Abstract

Liquid-crystalline blue phases are attracting significant interest due to their potential for applications related to tunable photonic crystals and fast optical displays. In this work a brief theoretical model is presented accounting for the impact of anisotropic nanoparticles on the blue phase stability region. This model is tested by means of high-resolution calorimetric and optical measurements of the effect of anisotropic, surface-functionalized MoS2 nanoparticles on the blue phase range of a chiral liquid crystal. The addition of these nanoparticles effectively increases the temperature range of blue phases and especially the cubic structure of blue phase I.

© 2013 Optical Society of America

Full Article  |  PDF Article
Related Articles
Polarization-independent refractive index tuning using gold nanoparticle-stabilized blue phase liquid crystals

Shuhei Yabu, Yuma Tanaka, Kenji Tagashira, Hiroyuki Yoshida, Akihiko Fujii, Hirotsugu Kikuchi, and Masanori Ozaki
Opt. Lett. 36(18) 3578-3580 (2011)

Liquid crystal blue phase induced by bent-shaped molecules with allylic end groups

Ge Zhu, Xiao-Wen Lin, Wei Hu, Zhi-Gang Zheng, Hai-Feng Wang, Hong-Qing Cui, Dong Shen, and Yan-Qing Lu
Opt. Mater. Express 1(8) 1478-1483 (2011)

Polymer-stabilized blue phase liquid crystals: a tutorial [Invited]

Jin Yan and Shin-Tson Wu
Opt. Mater. Express 1(8) 1527-1535 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription