffelfinger, “Laser beam deflection as a probe of laser ablation of materials,” Appl. Phys. Lett. 55, 2435–2437 (1989).
[CrossRef]

Appl. Surf. Sci. (3)

G. P. Gupta and B. M. Suri, “Vapour and plasma ignition thresholds for visible pulsed-laser ablation of metallic targets,” Appl. Surf. Sci. 230, 398–403 (2004).
[CrossRef]

A. Borowiec, H. F. Tiedje, and H. K. Huagen, “Wavelength dependence of the single pulse femtosecond laser ablation threshold of indium phosphide in the 400–2050 nm range,” Appl. Surf. Sci. 243, 129–137 (2005).
[CrossRef]

J. Krüger, H. Niino, and A. Yabe, “Investigation of excimer laser ablation threshold of polymers using a microphone,” Appl. Surf. Sci. 197-198, 800–804 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

Y. Domankevitz and N. S. Nishioka, “Measurement of laser ablation threshold with a high-speed framing camera,” IEEE J. Quantum Electron. 26, 2276–2278 (1990).
[CrossRef]

J. Anal. At. Spectrom. (1)

Y. Q. Chen, Q. Zhang, G. Li, R. H. Li, and J. Y. Zhou, “Laser ignition assisted spark-induced breakdown spectroscopy for the ultra-sensitive detection of trace mercury ions in aqueous solutions,” J. Anal. At. Spectrom. 25, 1969–1973 (2010).
[CrossRef]

J. Appl. Phys. (4)

R. Srinivasan, K. G. Gasey, B. Braren, and M. Yeh, “The significance of a fluence threshold for ultraviolet laser ablation and etching of polymers,” J. Appl. Phys. 67, 1604–1606 (1990).
[CrossRef]

K. Rajasree, V. Vidyalal, P. Radhakrishnan, V. P. N. Nampoori, and C. P. G. Vallabhan, “Measurement of laser ablation threshold on doped BiSrCaCuO high temperature superconductors by the pulsed photothermal deflection technique,” J. Appl. Phys. 74, 2004–2007 (1993).
[CrossRef]

W. Marine, N. M. Bulgakova, L. Patrone, and I. Ozerov, “Insight into electronic mechanisms of nanosecond-laser ablation of silicon,” J. Appl. Phys. 103, 094902 (2008).
[CrossRef]

A. A. Melaibari and P. Molian, “Pulsed laser deposition to synthesize the bridge structure of artificial nacre: comparison of nano- and femtosecond lasers,” J. Appl. Phys. 112, 104303 (2012).
[CrossRef]

J. Imaging Sci. Technol. (1)

D. E. Hare, S. T. Rhea, and D. D. Dlott, “New method for exposure threshold measurement of laser thermal imaging materials,” J. Imaging Sci. Technol. 41, 588–593 (1997).

J. Micromech. Microeng. (1)

K. W. Liu, Z. NiCkolov, J. Oh, and H. M. Noh, “KrF excimer laser micromachining of MEMS materials: characterization and applications,” J. Micromech. Microeng. 22, 015012 (2012).
[CrossRef]

J. Photochem. Photobiol., A (1)

S. G. Koulikov and D. D. Dlott, “Ultrafast microscopy of laser ablation of refractory materials: ultra low threshold stress-induced ablation,” J. Photochem. Photobiol., A 145, 183–194 (2001).
[CrossRef]

Opt. Lasers Eng. (1)

G. Chang and Y. L. Tu, “The threshold intensity measurement in the femtosecond laser ablation by defocusing,” Opt. Lasers Eng. 50, 767–771 (2012).
[CrossRef]

Phys. Rev. Lett. (1)

M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, “Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics,” Phys. Rev. Lett. 82, 2394–2397 (1999).
[CrossRef]

Pramana (1)

A. V. Ravi Kumar, G. Padmaja, P. Radhakrishnan, V. P. N. Nampoori, and C. P. G. Vallabhan, “Evaluation of laser ablation threshold in polymer samples using pulsed photoacoustic technique,” Pramana 37, 345–351 (1991).
[CrossRef]

Spectrochim. Acta Part B (4)

V. Zorba, X. L. Mao, and R. E. Russo, “Ultrafast laser induced breakdown spectroscopy for high spatial resolution chemical analysis,” Spectrochim. Acta Part B 66, 189–192 (2011).
[CrossRef]

X. L. Mao, O. V. Borisov, and R. E. Russo, “Enhancements in laser ablation inductively coupled plasma-atomic emission spectrometry based on laser properties and ambient environment,” Spectrochim. Acta Part B 53,731–739 (1998).
[CrossRef]

R. F. Huang, Q. Yu, Q. G. Tong, W. Hang, J. He, and B. L. Huang, “Influence of wavelength, irradiance, and the buffer gas pressure on high irradiance laser ablation and ionization source coupled with an orthogonal time of flight mass spectrometer,” Spectrochim. Acta Part B 64, 255–261 (2009).
[CrossRef]

Z. J. Chen, H. K. Li, M. Liu, and R. H. Li, “Fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy using wood slice substrates,” Spectrochim. Acta Part B 63, 64–68 (2008).
[CrossRef]

Other (1)

P. Mottner, G. Wiedemann, G. Haber, W. Conrad, and A. Gervais, “Laser cleaning of metal surface—laboratory investigations” in Lasers in the Conservation of Artworks (Springer-Verlag, 2005), Vol. 100, pp. 79–86.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup of orthogonal dual-wavelength DP LA-LIBS. RM, reflection mirror; MO, microscopic objective.

Fig. 2.
Fig. 2.

Temporal profiles of plasma emission monitored at 324.75 and 324 nm under different excitation conditions. (1) Bottom, only with 1064 nm laser pulse. (2) Middle, only with 532 nm laser pulse. (3) Top, with both 532 and 1064 nm laser pulses.

Fig. 3.
Fig. 3.

Plot of the intensity of copper atomic emission excited by orthogonal dual-pulse versus the pulse energy of the ablation laser. The laser-ablation energy threshold of the sample was determined to be 1.9 μJ by using an extrapolating method.

Fig. 4.
Fig. 4.

Plot of the pulse energy versus the radius of the crater generated by the focused laser beam. The beam spot size on the focal plan can be derived out by a nonlinear fitting of the data points according to Eq. (4).

Fig. 5.
Fig. 5.

Microscopic photo of crater taken by CCD camera of the microscope. The craters were created by a single shot Q-switched 532 nm laser pulse which was focused by a 50× long-working distance objective with 0.42 numerical apertures. The pulse energy of the ablation laser was 11.8 μJ.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F(r)=F0e2r2/w2.
E=π2F0w2.
Ft=F0e2rt2/w2,
E=Ftπ2w2e2rt2/w2.
Ft=Etπ2w2,

Metrics