Abstract

The photoresponsive electro-optical composites based on cholesteric liquid crystal (CLC) with optically controlled chirality and a minute amount of carbon nanotubes (CNTs) are studied. In cells with homeotropic anchoring, these composites exhibit a transition from fingerprint texture to homeotropic nematic texture in the course of photoinduced unwinding of the cholesteric helix. Compared with the CLC counterpart, this transition is much delayed, because of the stabilization of cholesteric filamentary domains by CNTs. The CLC-CNT composites demonstrate dual-mode operation with optical switching between reversible and memory mode. It is found that the memory response is associated with the elastic network of filamentary cholesteric domains that stabilizes the planar CLC texture reached in an electric field. In turn, the reversible mode corresponds to the unwound cholesteric state. Potential applications of this effect are discussed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S.-H. Chen and N. M. Amer, “Observation of macroscopic collective behavior and new texture in magnetically doped liquid crystals,” Phys. Rev. Lett. 51, 2298–2301 (1983).
    [CrossRef]
  2. F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, T. Sluckin, and J. West, “Orientational coupling amplification in ferroelectric nematic colloids,” Phys. Rev. Lett. 97, 147801 (2006).
    [CrossRef]
  3. Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, and S. Kobayashi, “Frequency modulation response of liquid crystal electro-optic device doped with nanoparticles,” Appl. Phys. Lett. 81, 2845–2847 (2002).
    [CrossRef]
  4. T. Zhang, C. Zhong, and J. Xu, “CdS-nanoparticle-doped liquid crystal displays showing low threshold voltage,” Jpn. J. Appl. Phys. 48, 055002 (2009).
    [CrossRef]
  5. M. Kreuzer, T. Tschudi, and R. Eidenschink, “Erasable optical storage in bistable liquid crystal cells,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 223, 219–227 (1992).
    [CrossRef]
  6. M. Boxtel, R. Janssen, C. Bastiaansen, and D. Broer, “Viscoelastic liquid crystal colloids for the continuous processing of twisted nematic electro-optical cells,” J. Appl. Phys. 89, 838–842 (2001).
    [CrossRef]
  7. H. Qi and T. Hegmann, “Impact of nanoscale particles and carbon nanotubes on current and future generations of liquid crystal displays,” J. Mater. Chem. 18, 3288–3294 (2008).
    [CrossRef]
  8. M. Rahman and W. Lee, “Scientific duo of carbon nanotubes and nematic liquid crystals,” J. Phys. D 42, 063001 (2009).
    [CrossRef]
  9. A. Glushchenko, H. Kresse, V. Reshetnyak, Y. Reznikov, and O. Yaroshchuk, “Memory effect in filled nematic liquid crystals,” Liq. Cryst. 23, 241–246 (1997).
    [CrossRef]
  10. L. Dolgov, O. Yaroshchuk, and N. Lebovka, “Effect of electro-optic memory in liquid crystals doped with carbon nanotubes,” Mol. Cryst. Liq. Cryst. 496, 212–229 (2008).
    [CrossRef]
  11. L. Dolgov, N. Lebovka, and O. Yaroshchuk, “Effect of electro-optic memory in suspensions of carbon nanotubes in liquid crystal,” Colloid J. 71, 603–611 (2009).
    [CrossRef]
  12. L. Dolgov, O. Yaroshchuk, S. Tomylko, and N. Lebovka, “Electro-optical memory of a nematic liquid crystal doped by multi-walled carbon nanotubes,” Condens. Matter Phys. 15, 33401 (2012).
    [CrossRef]
  13. L. Dolgov, S. Tomylko, T. Semikina, O. Koval’chuk, and O. Yaroshchuk, “Carbon nanotube doped liquid crystals: robust composites with a function of electro-optic memory,” Diam. Relat. Mater. 19, 567–572 (2010).
    [CrossRef]
  14. S. N. Yarmolenko, L. A. Kutulya, V. V. Vaschenko, and L. V. Chepeleva, “Photosensitive chiral dopants with high twisting power,” Liq. Cryst. 16, 877–882 (1994).
    [CrossRef]
  15. A. Kovalchuk, S. Zakrevska, O. Yaroshchuk, and U. Maschke, “Electrooptical properties of three-component compositions liquid crystal-aerosil-photopolymer,” Mol. Cryst. Liq. Cryst. 368, 129–136 (2001).
    [CrossRef]
  16. Yu. Reznikov and T. Sergan, “Orientational transitions in a cell with twisted nematic liquid crystal,” Mol. Cryst. Liq. Cryst. 330, 375–381 (1999).
    [CrossRef]
  17. I. Gvozdovskyy, O. Yaroshchuk, M. Serbina, and R. Yamaguchi, “Photoinduced helical inversion in cholesteric liquid crystal cells with homeotropic anchoring,” Opt. Express 20, 3499–3508 (2012).
    [CrossRef]
  18. B. Y. Zeldovich and N. V. Tabiryan, “Equilibrium structure of a cholesteric with homeotropic orientation on the walls,” Sov. Phys. JETP 56, 563–566 (1982).
  19. V. G. Chigrinov, V. V. Belyaev, S. V. Belyaev, and M. F. Grebenkin, “Instabilities of cholesteric liquid crystals in an electric field,” Sov. Phys. JETP 50, 994–999 (1979).
  20. M. Zapotocky, L. Ramos, P. Poulin, T. C. Lubensky, and D. A. Weitz, “Particle-stabilized defect gel in cholesteric liquid crystals,” Science 283, 209–212 (1999).
    [CrossRef]
  21. T. A. Wood, J. S. Lintuvuori, A. B. Schofield, D. Marenduzzo, and W. C. K. Poon, “A self-quenched defect glass in a colloid-nematic liquid crystal composite,” Science 334, 79–83 (2011).
    [CrossRef]
  22. L. Dolgov, S. Tomylko, O. Koval’chuk, N. Lebovka, and O. Yaroshchuk, “Liquid crystal dispersions of carbon nanotubes: dielectric, electro-optical and structural peculiarities,” in Carbon Nanotubes, J. M. Marulanda, ed. (Intech, 2010), Chap. 24, pp. 451–484, http://sciyo.com/books/show/title/carbon-nanotubes .
  23. J. Ma, Ya. Li, T. White, A. Urbas, and Q. Li, “Light-driven nanoscale chiral molecular switch: reversible dynamic full range color phototuning,” Chem. Commun. 46, 3463–3465 (2010).
    [CrossRef]
  24. M. Mathews, R. S. Zola, S. Hurley, D. K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132, 18361–18366 (2010).
    [CrossRef]
  25. C.-Y. Huang, C.-C. Lai, Y.-H. Tseng, Y.-T. Yang, C.-J. Tien, and K.-Y. Lo, “Silica-nanoparticle-doped nematic display with multistable and dynamic modes,” Appl. Phys. Lett. 92, 221908 (2008).
    [CrossRef]
  26. C.-Y. Huang, C.-C. Lai, Y.-J. Huang, and J.-H. Chen, “Switching characteristics of silica nanoparticle-doped dual-mode liquid crystal device,” Jpn. J. Appl. Phys. 49, 028003 (2010).
    [CrossRef]
  27. J.-H. Lee, D.-H. Song, T. Kim, H.-K. Shin, C.-G. Jhun, S.-B. Kwon, D.-G. Kim, W. S. Kim, T.-H. Yoon, and J. C. Kim, “Reflective dual mode liquid crystal display with dynamic mode utilizing the transition behavior between the two stable states of its memory mode,” Jpn. J. Appl. Phys. 50, 084101 (2011).
    [CrossRef]

