Abstract

Dual-frequency control liquid crystal (LC) and thin reactive mesogen (RM) films, cast on internal surfaces of cell substrate, are used to build surface polymer stabilized structures. Electric field of high frequency is used to orient the LC molecules by the negative dielectric torque prior to the photopolymerization of RM films. Electro-optic characterization results show that the contrasts of light scatter modulation and polarization dependence are noticeably improved by the dual-frequency control. However, there is no significant shortening in the full cycle duration of excitation–relaxation–excitation.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford University, 1995).
  2. L. M. Blinov and V. G. Chigrinov, Electro-optic Effects in Liquid Crystal Materials (Springer, 1994).
  3. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, 1999).
  4. K. Asatryan, V. Presnyakov, A. Tork, A. Zohrabyan, A. Bagramyan, and T. Galstian, “Optical lens with electrically variable focus using an optically hidden dielectric structure,” Opt. Express 18, 13981–13992 (2010).
    [CrossRef]
  5. H. Ren and S.-T. Wu, “Anisotropic liquid crystal gels for switchable polarizers and displays,” Appl. Phys. Lett. 81, 1432–1434 (2002).
    [CrossRef]
  6. V. V. Presnyakov and T. V. Galstian, “Light polarizer based on anisotropic nematic gel with electrically controlled anisotropy of scattering,” Mol. Cryst. Liq. Cryst. 413, 545–551 (2004).
    [CrossRef]
  7. T. Galstian, A. Zohrabyan, A. Tork, D. Dumont, and R. Birabassov, “In-guide control of optical propagation,” U.S. patent6,859,567 (22February2005).
  8. C. Khoo and S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, 1993).
  9. X. Liang, Y.-Q. Lu, Y.-H. Wu, F. Du, H.-Y. Wang, and S.-T. Wu, “Dual-frequency addressed variable optical attenuator with submillisecond response time,” Jpn. J. Appl. Phys. 44, 1292–1295 (2005).
    [CrossRef]
  10. A. B. Golovin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Fast switching dual-frequency liquid crystal optical retarder, driven by an amplitude and frequency modulated voltage,” SID Digest 34, 1472–1475 (2003).
    [CrossRef]
  11. J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead, and B.-G. Wu, “Polymer dispersed liquid crystals for display application,” Mol. Crys. Liq. Cryst. 165, 511–532 (1988).
    [CrossRef]
  12. R. A. M. Hikmet and H. M. J. Boots, “Domain structure and switching behavior of anisotropic gels,” Phys. Rev. E 51, 5824–5831 (1995).
    [CrossRef]
  13. Y.-H. Fan, H. Ren, X. Liang, Y.-H. Lin, and S.-T. Wu, “Dual-frequency liquid crystal gels with submillisecond response time,” Appl. Phys. Lett. 85, 2451–2453 (2004).
    [CrossRef]
  14. J.-P. Bédard-Arcand and T. Galstian, “Self-organization of liquid-crystal and reactive-mesogen into 2D surface-stabilized structures,” Macromolecules 44, 344–348 (2011).
    [CrossRef]
  15. J.-P. Bédard-Arcand and T. Galstian, “Surface-polymer stabilized liquid crystals,” Mol. Cryst. Liq. Cryst. 560, 170–182 (2012).
    [CrossRef]
  16. J.-P. Bédard-Arcand and T. Galstian, “Programmable and electrically controllable light scattering from surface-polymer stabilized liquid crystals,” J. Opt. Soc. Am. A 29, 1675–1679 (2012).
    [CrossRef]
  17. K. Takatoh, M. Hasegawa, M. Koden, N. Itoh, R. Hasegawa, and M. Sakamoto, Alignment Technologies and Applications of Liquid Crystal Devices (Taylor & Francis, 2005).
  18. S. Bassene and T. Galstian, “Coherent recovery of the degree of polarization of light propagating in random anisotropy media,” Opt. Lett. 35, 3294–3296 (2010).
    [CrossRef]
  19. S. Bassene and T. Galstian, “Interferential quenching of light transmission in microsphere dispersions of liquid-crystal clusters,” Opt. Lett. 34, 1663–1665 (2009).
    [CrossRef]
  20. Y. Yin, M. Gu, A. B. Golovin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Fast switching optical modulator based on dual frequency nematic cell,” Mol. Cryst. Liq. Cryst. 421, 133–144 (2004).
    [CrossRef]
  21. N. J. Mottram and C. V. Brown, “Pulsed addressing of a dual-frequency nematic liquid crystal,” Phys. Rev. E 74, 031703 (2006).
    [CrossRef]

2012

2011

J.-P. Bédard-Arcand and T. Galstian, “Self-organization of liquid-crystal and reactive-mesogen into 2D surface-stabilized structures,” Macromolecules 44, 344–348 (2011).
[CrossRef]

2010

2009

2006

N. J. Mottram and C. V. Brown, “Pulsed addressing of a dual-frequency nematic liquid crystal,” Phys. Rev. E 74, 031703 (2006).
[CrossRef]

2005

X. Liang, Y.-Q. Lu, Y.-H. Wu, F. Du, H.-Y. Wang, and S.-T. Wu, “Dual-frequency addressed variable optical attenuator with submillisecond response time,” Jpn. J. Appl. Phys. 44, 1292–1295 (2005).
[CrossRef]

2004

Y.-H. Fan, H. Ren, X. Liang, Y.-H. Lin, and S.-T. Wu, “Dual-frequency liquid crystal gels with submillisecond response time,” Appl. Phys. Lett. 85, 2451–2453 (2004).
[CrossRef]

V. V. Presnyakov and T. V. Galstian, “Light polarizer based on anisotropic nematic gel with electrically controlled anisotropy of scattering,” Mol. Cryst. Liq. Cryst. 413, 545–551 (2004).
[CrossRef]

Y. Yin, M. Gu, A. B. Golovin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Fast switching optical modulator based on dual frequency nematic cell,” Mol. Cryst. Liq. Cryst. 421, 133–144 (2004).
[CrossRef]

2003

A. B. Golovin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Fast switching dual-frequency liquid crystal optical retarder, driven by an amplitude and frequency modulated voltage,” SID Digest 34, 1472–1475 (2003).
[CrossRef]

2002

H. Ren and S.-T. Wu, “Anisotropic liquid crystal gels for switchable polarizers and displays,” Appl. Phys. Lett. 81, 1432–1434 (2002).
[CrossRef]

1995

R. A. M. Hikmet and H. M. J. Boots, “Domain structure and switching behavior of anisotropic gels,” Phys. Rev. E 51, 5824–5831 (1995).
[CrossRef]

1988

J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead, and B.-G. Wu, “Polymer dispersed liquid crystals for display application,” Mol. Crys. Liq. Cryst. 165, 511–532 (1988).
[CrossRef]

Asatryan, K.

Bagramyan, A.

Bassene, S.

Bédard-Arcand, J.-P.

J.-P. Bédard-Arcand and T. Galstian, “Surface-polymer stabilized liquid crystals,” Mol. Cryst. Liq. Cryst. 560, 170–182 (2012).
[CrossRef]

J.-P. Bédard-Arcand and T. Galstian, “Programmable and electrically controllable light scattering from surface-polymer stabilized liquid crystals,” J. Opt. Soc. Am. A 29, 1675–1679 (2012).
[CrossRef]

J.-P. Bédard-Arcand and T. Galstian, “Self-organization of liquid-crystal and reactive-mesogen into 2D surface-stabilized structures,” Macromolecules 44, 344–348 (2011).
[CrossRef]

Birabassov, R.

T. Galstian, A. Zohrabyan, A. Tork, D. Dumont, and R. Birabassov, “In-guide control of optical propagation,” U.S. patent6,859,567 (22February2005).

Blinov, L. M.

L. M. Blinov and V. G. Chigrinov, Electro-optic Effects in Liquid Crystal Materials (Springer, 1994).

Boots, H. M. J.

R. A. M. Hikmet and H. M. J. Boots, “Domain structure and switching behavior of anisotropic gels,” Phys. Rev. E 51, 5824–5831 (1995).
[CrossRef]

Brown, C. V.

N. J. Mottram and C. V. Brown, “Pulsed addressing of a dual-frequency nematic liquid crystal,” Phys. Rev. E 74, 031703 (2006).
[CrossRef]

Chigrinov, V. G.

