Abstract

An optical valve is realized by associating a nematic liquid crystal layer with a Cr-doped gallium arsenide as a photoconductive substrate. The light-valve is shown to efficiently operate in transmission at 1.06 μm optical wavelength. The optical phase shift and refractive index change are measured as a function of the incident light intensity and of the voltage applied. Additionally, the light-valve is shown to act as a self-defocusing medium. Combining transmissive properties and nonlinear features, applications for dynamic holography in the near-infrared region of the spectrum can be envisaged.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Efron and G. Liverscu, Spatial Light Modulator Technology: Materials, Devices and Applications (Marcel Dekker, 1995).
  2. N. Collings, Optical Pattern Recognition Using Holographic Techniques (Addison-Wesley, 1988).
  3. D. Armitage, J. I. Thackara, and W. D. Eades, “Photoaddressed liquid crystal spatial light modulators,” Appl. Opt. 28, 4763–4771 (1989).
    [Crossref]
  4. J. Grinberg, A. Jacobson, W. P. Bleha, L. Miller, L. Fraas, D. Boswell, and G. Myer, “A new real-time non-coherent to coherent light image converter the hybrid field effect liquid crystal light valve,” Opt. Eng. 14, 143217 (1975).
    [Crossref]
  5. K. Lu and B. E. A. Saleh, “Complex amplitude reflectance of the liquid crystal light valve,” Appl. Opt. 30, 2354–2362 (1991).
    [Crossref]
  6. P. R. Ashley and J. H. Davis, “Amorphous silicon photoconductor in a liquid crystal spatial light modulator,” Appl. Opt. 26, 241–246 (1987).
    [Crossref]
  7. P. R. Ashley, J. H. Davis, and T. K. Oh, “Liquid crystal spatial light modulator with a transmissive amorphous silicon photoconductor,” Appl. Opt. 27, 1797–1802 (1988).
    [Crossref]
  8. S. A. Akhmanov, M. A. Vorontsov, and V. Yu. Ivanov, “Large-scale transverse nonlinear interactions in laser beams; new types of nonlinear waves; onset of ‘optical turbulence’,” JETP Lett. 47, 611–614 (1988).
  9. U. Efron, S. T. Wu, and T. D. Bates, “Nematic liquid crystals for spatial light modulators: recent studies,” J. Opt. Soc. Am. B 3, 247–252 (1986).
    [Crossref]
  10. P. Aubourg, J. P. Huignard, M. Hareng, and R. A. Mullen, “Liquid crystal light valve using bulk monocrystalline Bi12SiO20 as the photoconductive material,” Appl. Opt. 21, 3706–3712 (1982).
    [Crossref]
  11. R. L. Sutherland, G. Cook, and D. R. Evans, “Determination of large nematic pre-tilt in liquid crystal cells with mechanically rubbed photorefractive Ce:SBN windows,” Opt. Express 14, 5365–5375 (2006).
    [Crossref]
  12. D. R. Evans and G. Cook, “Bragg-matched photorefractive two-beam coupling in organic-inorganic hybrids,” J. Nonlinear Opt. Phys. Mater. 16, 271–280 (2007).
    [Crossref]
  13. J. L. Carns, G. Cook, M. A. Saleh, S. V. Serak, N. V. Tabiryan, and D. Evans, “Self-activated liquid-crystal cells with photovoltaic substrates,” Opt. Lett. 31, 993–995 (2006).
    [Crossref]
  14. U. Bortolozzo, S. Residori, and J. P. Huignard, “Nonlinear optical applications of photorefractive liquid crystal light-valves,” J. Nonlinear Opt. Phys. Mater. 16, 231–246 (2007).
    [Crossref]
  15. U. Bortolozzo, S. Residori, and J. P. Huignard, “Beam coupling in photorefractive liquid crystal light valves,” J. Phys. D 41, 224007 (2008).
  16. U. Bortolozzo, S. Residori, and J. P. Huignard, “Adaptive holography in liquid crystal light-valves,” Materials 5, 1546–1559 (2012).
    [Crossref]
  17. U. Bortolozzo, S. Residori, and J. P. Huignard, “Enhancement of the two-wave-mixing gain in a stack of thin nonlinear media by use of the Talbot effect,” Opt. Lett. 31, 2166–2168 (2006).
    [Crossref]
  18. U. Bortolozzo, S. Residori, and J. P. Huignard, “Self-pumped phase conjugation in a liquid crystal light valve with a tilted feedback mirror,” Opt. Lett. 32, 829–831 (2007).
    [Crossref]
  19. S. Residori, U. Bortolozzo, and J. P. Huignard, “Slow and fast light in liquid crystal light valves,” Phys. Rev. Lett. 100, 203603 (2008).
    [Crossref]
  20. U. Bortolozzo, S. Residori, and J. P. Huignard, “Picometer detection by adaptive holographic interferometry in a liquid-crystal light valve,” Opt. Lett. 34, 2006–2008 (2009).
    [Crossref]
  21. P. G. De Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford Science Publications, Clarendon, 1993).
  22. I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena, 2nd ed. (Wiley-Interscience, 2007).
  23. D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystals Devices (Wiley, 2006).