2012 (2)

L. Dolgov, O. Yaroshchuk, S. Tomylko, and N. Lebovka, “Electro-optical memory of a nematic liquid crystal doped by multi-walled carbon nanotubes,” Condens. Matter Phys. 15, 33401 (2012).
[CrossRef]

I. Gvozdovskyy, O. Yaroshchuk, M. Serbina, and R. Yamaguchi, “Photoinduced helical inversion in cholesteric liquid crystal cells with homeotropic anchoring,” Opt. Express 20, 3499–3508 (2012).
[CrossRef]

2011 (2)

T. A. Wood, J. S. Lintuvuori, A. B. Schofield, D. Marenduzzo, and W. C. K. Poon, “A self-quenched defect glass in a colloid-nematic liquid crystal composite,” Science 334, 79–83 (2011).
[CrossRef]

J.-H. Lee, D.-H. Song, T. Kim, H.-K. Shin, C.-G. Jhun, S.-B. Kwon, D.-G. Kim, W. S. Kim, T.-H. Yoon, and J. C. Kim, “Reflective dual mode liquid crystal display with dynamic mode utilizing the transition behavior between the two stable states of its memory mode,” Jpn. J. Appl. Phys. 50, 084101 (2011).
[CrossRef]

2010 (4)

C.-Y. Huang, C.-C. Lai, Y.-J. Huang, and J.-H. Chen, “Switching characteristics of silica nanoparticle-doped dual-mode liquid crystal device,” Jpn. J. Appl. Phys. 49, 028003 (2010).
[CrossRef]

J. Ma, Ya. Li, T. White, A. Urbas, and Q. Li, “Light-driven nanoscale chiral molecular switch: reversible dynamic full range color phototuning,” Chem. Commun. 46, 3463–3465 (2010).
[CrossRef]

M. Mathews, R. S. Zola, S. Hurley, D. K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132, 18361–18366 (2010).
[CrossRef]

L. Dolgov, S. Tomylko, T. Semikina, O. Koval’chuk, and O. Yaroshchuk, “Carbon nanotube doped liquid crystals: robust composites with a function of electro-optic memory,” Diam. Relat. Mater. 19, 567–572 (2010).
[CrossRef]

2009 (3)

T. Zhang, C. Zhong, and J. Xu, “CdS-nanoparticle-doped liquid crystal displays showing low threshold voltage,” Jpn. J. Appl. Phys. 48, 055002 (2009).
[CrossRef]

M. Rahman and W. Lee, “Scientific duo of carbon nanotubes and nematic liquid crystals,” J. Phys. D 42, 063001 (2009).
[CrossRef]

L. Dolgov, N. Lebovka, and O. Yaroshchuk, “Effect of electro-optic memory in suspensions of carbon nanotubes in liquid crystal,” Colloid J. 71, 603–611 (2009).
[CrossRef]

2008 (3)

C.-Y. Huang, C.-C. Lai, Y.-H. Tseng, Y.-T. Yang, C.-J. Tien, and K.-Y. Lo, “Silica-nanoparticle-doped nematic display with multistable and dynamic modes,” Appl. Phys. Lett. 92, 221908 (2008).
[CrossRef]

H. Qi and T. Hegmann, “Impact of nanoscale particles and carbon nanotubes on current and future generations of liquid crystal displays,” J. Mater. Chem. 18, 3288–3294 (2008).
[CrossRef]

L. Dolgov, O. Yaroshchuk, and N. Lebovka, “Effect of electro-optic memory in liquid crystals doped with carbon nanotubes,” Mol. Cryst. Liq. Cryst. 496, 212–229 (2008).
[CrossRef]

2006 (1)

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, T. Sluckin, and J. West, “Orientational coupling amplification in ferroelectric nematic colloids,” Phys. Rev. Lett. 97, 147801 (2006).
[CrossRef]

2002 (1)

Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, and S. Kobayashi, “Frequency modulation response of liquid crystal electro-optic device doped with nanoparticles,” Appl. Phys. Lett. 81, 2845–2847 (2002).
[CrossRef]

2001 (2)

M. Boxtel, R. Janssen, C. Bastiaansen, and D. Broer, “Viscoelastic liquid crystal colloids for the continuous processing of twisted nematic electro-optical cells,” J. Appl. Phys. 89, 838–842 (2001).
[CrossRef]

A. Kovalchuk, S. Zakrevska, O. Yaroshchuk, and U. Maschke, “Electrooptical properties of three-component compositions liquid crystal-aerosil-photopolymer,” Mol. Cryst. Liq. Cryst. 368, 129–136 (2001).
[CrossRef]

1999 (2)

Yu. Reznikov and T. Sergan, “Orientational transitions in a cell with twisted nematic liquid crystal,” Mol. Cryst. Liq. Cryst. 330, 375–381 (1999).
[CrossRef]

M. Zapotocky, L. Ramos, P. Poulin, T. C. Lubensky, and D. A. Weitz, “Particle-stabilized defect gel in cholesteric liquid crystals,” Science 283, 209–212 (1999).
[CrossRef]

1997 (1)

A. Glushchenko, H. Kresse, V. Reshetnyak, Y. Reznikov, and O. Yaroshchuk, “Memory effect in filled nematic liquid crystals,” Liq. Cryst. 23, 241–246 (1997).
[CrossRef]

1994 (1)

S. N. Yarmolenko, L. A. Kutulya, V. V. Vaschenko, and L. V. Chepeleva, “Photosensitive chiral dopants with high twisting power,” Liq. Cryst. 16, 877–882 (1994).
[CrossRef]

1992 (1)

M. Kreuzer, T. Tschudi, and R. Eidenschink, “Erasable optical storage in bistable liquid crystal cells,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 223, 219–227 (1992).
[CrossRef]

1983 (1)

S.-H. Chen and N. M. Amer, “Observation of macroscopic collective behavior and new texture in magnetically doped liquid crystals,” Phys. Rev. Lett. 51, 2298–2301 (1983).
[CrossRef]

1982 (1)

B. Y. Zeldovich and N. V. Tabiryan, “Equilibrium structure of a cholesteric with homeotropic orientation on the walls,” Sov. Phys. JETP 56, 563–566 (1982).