L. M. Blinov and V. G. Chigrinov, Electro-optic Effects in Liquid Crystal Materials (Springer, 1994).

de Gennes, P. G.

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford University, 1995).

Doane, J. W.

J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead, and B.-G. Wu, “Polymer dispersed liquid crystals for display application,” Mol. Crys. Liq. Cryst. 165, 511–532 (1988).
[CrossRef]

Du, F.

X. Liang, Y.-Q. Lu, Y.-H. Wu, F. Du, H.-Y. Wang, and S.-T. Wu, “Dual-frequency addressed variable optical attenuator with submillisecond response time,” Jpn. J. Appl. Phys. 44, 1292–1295 (2005).
[CrossRef]

Dumont, D.

T. Galstian, A. Zohrabyan, A. Tork, D. Dumont, and R. Birabassov, “In-guide control of optical propagation,” U.S. patent6,859,567 (22February2005).

Fan, Y.-H.

Y.-H. Fan, H. Ren, X. Liang, Y.-H. Lin, and S.-T. Wu, “Dual-frequency liquid crystal gels with submillisecond response time,” Appl. Phys. Lett. 85, 2451–2453 (2004).
[CrossRef]

Galstian, T.

Galstian, T. V.

V. V. Presnyakov and T. V. Galstian, “Light polarizer based on anisotropic nematic gel with electrically controlled anisotropy of scattering,” Mol. Cryst. Liq. Cryst. 413, 545–551 (2004).
[CrossRef]

Golemme, A.

J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead, and B.-G. Wu, “Polymer dispersed liquid crystals for display application,” Mol. Crys. Liq. Cryst. 165, 511–532 (1988).
[CrossRef]

Golovin, A. B.

Y. Yin, M. Gu, A. B. Golovin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Fast switching optical modulator based on dual frequency nematic cell,” Mol. Cryst. Liq. Cryst. 421, 133–144 (2004).
[CrossRef]

A. B. Golovin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Fast switching dual-frequency liquid crystal optical retarder, driven by an amplitude and frequency modulated voltage,” SID Digest 34, 1472–1475 (2003).
[CrossRef]

Gu, C.

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, 1999).

Gu, M.

Y. Yin, M. Gu, A. B. Golovin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Fast switching optical modulator based on dual frequency nematic cell,” Mol. Cryst. Liq. Cryst. 421, 133–144 (2004).
[CrossRef]

Hasegawa, M.

K. Takatoh, M. Hasegawa, M. Koden, N. Itoh, R. Hasegawa, and M. Sakamoto, Alignment Technologies and Applications of Liquid Crystal Devices (Taylor & Francis, 2005).

Hasegawa, R.

K. Takatoh, M. Hasegawa, M. Koden, N. Itoh, R. Hasegawa, and M. Sakamoto, Alignment Technologies and Applications of Liquid Crystal Devices (Taylor & Francis, 2005).

Hikmet, R. A. M.

R. A. M. Hikmet and H. M. J. Boots, “Domain structure and switching behavior of anisotropic gels,” Phys. Rev. E 51, 5824–5831 (1995).
[CrossRef]

Itoh, N.

K. Takatoh, M. Hasegawa, M. Koden, N. Itoh, R. Hasegawa, and M. Sakamoto, Alignment Technologies and Applications of Liquid Crystal Devices (Taylor & Francis, 2005).

Khoo, C.

C. Khoo and S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, 1993).

Koden, M.

K. Takatoh, M. Hasegawa, M. Koden, N. Itoh, R. Hasegawa, and M. Sakamoto, Alignment Technologies and Applications of Liquid Crystal Devices (Taylor & Francis, 2005).

Lavrentovich, O. D.

Y. Yin, M. Gu, A. B. Golovin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Fast switching optical modulator based on dual frequency nematic cell,” Mol. Cryst. Liq. Cryst. 421, 133–144 (2004).
[CrossRef]

A. B. Golovin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Fast switching dual-frequency liquid crystal optical retarder, driven by an amplitude and frequency modulated voltage,” SID Digest 34, 1472–1475 (2003).
[CrossRef]

Liang, X.

