Abstract

This paper presents a sheet of graphene as a simple band-pass filter in terahertz and infrared frequencies. The central frequency and quality factor of this band-pass filter can be tuned by changing the physical parameters, such as the substrate thickness, gate voltage, temperature, and conductivity of the graphene. The effects of these parameters on surface plasmon polariton waves and filter specifications are numerically depicted.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Oswald, B. I. Wu, K. McIntosh, L. Mahoney, and S. Verghese, “Dual-band infrared metallodielectric photonic crystal filters,” Appl. Phys. Lett. 77, 2098–2100 (2000).
    [CrossRef]
  2. R. Costa, A. Melloni, and M. Martinelli, “Bandpass resonant filters in photonic-crystal waveguides,” IEEE Photon. Technol. Lett. 15, 401–403 (2003).
    [CrossRef]
  3. N. Ganesh and B. T. Cunningham, “Photonic-crystal near-ultraviolet reflectance filters fabricated by nanoreplica molding,” Appl. Phys. Lett. 88, 071110 (2006).
    [CrossRef]
  4. A. J. Gallant, M. A. Kaliteevski, D. Wood, M. C. Petty, R. A. Abram, S. Brand, G. P. Swift, D. A. Zeze, and J. M. Chamberlain, “Passband filters for terahertz radiation based on dual metallic photonic structures,” Appl. Phys. Lett. 91, 161115 (2007).
    [CrossRef]
  5. A. Baldycheva, V. A. Tolmachev, T. S. Perova, Y. A. Zharova, E. V. Astrova, and K. Berwick, “Silicon photonic crystal filter with ultrawide passband characteristics,” Opt. Lett. 36, 1854–1856 (2011).
    [CrossRef]
  6. D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
    [CrossRef]
  7. J. He, P. Liu, Y. He, and Z. Hong, “Narrow bandpass tunable terahertz filter based on photonic crystal cavity,” Appl. Opt. 51, 776–779 (2012).
    [CrossRef]
  8. J. Lee, M. Seo, D. Park, D. Kim, S. Jeoung, C. Lienau, Q. Park, and P. Planken, “Shape resonance omni-directional terahertz filters with near-unity transmittance,” Opt. Express 14, 1253–1259 (2006).
    [CrossRef]
  9. O. Paul, R. Beigang, and M. Rahm, “Highly selective terahertz bandpass filters based on trapped mode excitation,” Opt. Express 17, 18590–18595 (2009).
    [CrossRef]
  10. Y. J. Chiang, C. S. Yang, Y. H. Yang, C. L. Pan, and T. J. Yen, “An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial,” Appl. Phys. Lett. 99, 191909 (2011).
    [CrossRef]
  11. Y. Zhu, S. Vegesna, V. Kuryatkov, M. Holtz, M. Saed, and A. A. Bernussi, “Terahertz bandpass filters using double-stacked metamaterial layers,” Opt. Lett. 37, 296–298 (2012).
    [CrossRef]
  12. S. F. Busch, S. Schumann, C. Jansen, M. Scheller, M. Koch, and B. M. Fischer, “Optically gated tunable terahertz filters,” Appl. Phys. Lett. 100, 261109 (2012).
    [CrossRef]
  13. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317, 1698–1702 (2007).
    [CrossRef]
  14. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Mater. 6, 183–191 (2007).
    [CrossRef]
  15. T. Taychatanapat, K. Watanabe, T. Taniguchi, and P. J. Herrero, “Electrically tunable transverse magnetic focusing in graphene,” Nat. Phys. 9, 225–229 (2013).
    [CrossRef]
  16. J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12, 5598–5602 (2012).
    [CrossRef]
  17. L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and infrared spectroscopy of gated large-area graphene,” Nano Lett. 12, 3711–3715 (2012).
    [CrossRef]
  18. F. Xia, B. Farmer, Y. B. Lin, and P. Avouris, “Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature,” Nano Lett. 10, 715–718 (2010).
    [CrossRef]
  19. G. W. Hanson, “Quasi-TEM modes supported by a graphene parallel-plate waveguide,” J. Appl. Phys. 104, 084314 (2008).
    [CrossRef]
  20. M. G. Silveirinha and N. Engheta, “Effective medium approach to electron waves: graphene superlattices,” Phys. Rev. B 85, 195413 (2012).
    [CrossRef]
  21. T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B 78, 085432 (2008).
    [CrossRef]
  22. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011).
    [CrossRef]
  23. F. Schedin, A. K. Geim, S. V. Morozov, D. Jiang, E. H. Hill, P. Blake, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nature Mater. 6, 652–655 (2007).
    [CrossRef]
  24. M. S. Dresselhaus and G. Dresselhaus, “Intercalation compounds of graphite,” Adv. Phys. 51, 1–186 (2002).
    [CrossRef]
  25. T. B. Martins, R. H. Miwa, A. J. R. da Silva, and A. Fazzio, “Electronic and transport properties of boron-doped graphene nanoribbons,” Phys. Rev. Lett. 98, 196803 (2007).
    [CrossRef]
  26. I. Calizo, W. Bao, F. Miao, C. N. Lau, and A. A. Balandin, “The effect of substrates on the Raman spectrum of graphene: graphene- on-sapphire and graphene-on-glass,” Appl. Phys. Lett. 91, 201904 (2007).
    [CrossRef]
  27. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
    [CrossRef]
  28. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103, 064302 (2008).
    [CrossRef]