2012 (1)

U. Bortolozzo, S. Residori, and J. P. Huignard, “Adaptive holography in liquid crystal light-valves,” Materials 5, 1546–1559 (2012).
[Crossref]

2009 (1)

2008 (2)

S. Residori, U. Bortolozzo, and J. P. Huignard, “Slow and fast light in liquid crystal light valves,” Phys. Rev. Lett. 100, 203603 (2008).
[Crossref]

U. Bortolozzo, S. Residori, and J. P. Huignard, “Beam coupling in photorefractive liquid crystal light valves,” J. Phys. D 41, 224007 (2008).

2007 (3)

U. Bortolozzo, S. Residori, and J. P. Huignard, “Self-pumped phase conjugation in a liquid crystal light valve with a tilted feedback mirror,” Opt. Lett. 32, 829–831 (2007).
[Crossref]

D. R. Evans and G. Cook, “Bragg-matched photorefractive two-beam coupling in organic-inorganic hybrids,” J. Nonlinear Opt. Phys. Mater. 16, 271–280 (2007).
[Crossref]

U. Bortolozzo, S. Residori, and J. P. Huignard, “Nonlinear optical applications of photorefractive liquid crystal light-valves,” J. Nonlinear Opt. Phys. Mater. 16, 231–246 (2007).
[Crossref]

2006 (3)

1991 (1)

1989 (1)

1988 (2)

P. R. Ashley, J. H. Davis, and T. K. Oh, “Liquid crystal spatial light modulator with a transmissive amorphous silicon photoconductor,” Appl. Opt. 27, 1797–1802 (1988).
[Crossref]

S. A. Akhmanov, M. A. Vorontsov, and V. Yu. Ivanov, “Large-scale transverse nonlinear interactions in laser beams; new types of nonlinear waves; onset of ‘optical turbulence’,” JETP Lett. 47, 611–614 (1988).

1987 (1)

1986 (1)

1982 (1)

1975 (1)

J. Grinberg, A. Jacobson, W. P. Bleha, L. Miller, L. Fraas, D. Boswell, and G. Myer, “A new real-time non-coherent to coherent light image converter the hybrid field effect liquid crystal light valve,” Opt. Eng. 14, 143217 (1975).
[Crossref]

Akhmanov, S. A.

S. A. Akhmanov, M. A. Vorontsov, and V. Yu. Ivanov, “Large-scale transverse nonlinear interactions in laser beams; new types of nonlinear waves; onset of ‘optical turbulence’,” JETP Lett. 47, 611–614 (1988).

Armitage, D.

Ashley, P. R.

Aubourg, P.

Bates, T. D.

Bleha, W. P.

J. Grinberg, A. Jacobson, W. P. Bleha, L. Miller, L. Fraas, D. Boswell, and G. Myer, “A new real-time non-coherent to coherent light image converter the hybrid field effect liquid crystal light valve,” Opt. Eng. 14, 143217 (1975).
[Crossref]

Bortolozzo, U.

U. Bortolozzo, S. Residori, and J. P. Huignard, “Adaptive holography in liquid crystal light-valves,” Materials 5, 1546–1559 (2012).
[Crossref]

U. Bortolozzo, S. Residori, and J. P. Huignard, “Picometer detection by adaptive holographic interferometry in a liquid-crystal light valve,” Opt. Lett. 34, 2006–2008 (2009).
[Crossref]

U. Bortolozzo, S. Residori, and J. P. Huignard, “Beam coupling in photorefractive liquid crystal light valves,” J. Phys. D 41, 224007 (2008).