1979 (1)

V. G. Chigrinov, V. V. Belyaev, S. V. Belyaev, and M. F. Grebenkin, “Instabilities of cholesteric liquid crystals in an electric field,” Sov. Phys. JETP 50, 994–999 (1979).

Amer, N. M.

S.-H. Chen and N. M. Amer, “Observation of macroscopic collective behavior and new texture in magnetically doped liquid crystals,” Phys. Rev. Lett. 51, 2298–2301 (1983).
[CrossRef]

Bastiaansen, C.

M. Boxtel, R. Janssen, C. Bastiaansen, and D. Broer, “Viscoelastic liquid crystal colloids for the continuous processing of twisted nematic electro-optical cells,” J. Appl. Phys. 89, 838–842 (2001).
[CrossRef]

Belyaev, S. V.

V. G. Chigrinov, V. V. Belyaev, S. V. Belyaev, and M. F. Grebenkin, “Instabilities of cholesteric liquid crystals in an electric field,” Sov. Phys. JETP 50, 994–999 (1979).

Belyaev, V. V.

V. G. Chigrinov, V. V. Belyaev, S. V. Belyaev, and M. F. Grebenkin, “Instabilities of cholesteric liquid crystals in an electric field,” Sov. Phys. JETP 50, 994–999 (1979).

Boxtel, M.

M. Boxtel, R. Janssen, C. Bastiaansen, and D. Broer, “Viscoelastic liquid crystal colloids for the continuous processing of twisted nematic electro-optical cells,” J. Appl. Phys. 89, 838–842 (2001).
[CrossRef]

Broer, D.

M. Boxtel, R. Janssen, C. Bastiaansen, and D. Broer, “Viscoelastic liquid crystal colloids for the continuous processing of twisted nematic electro-optical cells,” J. Appl. Phys. 89, 838–842 (2001).
[CrossRef]

Buchnev, O.

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, T. Sluckin, and J. West, “Orientational coupling amplification in ferroelectric nematic colloids,” Phys. Rev. Lett. 97, 147801 (2006).
[CrossRef]

Bunning, T. J.

M. Mathews, R. S. Zola, S. Hurley, D. K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132, 18361–18366 (2010).
[CrossRef]

Chen, J.-H.

C.-Y. Huang, C.-C. Lai, Y.-J. Huang, and J.-H. Chen, “Switching characteristics of silica nanoparticle-doped dual-mode liquid crystal device,” Jpn. J. Appl. Phys. 49, 028003 (2010).
[CrossRef]

Chen, S.-H.

S.-H. Chen and N. M. Amer, “Observation of macroscopic collective behavior and new texture in magnetically doped liquid crystals,” Phys. Rev. Lett. 51, 2298–2301 (1983).
[CrossRef]

Cheon, C. I.

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, T. Sluckin, and J. West, “Orientational coupling amplification in ferroelectric nematic colloids,” Phys. Rev. Lett. 97, 147801 (2006).
[CrossRef]

Chepeleva, L. V.

S. N. Yarmolenko, L. A. Kutulya, V. V. Vaschenko, and L. V. Chepeleva, “Photosensitive chiral dopants with high twisting power,” Liq. Cryst. 16, 877–882 (1994).
[CrossRef]

Chigrinov, V. G.

V. G. Chigrinov, V. V. Belyaev, S. V. Belyaev, and M. F. Grebenkin, “Instabilities of cholesteric liquid crystals in an electric field,” Sov. Phys. JETP 50, 994–999 (1979).

Dolgov, L.

L. Dolgov, O. Yaroshchuk, S. Tomylko, and N. Lebovka, “Electro-optical memory of a nematic liquid crystal doped by multi-walled carbon nanotubes,” Condens. Matter Phys. 15, 33401 (2012).
[CrossRef]

L. Dolgov, S. Tomylko, T. Semikina, O. Koval’chuk, and O. Yaroshchuk, “Carbon nanotube doped liquid crystals: robust composites with a function of electro-optic memory,” Diam. Relat. Mater. 19, 567–572 (2010).
[CrossRef]

L. Dolgov, N. Lebovka, and O. Yaroshchuk, “Effect of electro-optic memory in suspensions of carbon nanotubes in liquid crystal,” Colloid J. 71, 603–611 (2009).
[CrossRef]

L. Dolgov, O. Yaroshchuk, and N. Lebovka, “Effect of electro-optic memory in liquid crystals doped with carbon nanotubes,” Mol. Cryst. Liq. Cryst. 496, 212–229 (2008).
[CrossRef]

L. Dolgov, S. Tomylko, O. Koval’chuk, N. Lebovka, and O. Yaroshchuk, “Liquid crystal dispersions of carbon nanotubes: dielectric, electro-optical and structural peculiarities,” in Carbon Nanotubes, J. M. Marulanda, ed. (Intech, 2010), Chap. 24, pp. 451–484, http://sciyo.com/books/show/title/carbon-nanotubes .

Eidenschink, R.

M. Kreuzer, T. Tschudi, and R. Eidenschink, “Erasable optical storage in bistable liquid crystal cells,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 223, 219–227 (1992).
[CrossRef]

Glushchenko, A.

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, T. Sluckin, and J. West, “Orientational coupling amplification in ferroelectric nematic colloids,” Phys. Rev. Lett. 97, 147801 (2006).
[CrossRef]

A. Glushchenko, H. Kresse, V. Reshetnyak, Y. Reznikov, and O. Yaroshchuk, “Memory effect in filled nematic liquid crystals,” Liq. Cryst. 23, 241–246 (1997).
[CrossRef]

Grebenkin, M. F.

V. G. Chigrinov, V. V. Belyaev, S. V. Belyaev, and M. F. Grebenkin, “Instabilities of cholesteric liquid crystals in an electric field,” Sov. Phys. JETP 50, 994–999 (1979).

Gvozdovskyy, I.

Hegmann, T.

H. Qi and T. Hegmann, “Impact of nanoscale particles and carbon nanotubes on current and future generations of liquid crystal displays,” J. Mater. Chem. 18, 3288–3294 (2008).
[CrossRef]

Huang, C.-Y.

C.-Y. Huang, C.-C. Lai, Y.-J. Huang, and J.-H. Chen, “Switching characteristics of silica nanoparticle-doped dual-mode liquid crystal device,” Jpn. J. Appl. Phys. 49, 028003 (2010).
[CrossRef]

C.-Y. Huang, C.-C. Lai, Y.-H. Tseng, Y.-T. Yang, C.-J. Tien, and K.-Y. Lo, “Silica-nanoparticle-doped nematic display with multistable and dynamic modes,” Appl. Phys. Lett. 92, 221908 (2008).
[CrossRef]

Huang, Y.-J.