2013 (1)

T. Taychatanapat, K. Watanabe, T. Taniguchi, and P. J. Herrero, “Electrically tunable transverse magnetic focusing in graphene,” Nat. Phys. 9, 225–229 (2013).
[CrossRef]

2012 (6)

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12, 5598–5602 (2012).
[CrossRef]

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and infrared spectroscopy of gated large-area graphene,” Nano Lett. 12, 3711–3715 (2012).
[CrossRef]

S. F. Busch, S. Schumann, C. Jansen, M. Scheller, M. Koch, and B. M. Fischer, “Optically gated tunable terahertz filters,” Appl. Phys. Lett. 100, 261109 (2012).
[CrossRef]

M. G. Silveirinha and N. Engheta, “Effective medium approach to electron waves: graphene superlattices,” Phys. Rev. B 85, 195413 (2012).
[CrossRef]

Y. Zhu, S. Vegesna, V. Kuryatkov, M. Holtz, M. Saed, and A. A. Bernussi, “Terahertz bandpass filters using double-stacked metamaterial layers,” Opt. Lett. 37, 296–298 (2012).
[CrossRef]

J. He, P. Liu, Y. He, and Z. Hong, “Narrow bandpass tunable terahertz filter based on photonic crystal cavity,” Appl. Opt. 51, 776–779 (2012).
[CrossRef]

2011 (3)

A. Baldycheva, V. A. Tolmachev, T. S. Perova, Y. A. Zharova, E. V. Astrova, and K. Berwick, “Silicon photonic crystal filter with ultrawide passband characteristics,” Opt. Lett. 36, 1854–1856 (2011).
[CrossRef]

Y. J. Chiang, C. S. Yang, Y. H. Yang, C. L. Pan, and T. J. Yen, “An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial,” Appl. Phys. Lett. 99, 191909 (2011).
[CrossRef]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011).
[CrossRef]

2010 (1)

F. Xia, B. Farmer, Y. B. Lin, and P. Avouris, “Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature,” Nano Lett. 10, 715–718 (2010).
[CrossRef]

2009 (1)

2008 (3)

G. W. Hanson, “Quasi-TEM modes supported by a graphene parallel-plate waveguide,” J. Appl. Phys. 104, 084314 (2008).
[CrossRef]

T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B 78, 085432 (2008).
[CrossRef]

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103, 064302 (2008).
[CrossRef]

2007 (6)

F. Schedin, A. K. Geim, S. V. Morozov, D. Jiang, E. H. Hill, P. Blake, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nature Mater. 6, 652–655 (2007).
[CrossRef]

T. B. Martins, R. H. Miwa, A. J. R. da Silva, and A. Fazzio, “Electronic and transport properties of boron-doped graphene nanoribbons,” Phys. Rev. Lett. 98, 196803 (2007).
[CrossRef]

I. Calizo, W. Bao, F. Miao, C. N. Lau, and A. A. Balandin, “The effect of substrates on the Raman spectrum of graphene: graphene- on-sapphire and graphene-on-glass,” Appl. Phys. Lett. 91, 201904 (2007).
[CrossRef]

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317, 1698–1702 (2007).
[CrossRef]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Mater. 6, 183–191 (2007).
[CrossRef]