S. Residori, U. Bortolozzo, and J. P. Huignard, “Slow and fast light in liquid crystal light valves,” Phys. Rev. Lett. 100, 203603 (2008).
[Crossref]

U. Bortolozzo, S. Residori, and J. P. Huignard, “Nonlinear optical applications of photorefractive liquid crystal light-valves,” J. Nonlinear Opt. Phys. Mater. 16, 231–246 (2007).
[Crossref]

U. Bortolozzo, S. Residori, and J. P. Huignard, “Self-pumped phase conjugation in a liquid crystal light valve with a tilted feedback mirror,” Opt. Lett. 32, 829–831 (2007).
[Crossref]

U. Bortolozzo, S. Residori, and J. P. Huignard, “Enhancement of the two-wave-mixing gain in a stack of thin nonlinear media by use of the Talbot effect,” Opt. Lett. 31, 2166–2168 (2006).
[Crossref]

Boswell, D.

J. Grinberg, A. Jacobson, W. P. Bleha, L. Miller, L. Fraas, D. Boswell, and G. Myer, “A new real-time non-coherent to coherent light image converter the hybrid field effect liquid crystal light valve,” Opt. Eng. 14, 143217 (1975).
[Crossref]

Carns, J. L.

Collings, N.

N. Collings, Optical Pattern Recognition Using Holographic Techniques (Addison-Wesley, 1988).

Cook, G.

Davis, J. H.

De Gennes, P. G.

P. G. De Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford Science Publications, Clarendon, 1993).

Eades, W. D.

Efron, U.

U. Efron, S. T. Wu, and T. D. Bates, “Nematic liquid crystals for spatial light modulators: recent studies,” J. Opt. Soc. Am. B 3, 247–252 (1986).
[Crossref]

U. Efron and G. Liverscu, Spatial Light Modulator Technology: Materials, Devices and Applications (Marcel Dekker, 1995).

Evans, D.

Evans, D. R.

D. R. Evans and G. Cook, “Bragg-matched photorefractive two-beam coupling in organic-inorganic hybrids,” J. Nonlinear Opt. Phys. Mater. 16, 271–280 (2007).
[Crossref]

R. L. Sutherland, G. Cook, and D. R. Evans, “Determination of large nematic pre-tilt in liquid crystal cells with mechanically rubbed photorefractive Ce:SBN windows,” Opt. Express 14, 5365–5375 (2006).
[Crossref]

Fraas, L.

J. Grinberg, A. Jacobson, W. P. Bleha, L. Miller, L. Fraas, D. Boswell, and G. Myer, “A new real-time non-coherent to coherent light image converter the hybrid field effect liquid crystal light valve,” Opt. Eng. 14, 143217 (1975).
[Crossref]

Grinberg, J.

J. Grinberg, A. Jacobson, W. P. Bleha, L. Miller, L. Fraas, D. Boswell, and G. Myer, “A new real-time non-coherent to coherent light image converter the hybrid field effect liquid crystal light valve,” Opt. Eng. 14, 143217 (1975).
[Crossref]

Hareng, M.

Huignard, J. P.

U. Bortolozzo, S. Residori, and J. P. Huignard, “Adaptive holography in liquid crystal light-valves,” Materials 5, 1546–1559 (2012).
[Crossref]

U. Bortolozzo, S. Residori, and J. P. Huignard, “Picometer detection by adaptive holographic interferometry in a liquid-crystal light valve,” Opt. Lett. 34, 2006–2008 (2009).
[Crossref]

S. Residori, U. Bortolozzo, and J. P. Huignard, “Slow and fast light in liquid crystal light valves,” Phys. Rev. Lett. 100, 203603 (2008).
[Crossref]

U. Bortolozzo, S. Residori, and J. P. Huignard, “Beam coupling in photorefractive liquid crystal light valves,” J. Phys. D 41, 224007 (2008).