C.-Y. Huang, C.-C. Lai, Y.-J. Huang, and J.-H. Chen, “Switching characteristics of silica nanoparticle-doped dual-mode liquid crystal device,” Jpn. J. Appl. Phys. 49, 028003 (2010).
[CrossRef]

Hurley, S.

M. Mathews, R. S. Zola, S. Hurley, D. K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132, 18361–18366 (2010).
[CrossRef]

Janssen, R.

M. Boxtel, R. Janssen, C. Bastiaansen, and D. Broer, “Viscoelastic liquid crystal colloids for the continuous processing of twisted nematic electro-optical cells,” J. Appl. Phys. 89, 838–842 (2001).
[CrossRef]

Jhun, C.-G.

J.-H. Lee, D.-H. Song, T. Kim, H.-K. Shin, C.-G. Jhun, S.-B. Kwon, D.-G. Kim, W. S. Kim, T.-H. Yoon, and J. C. Kim, “Reflective dual mode liquid crystal display with dynamic mode utilizing the transition behavior between the two stable states of its memory mode,” Jpn. J. Appl. Phys. 50, 084101 (2011).
[CrossRef]

Kim, D.-G.

J.-H. Lee, D.-H. Song, T. Kim, H.-K. Shin, C.-G. Jhun, S.-B. Kwon, D.-G. Kim, W. S. Kim, T.-H. Yoon, and J. C. Kim, “Reflective dual mode liquid crystal display with dynamic mode utilizing the transition behavior between the two stable states of its memory mode,” Jpn. J. Appl. Phys. 50, 084101 (2011).
[CrossRef]

Kim, J. C.

J.-H. Lee, D.-H. Song, T. Kim, H.-K. Shin, C.-G. Jhun, S.-B. Kwon, D.-G. Kim, W. S. Kim, T.-H. Yoon, and J. C. Kim, “Reflective dual mode liquid crystal display with dynamic mode utilizing the transition behavior between the two stable states of its memory mode,” Jpn. J. Appl. Phys. 50, 084101 (2011).
[CrossRef]

Kim, T.

J.-H. Lee, D.-H. Song, T. Kim, H.-K. Shin, C.-G. Jhun, S.-B. Kwon, D.-G. Kim, W. S. Kim, T.-H. Yoon, and J. C. Kim, “Reflective dual mode liquid crystal display with dynamic mode utilizing the transition behavior between the two stable states of its memory mode,” Jpn. J. Appl. Phys. 50, 084101 (2011).
[CrossRef]

Kim, W. S.

J.-H. Lee, D.-H. Song, T. Kim, H.-K. Shin, C.-G. Jhun, S.-B. Kwon, D.-G. Kim, W. S. Kim, T.-H. Yoon, and J. C. Kim, “Reflective dual mode liquid crystal display with dynamic mode utilizing the transition behavior between the two stable states of its memory mode,” Jpn. J. Appl. Phys. 50, 084101 (2011).
[CrossRef]

Kobayashi, S.

Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, and S. Kobayashi, “Frequency modulation response of liquid crystal electro-optic device doped with nanoparticles,” Appl. Phys. Lett. 81, 2845–2847 (2002).
[CrossRef]

Koval’chuk, O.

L. Dolgov, S. Tomylko, T. Semikina, O. Koval’chuk, and O. Yaroshchuk, “Carbon nanotube doped liquid crystals: robust composites with a function of electro-optic memory,” Diam. Relat. Mater. 19, 567–572 (2010).
[CrossRef]

L. Dolgov, S. Tomylko, O. Koval’chuk, N. Lebovka, and O. Yaroshchuk, “Liquid crystal dispersions of carbon nanotubes: dielectric, electro-optical and structural peculiarities,” in Carbon Nanotubes, J. M. Marulanda, ed. (Intech, 2010), Chap. 24, pp. 451–484, http://sciyo.com/books/show/title/carbon-nanotubes .

Kovalchuk, A.

A. Kovalchuk, S. Zakrevska, O. Yaroshchuk, and U. Maschke, “Electrooptical properties of three-component compositions liquid crystal-aerosil-photopolymer,” Mol. Cryst. Liq. Cryst. 368, 129–136 (2001).
[CrossRef]

Kresse, H.

A. Glushchenko, H. Kresse, V. Reshetnyak, Y. Reznikov, and O. Yaroshchuk, “Memory effect in filled nematic liquid crystals,” Liq. Cryst. 23, 241–246 (1997).
[CrossRef]

Kreuzer, M.

M. Kreuzer, T. Tschudi, and R. Eidenschink, “Erasable optical storage in bistable liquid crystal cells,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 223, 219–227 (1992).
[CrossRef]

Kutulya, L. A.

S. N. Yarmolenko, L. A. Kutulya, V. V. Vaschenko, and L. V. Chepeleva, “Photosensitive chiral dopants with high twisting power,” Liq. Cryst. 16, 877–882 (1994).
[CrossRef]

Kwon, S.-B.

J.-H. Lee, D.-H. Song, T. Kim, H.-K. Shin, C.-G. Jhun, S.-B. Kwon, D.-G. Kim, W. S. Kim, T.-H. Yoon, and J. C. Kim, “Reflective dual mode liquid crystal display with dynamic mode utilizing the transition behavior between the two stable states of its memory mode,” Jpn. J. Appl. Phys. 50, 084101 (2011).
[CrossRef]

Lai, C.-C.

C.-Y. Huang, C.-C. Lai, Y.-J. Huang, and J.-H. Chen, “Switching characteristics of silica nanoparticle-doped dual-mode liquid crystal device,” Jpn. J. Appl. Phys. 49, 028003 (2010).
[CrossRef]

C.-Y. Huang, C.-C. Lai, Y.-H. Tseng, Y.-T. Yang, C.-J. Tien, and K.-Y. Lo, “Silica-nanoparticle-doped nematic display with multistable and dynamic modes,” Appl. Phys. Lett. 92, 221908 (2008).
[CrossRef]

Lebovka, N.

L. Dolgov, O. Yaroshchuk, S. Tomylko, and N. Lebovka, “Electro-optical memory of a nematic liquid crystal doped by multi-walled carbon nanotubes,” Condens. Matter Phys. 15, 33401 (2012).
[CrossRef]

L. Dolgov, N. Lebovka, and O. Yaroshchuk, “Effect of electro-optic memory in suspensions of carbon nanotubes in liquid crystal,” Colloid J. 71, 603–611 (2009).
[CrossRef]

L. Dolgov, O. Yaroshchuk, and N. Lebovka, “Effect of electro-optic memory in liquid crystals doped with carbon nanotubes,” Mol. Cryst. Liq. Cryst. 496, 212–229 (2008).
[CrossRef]

L. Dolgov, S. Tomylko, O. Koval’chuk, N. Lebovka, and O. Yaroshchuk, “Liquid crystal dispersions of carbon nanotubes: dielectric, electro-optical and structural peculiarities,” in Carbon Nanotubes, J. M. Marulanda, ed. (Intech, 2010), Chap. 24, pp. 451–484, http://sciyo.com/books/show/title/carbon-nanotubes .