A. J. Gallant, M. A. Kaliteevski, D. Wood, M. C. Petty, R. A. Abram, S. Brand, G. P. Swift, D. A. Zeze, and J. M. Chamberlain, “Passband filters for terahertz radiation based on dual metallic photonic structures,” Appl. Phys. Lett. 91, 161115 (2007).
[CrossRef]

2006 (2)

J. Lee, M. Seo, D. Park, D. Kim, S. Jeoung, C. Lienau, Q. Park, and P. Planken, “Shape resonance omni-directional terahertz filters with near-unity transmittance,” Opt. Express 14, 1253–1259 (2006).
[CrossRef]

N. Ganesh and B. T. Cunningham, “Photonic-crystal near-ultraviolet reflectance filters fabricated by nanoreplica molding,” Appl. Phys. Lett. 88, 071110 (2006).
[CrossRef]

2005 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[CrossRef]

2003 (2)

R. Costa, A. Melloni, and M. Martinelli, “Bandpass resonant filters in photonic-crystal waveguides,” IEEE Photon. Technol. Lett. 15, 401–403 (2003).
[CrossRef]

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
[CrossRef]

2002 (1)

M. S. Dresselhaus and G. Dresselhaus, “Intercalation compounds of graphite,” Adv. Phys. 51, 1–186 (2002).
[CrossRef]

2000 (1)

J. A. Oswald, B. I. Wu, K. McIntosh, L. Mahoney, and S. Verghese, “Dual-band infrared metallodielectric photonic crystal filters,” Appl. Phys. Lett. 77, 2098–2100 (2000).
[CrossRef]

Abram, R. A.

A. J. Gallant, M. A. Kaliteevski, D. Wood, M. C. Petty, R. A. Abram, S. Brand, G. P. Swift, D. A. Zeze, and J. M. Chamberlain, “Passband filters for terahertz radiation based on dual metallic photonic structures,” Appl. Phys. Lett. 91, 161115 (2007).
[CrossRef]

Astrova, E. V.

Avouris, P.

F. Xia, B. Farmer, Y. B. Lin, and P. Avouris, “Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature,” Nano Lett. 10, 715–718 (2010).
[CrossRef]

Balandin, A. A.

I. Calizo, W. Bao, F. Miao, C. N. Lau, and A. A. Balandin, “The effect of substrates on the Raman spectrum of graphene: graphene- on-sapphire and graphene-on-glass,” Appl. Phys. Lett. 91, 201904 (2007).
[CrossRef]

Baldycheva, A.

Bao, W.

I. Calizo, W. Bao, F. Miao, C. N. Lau, and A. A. Balandin, “The effect of substrates on the Raman spectrum of graphene: graphene- on-sapphire and graphene-on-glass,” Appl. Phys. Lett. 91, 201904 (2007).
[CrossRef]

Basov, D. N.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
[CrossRef]

Beigang, R.

Bernussi, A. A.

Berwick, K.

Blake, P.

F. Schedin, A. K. Geim, S. V. Morozov, D. Jiang, E. H. Hill, P. Blake, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nature Mater. 6, 652–655 (2007).
[CrossRef]

Brand, S.

A. J. Gallant, M. A. Kaliteevski, D. Wood, M. C. Petty, R. A. Abram, S. Brand, G. P. Swift, D. A. Zeze, and J. M. Chamberlain, “Passband filters for terahertz radiation based on dual metallic photonic structures,” Appl. Phys. Lett. 91, 161115 (2007).
[CrossRef]

Busch, S. F.

S. F. Busch, S. Schumann, C. Jansen, M. Scheller, M. Koch, and B. M. Fischer, “Optically gated tunable terahertz filters,” Appl. Phys. Lett. 100, 261109 (2012).
[CrossRef]

Calizo, I.

I. Calizo, W. Bao, F. Miao, C. N. Lau, and A. A. Balandin, “The effect of substrates on the Raman spectrum of graphene: graphene- on-sapphire and graphene-on-glass,” Appl. Phys. Lett. 91, 201904 (2007).
[CrossRef]

Chamberlain, J. M.

A. J. Gallant, M. A. Kaliteevski, D. Wood, M. C. Petty, R. A. Abram, S. Brand, G. P. Swift, D. A. Zeze, and J. M. Chamberlain, “Passband filters for terahertz radiation based on dual metallic photonic structures,” Appl. Phys. Lett. 91, 161115 (2007).
[CrossRef]

Chiang, Y. J.