X. Liang, Y.-Q. Lu, Y.-H. Wu, F. Du, H.-Y. Wang, and S.-T. Wu, “Dual-frequency addressed variable optical attenuator with submillisecond response time,” Jpn. J. Appl. Phys. 44, 1292–1295 (2005).
[CrossRef]

Y.-H. Fan, H. Ren, X. Liang, Y.-H. Lin, and S.-T. Wu, “Dual-frequency liquid crystal gels with submillisecond response time,” Appl. Phys. Lett. 85, 2451–2453 (2004).
[CrossRef]

Lin, Y.-H.

Y.-H. Fan, H. Ren, X. Liang, Y.-H. Lin, and S.-T. Wu, “Dual-frequency liquid crystal gels with submillisecond response time,” Appl. Phys. Lett. 85, 2451–2453 (2004).
[CrossRef]

Lu, Y.-Q.

X. Liang, Y.-Q. Lu, Y.-H. Wu, F. Du, H.-Y. Wang, and S.-T. Wu, “Dual-frequency addressed variable optical attenuator with submillisecond response time,” Jpn. J. Appl. Phys. 44, 1292–1295 (2005).
[CrossRef]

Mottram, N. J.

N. J. Mottram and C. V. Brown, “Pulsed addressing of a dual-frequency nematic liquid crystal,” Phys. Rev. E 74, 031703 (2006).
[CrossRef]

Presnyakov, V.

Presnyakov, V. V.

V. V. Presnyakov and T. V. Galstian, “Light polarizer based on anisotropic nematic gel with electrically controlled anisotropy of scattering,” Mol. Cryst. Liq. Cryst. 413, 545–551 (2004).
[CrossRef]

Prost, J.

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford University, 1995).

Ren, H.

Y.-H. Fan, H. Ren, X. Liang, Y.-H. Lin, and S.-T. Wu, “Dual-frequency liquid crystal gels with submillisecond response time,” Appl. Phys. Lett. 85, 2451–2453 (2004).
[CrossRef]

H. Ren and S.-T. Wu, “Anisotropic liquid crystal gels for switchable polarizers and displays,” Appl. Phys. Lett. 81, 1432–1434 (2002).
[CrossRef]

Sakamoto, M.

K. Takatoh, M. Hasegawa, M. Koden, N. Itoh, R. Hasegawa, and M. Sakamoto, Alignment Technologies and Applications of Liquid Crystal Devices (Taylor & Francis, 2005).

Shiyanovskii, S. V.

Y. Yin, M. Gu, A. B. Golovin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Fast switching optical modulator based on dual frequency nematic cell,” Mol. Cryst. Liq. Cryst. 421, 133–144 (2004).
[CrossRef]

A. B. Golovin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Fast switching dual-frequency liquid crystal optical retarder, driven by an amplitude and frequency modulated voltage,” SID Digest 34, 1472–1475 (2003).
[CrossRef]

Takatoh, K.

K. Takatoh, M. Hasegawa, M. Koden, N. Itoh, R. Hasegawa, and M. Sakamoto, Alignment Technologies and Applications of Liquid Crystal Devices (Taylor & Francis, 2005).

Tork, A.

K. Asatryan, V. Presnyakov, A. Tork, A. Zohrabyan, A. Bagramyan, and T. Galstian, “Optical lens with electrically variable focus using an optically hidden dielectric structure,” Opt. Express 18, 13981–13992 (2010).
[CrossRef]

T. Galstian, A. Zohrabyan, A. Tork, D. Dumont, and R. Birabassov, “In-guide control of optical propagation,” U.S. patent6,859,567 (22February2005).

Wang, H.-Y.

X. Liang, Y.-Q. Lu, Y.-H. Wu, F. Du, H.-Y. Wang, and S.-T. Wu, “Dual-frequency addressed variable optical attenuator with submillisecond response time,” Jpn. J. Appl. Phys. 44, 1292–1295 (2005).
[CrossRef]

West, J. L.

J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead, and B.-G. Wu, “Polymer dispersed liquid crystals for display application,” Mol. Crys. Liq. Cryst. 165, 511–532 (1988).
[CrossRef]

Whitehead, J. B.

J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead, and B.-G. Wu, “Polymer dispersed liquid crystals for display application,” Mol. Crys. Liq. Cryst. 165, 511–532 (1988).
[CrossRef]

Wu, B.-G.