Lee, J.-H.

J.-H. Lee, D.-H. Song, T. Kim, H.-K. Shin, C.-G. Jhun, S.-B. Kwon, D.-G. Kim, W. S. Kim, T.-H. Yoon, and J. C. Kim, “Reflective dual mode liquid crystal display with dynamic mode utilizing the transition behavior between the two stable states of its memory mode,” Jpn. J. Appl. Phys. 50, 084101 (2011).
[CrossRef]

Lee, W.

M. Rahman and W. Lee, “Scientific duo of carbon nanotubes and nematic liquid crystals,” J. Phys. D 42, 063001 (2009).
[CrossRef]

Li, F.

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, T. Sluckin, and J. West, “Orientational coupling amplification in ferroelectric nematic colloids,” Phys. Rev. Lett. 97, 147801 (2006).
[CrossRef]

Li, Q.

M. Mathews, R. S. Zola, S. Hurley, D. K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132, 18361–18366 (2010).
[CrossRef]

J. Ma, Ya. Li, T. White, A. Urbas, and Q. Li, “Light-driven nanoscale chiral molecular switch: reversible dynamic full range color phototuning,” Chem. Commun. 46, 3463–3465 (2010).
[CrossRef]

Li, Ya.

J. Ma, Ya. Li, T. White, A. Urbas, and Q. Li, “Light-driven nanoscale chiral molecular switch: reversible dynamic full range color phototuning,” Chem. Commun. 46, 3463–3465 (2010).
[CrossRef]

Lintuvuori, J. S.

T. A. Wood, J. S. Lintuvuori, A. B. Schofield, D. Marenduzzo, and W. C. K. Poon, “A self-quenched defect glass in a colloid-nematic liquid crystal composite,” Science 334, 79–83 (2011).
[CrossRef]

Lo, K.-Y.

C.-Y. Huang, C.-C. Lai, Y.-H. Tseng, Y.-T. Yang, C.-J. Tien, and K.-Y. Lo, “Silica-nanoparticle-doped nematic display with multistable and dynamic modes,” Appl. Phys. Lett. 92, 221908 (2008).
[CrossRef]

Lubensky, T. C.

M. Zapotocky, L. Ramos, P. Poulin, T. C. Lubensky, and D. A. Weitz, “Particle-stabilized defect gel in cholesteric liquid crystals,” Science 283, 209–212 (1999).
[CrossRef]

Ma, J.

J. Ma, Ya. Li, T. White, A. Urbas, and Q. Li, “Light-driven nanoscale chiral molecular switch: reversible dynamic full range color phototuning,” Chem. Commun. 46, 3463–3465 (2010).
[CrossRef]

Maeda, K.

Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, and S. Kobayashi, “Frequency modulation response of liquid crystal electro-optic device doped with nanoparticles,” Appl. Phys. Lett. 81, 2845–2847 (2002).
[CrossRef]

Marenduzzo, D.

T. A. Wood, J. S. Lintuvuori, A. B. Schofield, D. Marenduzzo, and W. C. K. Poon, “A self-quenched defect glass in a colloid-nematic liquid crystal composite,” Science 334, 79–83 (2011).
[CrossRef]

Maschke, U.

A. Kovalchuk, S. Zakrevska, O. Yaroshchuk, and U. Maschke, “Electrooptical properties of three-component compositions liquid crystal-aerosil-photopolymer,” Mol. Cryst. Liq. Cryst. 368, 129–136 (2001).
[CrossRef]

Mathews, M.

M. Mathews, R. S. Zola, S. Hurley, D. K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132, 18361–18366 (2010).
[CrossRef]

Poon, W. C. K.

T. A. Wood, J. S. Lintuvuori, A. B. Schofield, D. Marenduzzo, and W. C. K. Poon, “A self-quenched defect glass in a colloid-nematic liquid crystal composite,” Science 334, 79–83 (2011).
[CrossRef]

Poulin, P.

M. Zapotocky, L. Ramos, P. Poulin, T. C. Lubensky, and D. A. Weitz, “Particle-stabilized defect gel in cholesteric liquid crystals,” Science 283, 209–212 (1999).
[CrossRef]

Qi, H.

H. Qi and T. Hegmann, “Impact of nanoscale particles and carbon nanotubes on current and future generations of liquid crystal displays,” J. Mater. Chem. 18, 3288–3294 (2008).
[CrossRef]

Rahman, M.

M. Rahman and W. Lee, “Scientific duo of carbon nanotubes and nematic liquid crystals,” J. Phys. D 42, 063001 (2009).
[CrossRef]

Ramos, L.

M. Zapotocky, L. Ramos, P. Poulin, T. C. Lubensky, and D. A. Weitz, “Particle-stabilized defect gel in cholesteric liquid crystals,” Science 283, 209–212 (1999).
[CrossRef]

Reshetnyak, V.

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, T. Sluckin, and J. West, “Orientational coupling amplification in ferroelectric nematic colloids,” Phys. Rev. Lett. 97, 147801 (2006).
[CrossRef]

A. Glushchenko, H. Kresse, V. Reshetnyak, Y. Reznikov, and O. Yaroshchuk, “Memory effect in filled nematic liquid crystals,” Liq. Cryst. 23, 241–246 (1997).
[CrossRef]

Reznikov, Y.

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, T. Sluckin, and J. West, “Orientational coupling amplification in ferroelectric nematic colloids,” Phys. Rev. Lett. 97, 147801 (2006).
[CrossRef]

A. Glushchenko, H. Kresse, V. Reshetnyak, Y. Reznikov, and O. Yaroshchuk, “Memory effect in filled nematic liquid crystals,” Liq. Cryst. 23, 241–246 (1997).
[CrossRef]

Reznikov, Yu.

Yu. Reznikov and T. Sergan, “Orientational transitions in a cell with twisted nematic liquid crystal,” Mol. Cryst. Liq. Cryst. 330, 375–381 (1999).
[CrossRef]

Schofield, A. B.

T. A. Wood, J. S. Lintuvuori, A. B. Schofield, D. Marenduzzo, and W. C. K. Poon, “A self-quenched defect glass in a colloid-nematic liquid crystal composite,” Science 334, 79–83 (2011).
[CrossRef]

Semikina, T.

L. Dolgov, S. Tomylko, T. Semikina, O. Koval’chuk, and O. Yaroshchuk, “Carbon nanotube doped liquid crystals: robust composites with a function of electro-optic memory,” Diam. Relat. Mater. 19, 567–572 (2010).
[CrossRef]

Serbina, M.

Sergan, T.

Yu. Reznikov and T. Sergan, “Orientational transitions in a cell with twisted nematic liquid crystal,” Mol. Cryst. Liq. Cryst. 330, 375–381 (1999).
[CrossRef]

Shin, H.-K.