Y. J. Chiang, C. S. Yang, Y. H. Yang, C. L. Pan, and T. J. Yen, “An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial,” Appl. Phys. Lett. 99, 191909 (2011).
[CrossRef]

Cho, D. J.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12, 5598–5602 (2012).
[CrossRef]

Costa, R.

R. Costa, A. Melloni, and M. Martinelli, “Bandpass resonant filters in photonic-crystal waveguides,” IEEE Photon. Technol. Lett. 15, 401–403 (2003).
[CrossRef]

Cunningham, B. T.

N. Ganesh and B. T. Cunningham, “Photonic-crystal near-ultraviolet reflectance filters fabricated by nanoreplica molding,” Appl. Phys. Lett. 88, 071110 (2006).
[CrossRef]

da Silva, A. J. R.

T. B. Martins, R. H. Miwa, A. J. R. da Silva, and A. Fazzio, “Electronic and transport properties of boron-doped graphene nanoribbons,” Phys. Rev. Lett. 98, 196803 (2007).
[CrossRef]

Dresselhaus, G.

M. S. Dresselhaus and G. Dresselhaus, “Intercalation compounds of graphite,” Adv. Phys. 51, 1–186 (2002).
[CrossRef]

Dresselhaus, M. S.

M. S. Dresselhaus and G. Dresselhaus, “Intercalation compounds of graphite,” Adv. Phys. 51, 1–186 (2002).
[CrossRef]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[CrossRef]

Engheta, N.

M. G. Silveirinha and N. Engheta, “Effective medium approach to electron waves: graphene superlattices,” Phys. Rev. B 85, 195413 (2012).
[CrossRef]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011).
[CrossRef]

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317, 1698–1702 (2007).
[CrossRef]

Fang, N.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
[CrossRef]

Farmer, B.

F. Xia, B. Farmer, Y. B. Lin, and P. Avouris, “Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature,” Nano Lett. 10, 715–718 (2010).
[CrossRef]

Fazzio, A.

T. B. Martins, R. H. Miwa, A. J. R. da Silva, and A. Fazzio, “Electronic and transport properties of boron-doped graphene nanoribbons,” Phys. Rev. Lett. 98, 196803 (2007).
[CrossRef]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[CrossRef]

Fischer, B. M.

S. F. Busch, S. Schumann, C. Jansen, M. Scheller, M. Koch, and B. M. Fischer, “Optically gated tunable terahertz filters,” Appl. Phys. Lett. 100, 261109 (2012).
[CrossRef]

Gallant, A. J.

A. J. Gallant, M. A. Kaliteevski, D. Wood, M. C. Petty, R. A. Abram, S. Brand, G. P. Swift, D. A. Zeze, and J. M. Chamberlain, “Passband filters for terahertz radiation based on dual metallic photonic structures,” Appl. Phys. Lett. 91, 161115 (2007).
[CrossRef]

Ganesh, N.

N. Ganesh and B. T. Cunningham, “Photonic-crystal near-ultraviolet reflectance filters fabricated by nanoreplica molding,” Appl. Phys. Lett. 88, 071110 (2006).
[CrossRef]

Geim, A. K.

T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B 78, 085432 (2008).
[CrossRef]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Mater. 6, 183–191 (2007).
[CrossRef]

F. Schedin, A. K. Geim, S. V. Morozov, D. Jiang, E. H. Hill, P. Blake, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nature Mater. 6, 652–655 (2007).
[CrossRef]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[CrossRef]

Geng, B.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12, 5598–5602 (2012).
[CrossRef]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[CrossRef]

Hanson, G. W.

G. W. Hanson, “Quasi-TEM modes supported by a graphene parallel-plate waveguide,” J. Appl. Phys. 104, 084314 (2008).
[CrossRef]

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103, 064302 (2008).
[CrossRef]

He, J.

He, Y.

Herrero, P. J.

T. Taychatanapat, K. Watanabe, T. Taniguchi, and P. J. Herrero, “Electrically tunable transverse magnetic focusing in graphene,” Nat. Phys. 9, 225–229 (2013).
[CrossRef]

Hill, E. H.

F. Schedin, A. K. Geim, S. V. Morozov, D. Jiang, E. H. Hill, P. Blake, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nature Mater. 6, 652–655 (2007).
[CrossRef]

Holtz, M.

Hong, Z.

Jansen, C.