J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead, and B.-G. Wu, “Polymer dispersed liquid crystals for display application,” Mol. Crys. Liq. Cryst. 165, 511–532 (1988).
[CrossRef]

Wu, S. T.

C. Khoo and S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, 1993).

Wu, S.-T.

X. Liang, Y.-Q. Lu, Y.-H. Wu, F. Du, H.-Y. Wang, and S.-T. Wu, “Dual-frequency addressed variable optical attenuator with submillisecond response time,” Jpn. J. Appl. Phys. 44, 1292–1295 (2005).
[CrossRef]

Y.-H. Fan, H. Ren, X. Liang, Y.-H. Lin, and S.-T. Wu, “Dual-frequency liquid crystal gels with submillisecond response time,” Appl. Phys. Lett. 85, 2451–2453 (2004).
[CrossRef]

H. Ren and S.-T. Wu, “Anisotropic liquid crystal gels for switchable polarizers and displays,” Appl. Phys. Lett. 81, 1432–1434 (2002).
[CrossRef]

Wu, Y.-H.

X. Liang, Y.-Q. Lu, Y.-H. Wu, F. Du, H.-Y. Wang, and S.-T. Wu, “Dual-frequency addressed variable optical attenuator with submillisecond response time,” Jpn. J. Appl. Phys. 44, 1292–1295 (2005).
[CrossRef]

Yeh, P.

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, 1999).

Yin, Y.

Y. Yin, M. Gu, A. B. Golovin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Fast switching optical modulator based on dual frequency nematic cell,” Mol. Cryst. Liq. Cryst. 421, 133–144 (2004).
[CrossRef]

Zohrabyan, A.

K. Asatryan, V. Presnyakov, A. Tork, A. Zohrabyan, A. Bagramyan, and T. Galstian, “Optical lens with electrically variable focus using an optically hidden dielectric structure,” Opt. Express 18, 13981–13992 (2010).
[CrossRef]

T. Galstian, A. Zohrabyan, A. Tork, D. Dumont, and R. Birabassov, “In-guide control of optical propagation,” U.S. patent6,859,567 (22February2005).

Appl. Phys. Lett.

H. Ren and S.-T. Wu, “Anisotropic liquid crystal gels for switchable polarizers and displays,” Appl. Phys. Lett. 81, 1432–1434 (2002).
[CrossRef]

Y.-H. Fan, H. Ren, X. Liang, Y.-H. Lin, and S.-T. Wu, “Dual-frequency liquid crystal gels with submillisecond response time,” Appl. Phys. Lett. 85, 2451–2453 (2004).
[CrossRef]

J. Opt. Soc. Am. A

Jpn. J. Appl. Phys.

X. Liang, Y.-Q. Lu, Y.-H. Wu, F. Du, H.-Y. Wang, and S.-T. Wu, “Dual-frequency addressed variable optical attenuator with submillisecond response time,” Jpn. J. Appl. Phys. 44, 1292–1295 (2005).
[CrossRef]

Macromolecules

J.-P. Bédard-Arcand and T. Galstian, “Self-organization of liquid-crystal and reactive-mesogen into 2D surface-stabilized structures,” Macromolecules 44, 344–348 (2011).
[CrossRef]

Mol. Crys. Liq. Cryst.

J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead, and B.-G. Wu, “Polymer dispersed liquid crystals for display application,” Mol. Crys. Liq. Cryst. 165, 511–532 (1988).
[CrossRef]

Mol. Cryst. Liq. Cryst.

J.-P. Bédard-Arcand and T. Galstian, “Surface-polymer stabilized liquid crystals,” Mol. Cryst. Liq. Cryst. 560, 170–182 (2012).
[CrossRef]

V. V. Presnyakov and T. V. Galstian, “Light polarizer based on anisotropic nematic gel with electrically controlled anisotropy of scattering,” Mol. Cryst. Liq. Cryst. 413, 545–551 (2004).
[CrossRef]

Y. Yin, M. Gu, A. B. Golovin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Fast switching optical modulator based on dual frequency nematic cell,” Mol. Cryst. Liq. Cryst. 421, 133–144 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. E

R. A. M. Hikmet and H. M. J. Boots, “Domain structure and switching behavior of anisotropic gels,” Phys. Rev. E 51, 5824–5831 (1995).
[CrossRef]

N. J. Mottram and C. V. Brown, “Pulsed addressing of a dual-frequency nematic liquid crystal,” Phys. Rev. E 74, 031703 (2006).
[CrossRef]

SID Digest

A. B. Golovin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Fast switching dual-frequency liquid crystal optical retarder, driven by an amplitude and frequency modulated voltage,” SID Digest 34, 1472–1475 (2003).
[CrossRef]

Other

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford University, 1995).