U. Bortolozzo, S. Residori, and J. P. Huignard, “Nonlinear optical applications of photorefractive liquid crystal light-valves,” J. Nonlinear Opt. Phys. Mater. 16, 231–246 (2007).
[Crossref]

U. Bortolozzo, S. Residori, and J. P. Huignard, “Self-pumped phase conjugation in a liquid crystal light valve with a tilted feedback mirror,” Opt. Lett. 32, 829–831 (2007).
[Crossref]

U. Bortolozzo, S. Residori, and J. P. Huignard, “Enhancement of the two-wave-mixing gain in a stack of thin nonlinear media by use of the Talbot effect,” Opt. Lett. 31, 2166–2168 (2006).
[Crossref]

P. Aubourg, J. P. Huignard, M. Hareng, and R. A. Mullen, “Liquid crystal light valve using bulk monocrystalline Bi12SiO20 as the photoconductive material,” Appl. Opt. 21, 3706–3712 (1982).
[Crossref]

Ivanov, V. Yu.

S. A. Akhmanov, M. A. Vorontsov, and V. Yu. Ivanov, “Large-scale transverse nonlinear interactions in laser beams; new types of nonlinear waves; onset of ‘optical turbulence’,” JETP Lett. 47, 611–614 (1988).

Jacobson, A.

J. Grinberg, A. Jacobson, W. P. Bleha, L. Miller, L. Fraas, D. Boswell, and G. Myer, “A new real-time non-coherent to coherent light image converter the hybrid field effect liquid crystal light valve,” Opt. Eng. 14, 143217 (1975).
[Crossref]

Khoo, I. C.

I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena, 2nd ed. (Wiley-Interscience, 2007).

Liverscu, G.

U. Efron and G. Liverscu, Spatial Light Modulator Technology: Materials, Devices and Applications (Marcel Dekker, 1995).

Lu, K.

Miller, L.

J. Grinberg, A. Jacobson, W. P. Bleha, L. Miller, L. Fraas, D. Boswell, and G. Myer, “A new real-time non-coherent to coherent light image converter the hybrid field effect liquid crystal light valve,” Opt. Eng. 14, 143217 (1975).
[Crossref]

Mullen, R. A.

Myer, G.

J. Grinberg, A. Jacobson, W. P. Bleha, L. Miller, L. Fraas, D. Boswell, and G. Myer, “A new real-time non-coherent to coherent light image converter the hybrid field effect liquid crystal light valve,” Opt. Eng. 14, 143217 (1975).
[Crossref]

Oh, T. K.

Prost, J.

P. G. De Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford Science Publications, Clarendon, 1993).

Residori, S.

U. Bortolozzo, S. Residori, and J. P. Huignard, “Adaptive holography in liquid crystal light-valves,” Materials 5, 1546–1559 (2012).
[Crossref]

U. Bortolozzo, S. Residori, and J. P. Huignard, “Picometer detection by adaptive holographic interferometry in a liquid-crystal light valve,” Opt. Lett. 34, 2006–2008 (2009).
[Crossref]

S. Residori, U. Bortolozzo, and J. P. Huignard, “Slow and fast light in liquid crystal light valves,” Phys. Rev. Lett. 100, 203603 (2008).
[Crossref]

U. Bortolozzo, S. Residori, and J. P. Huignard, “Beam coupling in photorefractive liquid crystal light valves,” J. Phys. D 41, 224007 (2008).

U. Bortolozzo, S. Residori, and J. P. Huignard, “Nonlinear optical applications of photorefractive liquid crystal light-valves,” J. Nonlinear Opt. Phys. Mater. 16, 231–246 (2007).
[Crossref]

U. Bortolozzo, S. Residori, and J. P. Huignard, “Self-pumped phase conjugation in a liquid crystal light valve with a tilted feedback mirror,” Opt. Lett. 32, 829–831 (2007).
[Crossref]

U. Bortolozzo, S. Residori, and J. P. Huignard, “Enhancement of the two-wave-mixing gain in a stack of thin nonlinear media by use of the Talbot effect,” Opt. Lett. 31, 2166–2168 (2006).
[Crossref]

Saleh, B. E. A.

Saleh, M. A.

Serak, S. V.

Sutherland, R. L.

Tabiryan, N. V.

Thackara, J. I.

Vorontsov, M. A.

S. A. Akhmanov, M. A. Vorontsov, and V. Yu. Ivanov, “Large-scale transverse nonlinear interactions in laser beams; new types of nonlinear waves; onset of ‘optical turbulence’,” JETP Lett. 47, 611–614 (1988).