S. F. Busch, S. Schumann, C. Jansen, M. Scheller, M. Koch, and B. M. Fischer, “Optically gated tunable terahertz filters,” Appl. Phys. Lett. 100, 261109 (2012).
[CrossRef]

Jeoung, S.

Jiang, D.

F. Schedin, A. K. Geim, S. V. Morozov, D. Jiang, E. H. Hill, P. Blake, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nature Mater. 6, 652–655 (2007).
[CrossRef]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[CrossRef]

Jin, Z.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and infrared spectroscopy of gated large-area graphene,” Nano Lett. 12, 3711–3715 (2012).
[CrossRef]

Kaliteevski, M. A.

A. J. Gallant, M. A. Kaliteevski, D. Wood, M. C. Petty, R. A. Abram, S. Brand, G. P. Swift, D. A. Zeze, and J. M. Chamberlain, “Passband filters for terahertz radiation based on dual metallic photonic structures,” Appl. Phys. Lett. 91, 161115 (2007).
[CrossRef]

Kaneko, R.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and infrared spectroscopy of gated large-area graphene,” Nano Lett. 12, 3711–3715 (2012).
[CrossRef]

Katsnelson, M. I.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[CrossRef]

Kawayama, I.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and infrared spectroscopy of gated large-area graphene,” Nano Lett. 12, 3711–3715 (2012).
[CrossRef]

Kim, D.

Kim, J.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12, 5598–5602 (2012).
[CrossRef]

Kim, K.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12, 5598–5602 (2012).
[CrossRef]

Koch, M.

S. F. Busch, S. Schumann, C. Jansen, M. Scheller, M. Koch, and B. M. Fischer, “Optically gated tunable terahertz filters,” Appl. Phys. Lett. 100, 261109 (2012).
[CrossRef]

Kono, J.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and infrared spectroscopy of gated large-area graphene,” Nano Lett. 12, 3711–3715 (2012).
[CrossRef]

Kuryatkov, V.

Lau, C. N.

I. Calizo, W. Bao, F. Miao, C. N. Lau, and A. A. Balandin, “The effect of substrates on the Raman spectrum of graphene: graphene- on-sapphire and graphene-on-glass,” Appl. Phys. Lett. 91, 201904 (2007).
[CrossRef]

Lee, J.

Lienau, C.

Lin, Y. B.

F. Xia, B. Farmer, Y. B. Lin, and P. Avouris, “Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature,” Nano Lett. 10, 715–718 (2010).
[CrossRef]

Liu, P.

Mahoney, L.

J. A. Oswald, B. I. Wu, K. McIntosh, L. Mahoney, and S. Verghese, “Dual-band infrared metallodielectric photonic crystal filters,” Appl. Phys. Lett. 77, 2098–2100 (2000).
[CrossRef]

Martinelli, M.

R. Costa, A. Melloni, and M. Martinelli, “Bandpass resonant filters in photonic-crystal waveguides,” IEEE Photon. Technol. Lett. 15, 401–403 (2003).
[CrossRef]

Martins, T. B.

T. B. Martins, R. H. Miwa, A. J. R. da Silva, and A. Fazzio, “Electronic and transport properties of boron-doped graphene nanoribbons,” Phys. Rev. Lett. 98, 196803 (2007).
[CrossRef]

McIntosh, K.

J. A. Oswald, B. I. Wu, K. McIntosh, L. Mahoney, and S. Verghese, “Dual-band infrared metallodielectric photonic crystal filters,” Appl. Phys. Lett. 77, 2098–2100 (2000).
[CrossRef]

Melloni, A.

R. Costa, A. Melloni, and M. Martinelli, “Bandpass resonant filters in photonic-crystal waveguides,” IEEE Photon. Technol. Lett. 15, 401–403 (2003).
[CrossRef]

Miao, F.

I. Calizo, W. Bao, F. Miao, C. N. Lau, and A. A. Balandin, “The effect of substrates on the Raman spectrum of graphene: graphene- on-sapphire and graphene-on-glass,” Appl. Phys. Lett. 91, 201904 (2007).
[CrossRef]

Miwa, R. H.

T. B. Martins, R. H. Miwa, A. J. R. da Silva, and A. Fazzio, “Electronic and transport properties of boron-doped graphene nanoribbons,” Phys. Rev. Lett. 98, 196803 (2007).
[CrossRef]

Morozov, S. V.