L. M. Blinov and V. G. Chigrinov, Electro-optic Effects in Liquid Crystal Materials (Springer, 1994).

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Wiley, 1999).

T. Galstian, A. Zohrabyan, A. Tork, D. Dumont, and R. Birabassov, “In-guide control of optical propagation,” U.S. patent6,859,567 (22February2005).

C. Khoo and S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, 1993).

K. Takatoh, M. Hasegawa, M. Koden, N. Itoh, R. Hasegawa, and M. Sakamoto, Alignment Technologies and Applications of Liquid Crystal Devices (Taylor & Francis, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic presentation of major steps of the fabrication of S-PS-DF-NLC cell (see text for details).

Fig. 2.
Fig. 2.

Schematics of the general experimental setup used for the “programming” and for the electro-optic study of the haze and angular dependence of light scattering of S-PS-DF-NLC cells. The half-wave plate λ/2 and the diaphragm were used later for electro-optic tests only (see hereafter).

Fig. 3.
Fig. 3.

Qualitative demonstration of (a) cell’s scattering in its ground state (left picture, U=0V), when subjected to U=110V at 1 kHz (central picture) and when subjected to U=80V at 80 kHz (right picture). (b) The comparative histograms for three key cases (vertical arrows show the scanned zones). The cell was programmed with 110 V at 1 kHz.

Fig. 4.
Fig. 4.

Normalized (ground state; U=0V) angular distribution of scattered light power for the S-PS-DF-NLC cells programmed in the presence of an electric field of 110 V at 1 kHz (dashed curve) and at 70 kHz (solid curve).

Fig. 5.
Fig. 5.

Stationary dependence of ballistic light transmission upon the voltage applied to the S-PS-DF-NLC cell with frequency (a) 1 kHz and (b) 70 kHz. The cell was programmed with U=110V at 70 kHz.

Fig. 6.
Fig. 6.

Angular dependence of the probe beam’s transmission of the S-PS-DF-NLC cell that was programmed with U=110V at 70 kHz. Squares, circles, and triangles represent, respectively, ground state (U=0V) as well as excited homeotropic (110 V at 1 kHz) and excited planar (60 V at 70 kHz) states.

Fig. 7.
Fig. 7.

Transmission versus time for different transitions for two perpendicular polarizations (solid line, vertical; dashed line, horizontal). Excitation switching is performed (at t5.6s) from 110 V at 1 kHz to 0 V and then (at t12.4s) from zero to 110 V at 1 kHz. The S-PS-DF-NLC cell was programmed with 110 V at 70 kHz.

Fig. 8.
Fig. 8.

Transmission versus time during the natural relaxation process for two perpendicular polarizations (solid line, vertical; dashed line, horizontal). The S-PS-DF-NLC cell was programmed with 110 V at 70 kHz.

Fig. 9.
Fig. 9.

Transmission versus time for an S-PS-DF-NLC cell that was programmed at 70 kHz. Switching is performed at t4.4s from 1 kHz (110 V) to 80 kHz (80 V) and back to 1 kHz (110 V) at t11.2s. Curves for two polarizations (solid line, vertical; dashed line, horizontal) are practically coinciding.

Fig. 10.
Fig. 10.

Ground-state microphotography (by using Zeiss polarization microscope) of the S-PS-DF-NLC cell that was programmed at 70 kHz.

Fig. 11.
Fig. 11.

Schematic demonstration of the possible mechanism of slowing of the S-PS-DF-NLC’s reaction due to the difference between (a) free relaxation and (b) forced back reorientation. The polymer aggregate (solid curve 1) is bent (dashed curve 2) toward the surface AB by the negative torque.

Metrics