J.-H. Lee, D.-H. Song, T. Kim, H.-K. Shin, C.-G. Jhun, S.-B. Kwon, D.-G. Kim, W. S. Kim, T.-H. Yoon, and J. C. Kim, “Reflective dual mode liquid crystal display with dynamic mode utilizing the transition behavior between the two stable states of its memory mode,” Jpn. J. Appl. Phys. 50, 084101 (2011).
[CrossRef]

Shiraishi, Y.

Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, and S. Kobayashi, “Frequency modulation response of liquid crystal electro-optic device doped with nanoparticles,” Appl. Phys. Lett. 81, 2845–2847 (2002).
[CrossRef]

Sluckin, T.

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, T. Sluckin, and J. West, “Orientational coupling amplification in ferroelectric nematic colloids,” Phys. Rev. Lett. 97, 147801 (2006).
[CrossRef]

Song, D.-H.

J.-H. Lee, D.-H. Song, T. Kim, H.-K. Shin, C.-G. Jhun, S.-B. Kwon, D.-G. Kim, W. S. Kim, T.-H. Yoon, and J. C. Kim, “Reflective dual mode liquid crystal display with dynamic mode utilizing the transition behavior between the two stable states of its memory mode,” Jpn. J. Appl. Phys. 50, 084101 (2011).
[CrossRef]

Tabiryan, N. V.

B. Y. Zeldovich and N. V. Tabiryan, “Equilibrium structure of a cholesteric with homeotropic orientation on the walls,” Sov. Phys. JETP 56, 563–566 (1982).

Tien, C.-J.

C.-Y. Huang, C.-C. Lai, Y.-H. Tseng, Y.-T. Yang, C.-J. Tien, and K.-Y. Lo, “Silica-nanoparticle-doped nematic display with multistable and dynamic modes,” Appl. Phys. Lett. 92, 221908 (2008).
[CrossRef]

Tomylko, S.

L. Dolgov, O. Yaroshchuk, S. Tomylko, and N. Lebovka, “Electro-optical memory of a nematic liquid crystal doped by multi-walled carbon nanotubes,” Condens. Matter Phys. 15, 33401 (2012).
[CrossRef]

L. Dolgov, S. Tomylko, T. Semikina, O. Koval’chuk, and O. Yaroshchuk, “Carbon nanotube doped liquid crystals: robust composites with a function of electro-optic memory,” Diam. Relat. Mater. 19, 567–572 (2010).
[CrossRef]

L. Dolgov, S. Tomylko, O. Koval’chuk, N. Lebovka, and O. Yaroshchuk, “Liquid crystal dispersions of carbon nanotubes: dielectric, electro-optical and structural peculiarities,” in Carbon Nanotubes, J. M. Marulanda, ed. (Intech, 2010), Chap. 24, pp. 451–484, http://sciyo.com/books/show/title/carbon-nanotubes .

Toshima, N.

Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, and S. Kobayashi, “Frequency modulation response of liquid crystal electro-optic device doped with nanoparticles,” Appl. Phys. Lett. 81, 2845–2847 (2002).
[CrossRef]

Tschudi, T.

M. Kreuzer, T. Tschudi, and R. Eidenschink, “Erasable optical storage in bistable liquid crystal cells,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 223, 219–227 (1992).
[CrossRef]

Tseng, Y.-H.

C.-Y. Huang, C.-C. Lai, Y.-H. Tseng, Y.-T. Yang, C.-J. Tien, and K.-Y. Lo, “Silica-nanoparticle-doped nematic display with multistable and dynamic modes,” Appl. Phys. Lett. 92, 221908 (2008).
[CrossRef]

Urbas, A.

J. Ma, Ya. Li, T. White, A. Urbas, and Q. Li, “Light-driven nanoscale chiral molecular switch: reversible dynamic full range color phototuning,” Chem. Commun. 46, 3463–3465 (2010).
[CrossRef]

Vaschenko, V. V.

S. N. Yarmolenko, L. A. Kutulya, V. V. Vaschenko, and L. V. Chepeleva, “Photosensitive chiral dopants with high twisting power,” Liq. Cryst. 16, 877–882 (1994).
[CrossRef]

Weitz, D. A.

M. Zapotocky, L. Ramos, P. Poulin, T. C. Lubensky, and D. A. Weitz, “Particle-stabilized defect gel in cholesteric liquid crystals,” Science 283, 209–212 (1999).
[CrossRef]

West, J.

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, T. Sluckin, and J. West, “Orientational coupling amplification in ferroelectric nematic colloids,” Phys. Rev. Lett. 97, 147801 (2006).
[CrossRef]

White, T.

J. Ma, Ya. Li, T. White, A. Urbas, and Q. Li, “Light-driven nanoscale chiral molecular switch: reversible dynamic full range color phototuning,” Chem. Commun. 46, 3463–3465 (2010).
[CrossRef]

White, T. J.

M. Mathews, R. S. Zola, S. Hurley, D. K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132, 18361–18366 (2010).
[CrossRef]

Wood, T. A.

T. A. Wood, J. S. Lintuvuori, A. B. Schofield, D. Marenduzzo, and W. C. K. Poon, “A self-quenched defect glass in a colloid-nematic liquid crystal composite,” Science 334, 79–83 (2011).
[CrossRef]

Xu, J.

T. Zhang, C. Zhong, and J. Xu, “CdS-nanoparticle-doped liquid crystal displays showing low threshold voltage,” Jpn. J. Appl. Phys. 48, 055002 (2009).
[CrossRef]

Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, and S. Kobayashi, “Frequency modulation response of liquid crystal electro-optic device doped with nanoparticles,” Appl. Phys. Lett. 81, 2845–2847 (2002).
[CrossRef]

Yamaguchi, R.

Yang, D. K.

M. Mathews, R. S. Zola, S. Hurley, D. K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132, 18361–18366 (2010).
[CrossRef]

Yang, Y.-T.

C.-Y. Huang, C.-C. Lai, Y.-H. Tseng, Y.-T. Yang, C.-J. Tien, and K.-Y. Lo, “Silica-nanoparticle-doped nematic display with multistable and dynamic modes,” Appl. Phys. Lett. 92, 221908 (2008).
[CrossRef]

Yarmolenko, S. N.

S. N. Yarmolenko, L. A. Kutulya, V. V. Vaschenko, and L. V. Chepeleva, “Photosensitive chiral dopants with high twisting power,” Liq. Cryst. 16, 877–882 (1994).
[CrossRef]

Yaroshchuk, O.