F. Schedin, A. K. Geim, S. V. Morozov, D. Jiang, E. H. Hill, P. Blake, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nature Mater. 6, 652–655 (2007).
[CrossRef]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[CrossRef]

Nanot, S.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and infrared spectroscopy of gated large-area graphene,” Nano Lett. 12, 3711–3715 (2012).
[CrossRef]

Novoselov, K. S.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Mater. 6, 183–191 (2007).
[CrossRef]

F. Schedin, A. K. Geim, S. V. Morozov, D. Jiang, E. H. Hill, P. Blake, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nature Mater. 6, 652–655 (2007).
[CrossRef]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[CrossRef]

Oswald, J. A.

J. A. Oswald, B. I. Wu, K. McIntosh, L. Mahoney, and S. Verghese, “Dual-band infrared metallodielectric photonic crystal filters,” Appl. Phys. Lett. 77, 2098–2100 (2000).
[CrossRef]

Padilla, W. J.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
[CrossRef]

Pan, C. L.

Y. J. Chiang, C. S. Yang, Y. H. Yang, C. L. Pan, and T. J. Yen, “An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial,” Appl. Phys. Lett. 99, 191909 (2011).
[CrossRef]

Park, D.

Park, Q.

Paul, O.

Peres, N. M. R.

T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B 78, 085432 (2008).
[CrossRef]

Perova, T. S.

Petty, M. C.

A. J. Gallant, M. A. Kaliteevski, D. Wood, M. C. Petty, R. A. Abram, S. Brand, G. P. Swift, D. A. Zeze, and J. M. Chamberlain, “Passband filters for terahertz radiation based on dual metallic photonic structures,” Appl. Phys. Lett. 91, 161115 (2007).
[CrossRef]

Planken, P.

Rahm, M.

Regan, W.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12, 5598–5602 (2012).
[CrossRef]

Ren, L.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and infrared spectroscopy of gated large-area graphene,” Nano Lett. 12, 3711–3715 (2012).
[CrossRef]

Saed, M.

Schedin, F.

F. Schedin, A. K. Geim, S. V. Morozov, D. Jiang, E. H. Hill, P. Blake, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nature Mater. 6, 652–655 (2007).
[CrossRef]

Scheller, M.

S. F. Busch, S. Schumann, C. Jansen, M. Scheller, M. Koch, and B. M. Fischer, “Optically gated tunable terahertz filters,” Appl. Phys. Lett. 100, 261109 (2012).
[CrossRef]

Schultz, S.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
[CrossRef]

Schumann, S.

S. F. Busch, S. Schumann, C. Jansen, M. Scheller, M. Koch, and B. M. Fischer, “Optically gated tunable terahertz filters,” Appl. Phys. Lett. 100, 261109 (2012).
[CrossRef]

Seo, M.

Shen, Y. R.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12, 5598–5602 (2012).
[CrossRef]

Shi, S.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12, 5598–5602 (2012).
[CrossRef]

Silveirinha, M. G.

M. G. Silveirinha and N. Engheta, “Effective medium approach to electron waves: graphene superlattices,” Phys. Rev. B 85, 195413 (2012).
[CrossRef]

Smith, D. R.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
[CrossRef]

Son, H.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12, 5598–5602 (2012).
[CrossRef]

Stauber, T.

T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B 78, 085432 (2008).
[CrossRef]

Sun, C.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
[CrossRef]

Sun, Z.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and infrared spectroscopy of gated large-area graphene,” Nano Lett. 12, 3711–3715 (2012).
[CrossRef]

Swift, G. P.

A. J. Gallant, M. A. Kaliteevski, D. Wood, M. C. Petty, R. A. Abram, S. Brand, G. P. Swift, D. A. Zeze, and J. M. Chamberlain, “Passband filters for terahertz radiation based on dual metallic photonic structures,” Appl. Phys. Lett. 91, 161115 (2007).
[CrossRef]

Taniguchi, T.

T. Taychatanapat, K. Watanabe, T. Taniguchi, and P. J. Herrero, “Electrically tunable transverse magnetic focusing in graphene,” Nat. Phys. 9, 225–229 (2013).
[CrossRef]

Taychatanapat, T.

T. Taychatanapat, K. Watanabe, T. Taniguchi, and P. J. Herrero, “Electrically tunable transverse magnetic focusing in graphene,” Nat. Phys. 9, 225–229 (2013).
[CrossRef]

Tolmachev, V. A.