Wu, S. T.

Wu, S.-T.

D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystals Devices (Wiley, 2006).

Yang, D.-K.

D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystals Devices (Wiley, 2006).

Appl. Opt. (5)

J. Nonlinear Opt. Phys. Mater. (2)

D. R. Evans and G. Cook, “Bragg-matched photorefractive two-beam coupling in organic-inorganic hybrids,” J. Nonlinear Opt. Phys. Mater. 16, 271–280 (2007).
[Crossref]

U. Bortolozzo, S. Residori, and J. P. Huignard, “Nonlinear optical applications of photorefractive liquid crystal light-valves,” J. Nonlinear Opt. Phys. Mater. 16, 231–246 (2007).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

U. Bortolozzo, S. Residori, and J. P. Huignard, “Beam coupling in photorefractive liquid crystal light valves,” J. Phys. D 41, 224007 (2008).

JETP Lett. (1)

S. A. Akhmanov, M. A. Vorontsov, and V. Yu. Ivanov, “Large-scale transverse nonlinear interactions in laser beams; new types of nonlinear waves; onset of ‘optical turbulence’,” JETP Lett. 47, 611–614 (1988).

Materials (1)

U. Bortolozzo, S. Residori, and J. P. Huignard, “Adaptive holography in liquid crystal light-valves,” Materials 5, 1546–1559 (2012).
[Crossref]

Opt. Eng. (1)

J. Grinberg, A. Jacobson, W. P. Bleha, L. Miller, L. Fraas, D. Boswell, and G. Myer, “A new real-time non-coherent to coherent light image converter the hybrid field effect liquid crystal light valve,” Opt. Eng. 14, 143217 (1975).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

S. Residori, U. Bortolozzo, and J. P. Huignard, “Slow and fast light in liquid crystal light valves,” Phys. Rev. Lett. 100, 203603 (2008).
[Crossref]

Other (5)

P. G. De Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford Science Publications, Clarendon, 1993).

I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena, 2nd ed. (Wiley-Interscience, 2007).

D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystals Devices (Wiley, 2006).

U. Efron and G. Liverscu, Spatial Light Modulator Technology: Materials, Devices and Applications (Marcel Dekker, 1995).

N. Collings, Optical Pattern Recognition Using Holographic Techniques (Addison-Wesley, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Liquid crystal light-valve, LCLV, for transmissive operation in the NIR: the nematic liquid crystals (LC) are sandwiched in between two glass windows treated with a transparent conductive layer (ITO). Over one of the two windows it is contacted a GaAs:Cr photoconductive substrate. Thanks to the ITO layers, a voltage v(t) is applied across the LCLV. For an input beam polarized linearly and parallel to the nematic director, the LCLV provides a phase shift Δφ that depends both on the voltage v(t) and on the input light intensity.

Fig. 2.
Fig. 2.

LCLV threshold voltage amplitude V0Th (peak value) versus the incident light intensity I. The solid (red) line is a fit with the theoretical expression, V0Th=1.28+0.11I1.

Fig. 3.
Fig. 3.

Phase retardation of the output beam measured as a function of the amplitude voltage V0 applied across the LCLV for four different input light intensities. For increasing intensity the shrinking plateau corresponds to a decreasing transition voltage V0Th.

Fig. 4.
Fig. 4.

Refractive index change Δn measured as a function of the incident light intensity I and for different applied voltages V0.

Fig. 5.
Fig. 5.

Self-defocusing behavior of the LCLV. (a) Sketch of the experimental setup: a lens of focal length f=100mm focus the incident Gaussian beam at a given distance after the LCLV (dashed line marked by 0 V). When applying a voltage, the position of the focal plane changes because of the self-defocusing response of the LCLV (dashed line marked by 4 V). The light intensity is 70μW/cm2. The spot size observed by the fixed CCD camera is displayed in (b) for V0=0V, in (c) for V0=4V and in (d) for V0=10V.

Fig. 6.
Fig. 6.

Spot size as a function of the input light intensity, V0=8.5V.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

VFrd=πKΔε,
V0Th=πKΔε+ΔVGaAs(I),
Δφ=2πλdΔn,
ne(θ)=nenone2sin2(θ)+no2cos2(θ).
τrise=γK(dπ)21(V0V0Th)21,

Metrics