L. Dolgov, O. Yaroshchuk, S. Tomylko, and N. Lebovka, “Electro-optical memory of a nematic liquid crystal doped by multi-walled carbon nanotubes,” Condens. Matter Phys. 15, 33401 (2012).
[CrossRef]

I. Gvozdovskyy, O. Yaroshchuk, M. Serbina, and R. Yamaguchi, “Photoinduced helical inversion in cholesteric liquid crystal cells with homeotropic anchoring,” Opt. Express 20, 3499–3508 (2012).
[CrossRef]

L. Dolgov, S. Tomylko, T. Semikina, O. Koval’chuk, and O. Yaroshchuk, “Carbon nanotube doped liquid crystals: robust composites with a function of electro-optic memory,” Diam. Relat. Mater. 19, 567–572 (2010).
[CrossRef]

L. Dolgov, N. Lebovka, and O. Yaroshchuk, “Effect of electro-optic memory in suspensions of carbon nanotubes in liquid crystal,” Colloid J. 71, 603–611 (2009).
[CrossRef]

L. Dolgov, O. Yaroshchuk, and N. Lebovka, “Effect of electro-optic memory in liquid crystals doped with carbon nanotubes,” Mol. Cryst. Liq. Cryst. 496, 212–229 (2008).
[CrossRef]

A. Kovalchuk, S. Zakrevska, O. Yaroshchuk, and U. Maschke, “Electrooptical properties of three-component compositions liquid crystal-aerosil-photopolymer,” Mol. Cryst. Liq. Cryst. 368, 129–136 (2001).
[CrossRef]

A. Glushchenko, H. Kresse, V. Reshetnyak, Y. Reznikov, and O. Yaroshchuk, “Memory effect in filled nematic liquid crystals,” Liq. Cryst. 23, 241–246 (1997).
[CrossRef]

L. Dolgov, S. Tomylko, O. Koval’chuk, N. Lebovka, and O. Yaroshchuk, “Liquid crystal dispersions of carbon nanotubes: dielectric, electro-optical and structural peculiarities,” in Carbon Nanotubes, J. M. Marulanda, ed. (Intech, 2010), Chap. 24, pp. 451–484, http://sciyo.com/books/show/title/carbon-nanotubes .

Yoon, T.-H.

J.-H. Lee, D.-H. Song, T. Kim, H.-K. Shin, C.-G. Jhun, S.-B. Kwon, D.-G. Kim, W. S. Kim, T.-H. Yoon, and J. C. Kim, “Reflective dual mode liquid crystal display with dynamic mode utilizing the transition behavior between the two stable states of its memory mode,” Jpn. J. Appl. Phys. 50, 084101 (2011).
[CrossRef]

Yoshikawa, H.

Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, and S. Kobayashi, “Frequency modulation response of liquid crystal electro-optic device doped with nanoparticles,” Appl. Phys. Lett. 81, 2845–2847 (2002).
[CrossRef]

Zakrevska, S.

A. Kovalchuk, S. Zakrevska, O. Yaroshchuk, and U. Maschke, “Electrooptical properties of three-component compositions liquid crystal-aerosil-photopolymer,” Mol. Cryst. Liq. Cryst. 368, 129–136 (2001).
[CrossRef]

Zapotocky, M.

M. Zapotocky, L. Ramos, P. Poulin, T. C. Lubensky, and D. A. Weitz, “Particle-stabilized defect gel in cholesteric liquid crystals,” Science 283, 209–212 (1999).
[CrossRef]

Zeldovich, B. Y.

B. Y. Zeldovich and N. V. Tabiryan, “Equilibrium structure of a cholesteric with homeotropic orientation on the walls,” Sov. Phys. JETP 56, 563–566 (1982).

Zhang, T.

T. Zhang, C. Zhong, and J. Xu, “CdS-nanoparticle-doped liquid crystal displays showing low threshold voltage,” Jpn. J. Appl. Phys. 48, 055002 (2009).
[CrossRef]

Zhong, C.

T. Zhang, C. Zhong, and J. Xu, “CdS-nanoparticle-doped liquid crystal displays showing low threshold voltage,” Jpn. J. Appl. Phys. 48, 055002 (2009).
[CrossRef]

Zola, R. S.

M. Mathews, R. S. Zola, S. Hurley, D. K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132, 18361–18366 (2010).
[CrossRef]

Appl. Phys. Lett. (2)

Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, and S. Kobayashi, “Frequency modulation response of liquid crystal electro-optic device doped with nanoparticles,” Appl. Phys. Lett. 81, 2845–2847 (2002).
[CrossRef]

C.-Y. Huang, C.-C. Lai, Y.-H. Tseng, Y.-T. Yang, C.-J. Tien, and K.-Y. Lo, “Silica-nanoparticle-doped nematic display with multistable and dynamic modes,” Appl. Phys. Lett. 92, 221908 (2008).
[CrossRef]

Chem. Commun. (1)

J. Ma, Ya. Li, T. White, A. Urbas, and Q. Li, “Light-driven nanoscale chiral molecular switch: reversible dynamic full range color phototuning,” Chem. Commun. 46, 3463–3465 (2010).
[CrossRef]

Colloid J. (1)

L. Dolgov, N. Lebovka, and O. Yaroshchuk, “Effect of electro-optic memory in suspensions of carbon nanotubes in liquid crystal,” Colloid J. 71, 603–611 (2009).
[CrossRef]

Condens. Matter Phys. (1)

L. Dolgov, O. Yaroshchuk, S. Tomylko, and N. Lebovka, “Electro-optical memory of a nematic liquid crystal doped by multi-walled carbon nanotubes,” Condens. Matter Phys. 15, 33401 (2012).
[CrossRef]

Diam. Relat. Mater. (1)

L. Dolgov, S. Tomylko, T. Semikina, O. Koval’chuk, and O. Yaroshchuk, “Carbon nanotube doped liquid crystals: robust composites with a function of electro-optic memory,” Diam. Relat. Mater. 19, 567–572 (2010).
[CrossRef]

J. Am. Chem. Soc. (1)

M. Mathews, R. S. Zola, S. Hurley, D. K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132, 18361–18366 (2010).
[CrossRef]

J. Appl. Phys. (1)

M. Boxtel, R. Janssen, C. Bastiaansen, and D. Broer, “Viscoelastic liquid crystal colloids for the continuous processing of twisted nematic electro-optical cells,” J. Appl. Phys. 89, 838–842 (2001).
[CrossRef]

J. Mater. Chem. (1)

H. Qi and T. Hegmann, “Impact of nanoscale particles and carbon nanotubes on current and future generations of liquid crystal displays,” J. Mater. Chem. 18, 3288–3294 (2008).
[CrossRef]

J. Phys. D (1)

M. Rahman and W. Lee, “Scientific duo of carbon nanotubes and nematic liquid crystals,” J. Phys. D 42, 063001 (2009).
[CrossRef]

Jpn. J. Appl. Phys. (3)

T. Zhang, C. Zhong, and J. Xu, “CdS-nanoparticle-doped liquid crystal displays showing low threshold voltage,” Jpn. J. Appl. Phys. 48, 055002 (2009).
[CrossRef]