Tonouchi, M.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and infrared spectroscopy of gated large-area graphene,” Nano Lett. 12, 3711–3715 (2012).
[CrossRef]

Tour, J. M.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and infrared spectroscopy of gated large-area graphene,” Nano Lett. 12, 3711–3715 (2012).
[CrossRef]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011).
[CrossRef]

Vegesna, S.

Verghese, S.

J. A. Oswald, B. I. Wu, K. McIntosh, L. Mahoney, and S. Verghese, “Dual-band infrared metallodielectric photonic crystal filters,” Appl. Phys. Lett. 77, 2098–2100 (2000).
[CrossRef]

Wang, F.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12, 5598–5602 (2012).
[CrossRef]

Watanabe, K.

T. Taychatanapat, K. Watanabe, T. Taniguchi, and P. J. Herrero, “Electrically tunable transverse magnetic focusing in graphene,” Nat. Phys. 9, 225–229 (2013).
[CrossRef]

Wood, D.

A. J. Gallant, M. A. Kaliteevski, D. Wood, M. C. Petty, R. A. Abram, S. Brand, G. P. Swift, D. A. Zeze, and J. M. Chamberlain, “Passband filters for terahertz radiation based on dual metallic photonic structures,” Appl. Phys. Lett. 91, 161115 (2007).
[CrossRef]

Wu, B. I.

J. A. Oswald, B. I. Wu, K. McIntosh, L. Mahoney, and S. Verghese, “Dual-band infrared metallodielectric photonic crystal filters,” Appl. Phys. Lett. 77, 2098–2100 (2000).
[CrossRef]

Wu, D.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
[CrossRef]

Xia, F.

F. Xia, B. Farmer, Y. B. Lin, and P. Avouris, “Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature,” Nano Lett. 10, 715–718 (2010).
[CrossRef]

Yan, Z.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and infrared spectroscopy of gated large-area graphene,” Nano Lett. 12, 3711–3715 (2012).
[CrossRef]

Yang, C. S.

Y. J. Chiang, C. S. Yang, Y. H. Yang, C. L. Pan, and T. J. Yen, “An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial,” Appl. Phys. Lett. 99, 191909 (2011).
[CrossRef]

Yang, Y. H.

Y. J. Chiang, C. S. Yang, Y. H. Yang, C. L. Pan, and T. J. Yen, “An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial,” Appl. Phys. Lett. 99, 191909 (2011).
[CrossRef]

Yao, J.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and infrared spectroscopy of gated large-area graphene,” Nano Lett. 12, 3711–3715 (2012).
[CrossRef]

Yen, T. J.

Y. J. Chiang, C. S. Yang, Y. H. Yang, C. L. Pan, and T. J. Yen, “An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial,” Appl. Phys. Lett. 99, 191909 (2011).
[CrossRef]

Zettl, A.

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12, 5598–5602 (2012).
[CrossRef]

Zeze, D. A.

A. J. Gallant, M. A. Kaliteevski, D. Wood, M. C. Petty, R. A. Abram, S. Brand, G. P. Swift, D. A. Zeze, and J. M. Chamberlain, “Passband filters for terahertz radiation based on dual metallic photonic structures,” Appl. Phys. Lett. 91, 161115 (2007).
[CrossRef]

Zhang, Q.

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and infrared spectroscopy of gated large-area graphene,” Nano Lett. 12, 3711–3715 (2012).
[CrossRef]

Zhang, X.

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
[CrossRef]

Zharova, Y. A.

Zhu, Y.

Adv. Phys. (1)

M. S. Dresselhaus and G. Dresselhaus, “Intercalation compounds of graphite,” Adv. Phys. 51, 1–186 (2002).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (7)

J. A. Oswald, B. I. Wu, K. McIntosh, L. Mahoney, and S. Verghese, “Dual-band infrared metallodielectric photonic crystal filters,” Appl. Phys. Lett. 77, 2098–2100 (2000).
[CrossRef]

N. Ganesh and B. T. Cunningham, “Photonic-crystal near-ultraviolet reflectance filters fabricated by nanoreplica molding,” Appl. Phys. Lett. 88, 071110 (2006).
[CrossRef]