C.-Y. Huang, C.-C. Lai, Y.-J. Huang, and J.-H. Chen, “Switching characteristics of silica nanoparticle-doped dual-mode liquid crystal device,” Jpn. J. Appl. Phys. 49, 028003 (2010).
[CrossRef]

J.-H. Lee, D.-H. Song, T. Kim, H.-K. Shin, C.-G. Jhun, S.-B. Kwon, D.-G. Kim, W. S. Kim, T.-H. Yoon, and J. C. Kim, “Reflective dual mode liquid crystal display with dynamic mode utilizing the transition behavior between the two stable states of its memory mode,” Jpn. J. Appl. Phys. 50, 084101 (2011).
[CrossRef]

Liq. Cryst. (2)

A. Glushchenko, H. Kresse, V. Reshetnyak, Y. Reznikov, and O. Yaroshchuk, “Memory effect in filled nematic liquid crystals,” Liq. Cryst. 23, 241–246 (1997).
[CrossRef]

S. N. Yarmolenko, L. A. Kutulya, V. V. Vaschenko, and L. V. Chepeleva, “Photosensitive chiral dopants with high twisting power,” Liq. Cryst. 16, 877–882 (1994).
[CrossRef]

Mol. Cryst. Liq. Cryst. (3)

A. Kovalchuk, S. Zakrevska, O. Yaroshchuk, and U. Maschke, “Electrooptical properties of three-component compositions liquid crystal-aerosil-photopolymer,” Mol. Cryst. Liq. Cryst. 368, 129–136 (2001).
[CrossRef]

Yu. Reznikov and T. Sergan, “Orientational transitions in a cell with twisted nematic liquid crystal,” Mol. Cryst. Liq. Cryst. 330, 375–381 (1999).
[CrossRef]

L. Dolgov, O. Yaroshchuk, and N. Lebovka, “Effect of electro-optic memory in liquid crystals doped with carbon nanotubes,” Mol. Cryst. Liq. Cryst. 496, 212–229 (2008).
[CrossRef]

Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A (1)

M. Kreuzer, T. Tschudi, and R. Eidenschink, “Erasable optical storage in bistable liquid crystal cells,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 223, 219–227 (1992).
[CrossRef]

Opt. Express (1)

Phys. Rev. Lett. (2)

S.-H. Chen and N. M. Amer, “Observation of macroscopic collective behavior and new texture in magnetically doped liquid crystals,” Phys. Rev. Lett. 51, 2298–2301 (1983).
[CrossRef]

F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, T. Sluckin, and J. West, “Orientational coupling amplification in ferroelectric nematic colloids,” Phys. Rev. Lett. 97, 147801 (2006).
[CrossRef]

Science (2)

M. Zapotocky, L. Ramos, P. Poulin, T. C. Lubensky, and D. A. Weitz, “Particle-stabilized defect gel in cholesteric liquid crystals,” Science 283, 209–212 (1999).
[CrossRef]

T. A. Wood, J. S. Lintuvuori, A. B. Schofield, D. Marenduzzo, and W. C. K. Poon, “A self-quenched defect glass in a colloid-nematic liquid crystal composite,” Science 334, 79–83 (2011).
[CrossRef]

Sov. Phys. JETP (2)

B. Y. Zeldovich and N. V. Tabiryan, “Equilibrium structure of a cholesteric with homeotropic orientation on the walls,” Sov. Phys. JETP 56, 563–566 (1982).

V. G. Chigrinov, V. V. Belyaev, S. V. Belyaev, and M. F. Grebenkin, “Instabilities of cholesteric liquid crystals in an electric field,” Sov. Phys. JETP 50, 994–999 (1979).

Other (1)

L. Dolgov, S. Tomylko, O. Koval’chuk, N. Lebovka, and O. Yaroshchuk, “Liquid crystal dispersions of carbon nanotubes: dielectric, electro-optical and structural peculiarities,” in Carbon Nanotubes, J. M. Marulanda, ed. (Intech, 2010), Chap. 24, pp. 451–484, http://sciyo.com/books/show/title/carbon-nanotubes .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Photographs of LC cell (d=16μm) with homeotropic anchoring filled with the cholesteric mixture MLC6608/PBM (1.4 wt. %): (a) before the electric field application, (b) under the field of 25 V, (c) after the field is off. The cell is irradiated with UV light through a proximity mask so that the exposure time is 1, 3, 5, 8, and 20 min in areas 1, 2, 3, 4, and 5, respectively. The cell is viewed between two crossed polarizers.

Fig. 2.
Fig. 2.

Photographs of LC cell (d=16μm) with homeotropic anchoring filled with the composite MLC6608/PBM (1.4 wt. %)–CNT (0.02 wt. %): (a) before the electric field application, (b) under the field of 25 V, (c) after the field is off. The cell is irradiated with UV light through a proximity mask so that the exposure time is 1, 3, 5, 8, and 20 min in areas 1, 2, 3, 4, and 5, respectively. The cell is viewed between two crossed polarizers. The red and blue rectangles mark the exposure domains demonstrating irreversible (memory) and reversible electro-optic response, respectively.

Fig. 3.
Fig. 3.

Microphotographs corresponding to different exposure areas in Fig. 2. Photographs 1, 2, 3, 4, and 5 correspond to the exposure times 1, 3, 5, 8, and 20 min, respectively. The photographs are obtained before application of electric field.

Fig. 4.
Fig. 4.

Period of fingerprint texture as a function of exposure time for CLC (curve 1) and CLC-CNT composite (curve 2) in the cells with d=16μm. Symbols τexp1 and τexp2 denote the exposure times corresponding to “fingerprint–homeotropic quasinematic” textural transition in the CLC and CLC-CNT samples, respectively. For the CLC-CNT series, the range τexp<τexp1 roughly corresponds to the continuous fingerprint texture and the range τexp1<τexp<τexp2 to the texture of stable oily streaks in homeotropically aligned unwound CLC.

Fig. 5.
Fig. 5.

Transmittance versus voltage curves corresponding to exposure areas (a) 3, and (b) 5, in Fig. 2.

Fig. 6.
Fig. 6.

Microphotographs corresponding to exposure areas (a) 3, and (b) 5, in Fig. 2. In each row, photo 1 shows the domain texture before the voltage application and photo 2 the texture of the same area after the voltage is off.

Fig. 7.
Fig. 7.

Principle of an optically switchable dual-mode LCD. The cell filled with the MLC 6608/PBM (1.4 wt. %)–CNT (0.02 wt. %) composite is exposed through the “2” shaped window to UV light for 15 and 5 min in areas 1 and 2, respectively. Photographs a–c correspond to the initial state, field-on state, and field-off state of the cell, respectively, viewed between a pair of crossed polarizers. It is evident that area 1 operates in reversible mode and area 2 in memory mode.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

M=TmT0TmaxT0,
pth=2dK22K33,

Metrics