A. J. Gallant, M. A. Kaliteevski, D. Wood, M. C. Petty, R. A. Abram, S. Brand, G. P. Swift, D. A. Zeze, and J. M. Chamberlain, “Passband filters for terahertz radiation based on dual metallic photonic structures,” Appl. Phys. Lett. 91, 161115 (2007).
[CrossRef]

D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
[CrossRef]

Y. J. Chiang, C. S. Yang, Y. H. Yang, C. L. Pan, and T. J. Yen, “An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial,” Appl. Phys. Lett. 99, 191909 (2011).
[CrossRef]

I. Calizo, W. Bao, F. Miao, C. N. Lau, and A. A. Balandin, “The effect of substrates on the Raman spectrum of graphene: graphene- on-sapphire and graphene-on-glass,” Appl. Phys. Lett. 91, 201904 (2007).
[CrossRef]

S. F. Busch, S. Schumann, C. Jansen, M. Scheller, M. Koch, and B. M. Fischer, “Optically gated tunable terahertz filters,” Appl. Phys. Lett. 100, 261109 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

R. Costa, A. Melloni, and M. Martinelli, “Bandpass resonant filters in photonic-crystal waveguides,” IEEE Photon. Technol. Lett. 15, 401–403 (2003).
[CrossRef]

J. Appl. Phys. (2)

G. W. Hanson, “Quasi-TEM modes supported by a graphene parallel-plate waveguide,” J. Appl. Phys. 104, 084314 (2008).
[CrossRef]

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103, 064302 (2008).
[CrossRef]

Nano Lett. (3)

J. Kim, H. Son, D. J. Cho, B. Geng, W. Regan, S. Shi, K. Kim, A. Zettl, Y. R. Shen, and F. Wang, “Electrical control of optical plasmon resonance with graphene,” Nano Lett. 12, 5598–5602 (2012).
[CrossRef]

L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and infrared spectroscopy of gated large-area graphene,” Nano Lett. 12, 3711–3715 (2012).
[CrossRef]

F. Xia, B. Farmer, Y. B. Lin, and P. Avouris, “Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature,” Nano Lett. 10, 715–718 (2010).
[CrossRef]

Nat. Phys. (1)

T. Taychatanapat, K. Watanabe, T. Taniguchi, and P. J. Herrero, “Electrically tunable transverse magnetic focusing in graphene,” Nat. Phys. 9, 225–229 (2013).
[CrossRef]

Nature (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[CrossRef]

Nature Mater. (2)

F. Schedin, A. K. Geim, S. V. Morozov, D. Jiang, E. H. Hill, P. Blake, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nature Mater. 6, 652–655 (2007).
[CrossRef]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Mater. 6, 183–191 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (2)

M. G. Silveirinha and N. Engheta, “Effective medium approach to electron waves: graphene superlattices,” Phys. Rev. B 85, 195413 (2012).
[CrossRef]

T. Stauber, N. M. R. Peres, and A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B 78, 085432 (2008).
[CrossRef]

Phys. Rev. Lett. (1)

T. B. Martins, R. H. Miwa, A. J. R. da Silva, and A. Fazzio, “Electronic and transport properties of boron-doped graphene nanoribbons,” Phys. Rev. Lett. 98, 196803 (2007).
[CrossRef]

Science (2)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011).
[CrossRef]

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317, 1698–1702 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Graphene sheet with substrate and gate voltage. (b) Variation of charge carrier density versus chemical potential.

Fig. 2.
Fig. 2.

(a) Conductivity of the graphene at T=20K, μC=100meV, and t=2.7eV. (b) Distribution of Ez as the SPP waves of graphene at f=43THz.

Fig. 3.
Fig. 3.

Scattering parameters of the graphene-based band-pass filter with central frequency of f0=40.9THz and quality factor of Q=7.

Fig. 4.
Fig. 4.

Transmission coefficient spectra of the graphene-based band-pass filter for T=20K, Vg=16V, and different substrate thicknesses.

Fig. 5.
Fig. 5.

Transmission coefficient spectra of the graphene-based band-pass filter for different gate voltages.

Fig. 6.
Fig. 6.

Transmission coefficient spectra of the graphene-based band-pass filter for different temperatures.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ns=Vgε0εred,
ns=2π2νf20[fd(x)fd(x+2μC)]xdx,
σr=σ0H2[tanh(ω+2μC4kBT)+tanh(ω2μC4kBT)],
σi=4μCωσ0π(129μC2t2)Hσ0πlog|ω+2μC||ω2μC|,

Metrics