Abstract

We applied polymer dispersed liquid crystal (PDLC) as the cladding material in a polymer-based variable optical attenuator. Three polymer inverted channel waveguides were fabricated, two with PDLC upper cladding (aligned PDLC and nonaligned PDLC) and one with aligned liquid crystal upper cladding. Upon operation, the waveguides with aligned upper claddings show relatively lower threshold and cutoff voltages compared to those with nonaligned PDLC cladding. But the waveguide with nonaligned PDLC upper cladding shows lower polarization dependence and a higher attenuation range of 39 and 41.37 dB for TM and TE modes, respectively, over a tuning field strength of 0.9V/μm.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22, 391–416 (1990).
    [CrossRef]
  2. R. Chen, “Polymer offers fabrication and economic advantages for photonic integrated circuits,” SPIE OE Magazine, 24–26 (2002).
  3. R. J. Deri and E. Kapon, “Low-loss III-V semiconductor optical waveguides,” IEEE J. Quantum Electron. 27, 626–640 (1991).
    [CrossRef]
  4. L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
    [CrossRef]
  5. J. Yang, Q. Zhou, and R. T. Chen, “Polyimide-waveguide-based thermal optical switch using total-internal-reflection effect,” Appl. Phys. Lett. 81, 2947–2949 (2002).
    [CrossRef]
  6. A. Miniewicz, A. Gniewek, and J. Parka, “Liquid crystals for photonic applications,” Opt. Mater. 21, 605–610 (2002).
    [CrossRef]
  7. M. Warenghem, J. F. Henninot, and G. Abbate, “Non linearly induced self waveguiding structure in dye doped nematic liquid crystals confined in capillaries,” Opt. Express 2, 483–490 (1998).
    [CrossRef]
  8. M. A. Karpierz, “Solitary waves in liquid crystalline waveguides,” Phys. Rev. E 66, 036603 (2002).
    [CrossRef]
  9. J. Beeckman, K. Neyts, X. Hutsebaut, and M. Haelterman, “Observation of out-coupling of nematicon,” Opto-Electron. Rev. 14, 263–267 (2006).
    [CrossRef]
  10. C. Hu and J. R. Whinnery, “Losses of a nematic liquid crystal waveguide,” J. Opt. Soc. Am. 64, 1424–1432 (1974).
    [CrossRef]
  11. A. d’Alessandro, B. Bellini, D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron. 42, 1084–1090 (2006).
    [CrossRef]
  12. W. DeCort, J. Beeckman, R. James, F. A. Fernández, R. Baets, and K. Neyts, “Tuning of silicon-on-insulator ring resonators with liquid crystal cladding using the longitudinal field component,” Opt. Lett. 34, 2054–2056 (2009).
    [CrossRef]
  13. A. Kato, K. Nakatsuhara, and T. Nakagami, “Wavelength tunable operation in Si waveguide grating that has a ferroelectric liquid crystal cladding,” J. Lightwave Technol. 31, 349–354 (2013) and references therein.
    [CrossRef]
  14. Q. Wang, R. Guo, M. R. Daj, S. W. Kang, and S. Kumar, “Flexible plastic displays fabricated using phase-separated composite films of liquid crystals,” Jpn. J. Appl. Phys. 46, 299–303 (2007).
    [CrossRef]
  15. A. Ying-Guey Fuh, C.-Y. Huang, B.-W. Tzen, C.-R. Sheu, Y.-N. Chyr, G.-L. Lin, and T.-C. Ko, “Electrooptical devices based on polymer-dispersed liquid crystal films,” Jpn. J. Appl. Phys. 33, 1088–1090 (1994).
    [CrossRef]
  16. I. C. Khoo, Y. Zhang Williams, B. Lewis, and T. Mallouk, “Photorefractive CdSe and gold nanowire doped liquid crystals and polymer dispersed liquid crystal photonic crystals,” Mol. Cryst. Liq. Cryst. 446, 233–244 (2005).
    [CrossRef]
  17. J. L. West, R. B. Akins, J. Francl, and J. W. Doane, “Cholesteric/polymer dispersed light shutters,” Appl. Phys. Lett. 63, 1471–1473 (1993).
    [CrossRef]
  18. H. Ramanitra, P. Chanclou, B. Vinouze, and L. Dupont, “Application of polymer dispersed liquid crystal (PDLC) nematic: optical-fiber variable attenuator,” Mol. Cryst. Liq. Cryst. 404, 57–73 (2003).
    [CrossRef]
  19. Y. Xu, M. A. Uddin, P. S. Chung, and H. P. Chan, “Polymer planar waveguide device using inverted channel structure with upper liquid crystal cladding,” Opt. Express 17, 7837–7843 (2009).
    [CrossRef]
  20. M. Ghada, M. Nabil, and A. Hassanein, “Characterization of polymer dispersed liquid crystal for photonic device applications,” Ph.D. thesis (Electronic Engineering Department, City University of Hong Kong, 2012).
  21. K. M. Chen, H. Ren, and S. T. Wu, “PDLC-based VOA with a small polarization dependent loss,” Opt. Commun. 282, 4374–4377 (2009).
    [CrossRef]
  22. J. Li, G. Baird, Y. H. Lin, H. Ren, and S. T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. Soc. Inf. Disp. 13, 1017–1026 (2005).
    [CrossRef]
  23. C. Schuller, J. P. Reithmaier, J. Zimmermann, M. Kamp, and A. Forchel, “Polarization-dependent optical properties of planar photonic crystals infiltrated with liquid crystals,” Appl. Phys. Lett. 87, 121105 (2005).
    [CrossRef]
  24. Y. Huang, “Polarization independent two-way variable optical attenuator based on polymer-stabilized cholesteric liquid crystal,” Opt. Express 18, 10289–10293 (2010).
    [CrossRef]
  25. Q. Wang, D. Zhang, Y. Huang, Z. Ni, J. Chen, Y. Zhong, and S. Zhuang, “Type of tunable guided-mode resonance filter based on electro-optic characteristic of polymer-dispersed liquid crystal,” Opt. Lett. 35, 1236–1238 (2010).
    [CrossRef]
  26. M. Haruna, Y. Segawa, and H. Nishihara, “Nondestructive and simple method of optical-waveguide loss measurement with optimisation of end-fire coupling,” Electron. Lett. 28, 1612–1613 (1992).
    [CrossRef]
  27. J. R. Winnery, C. Hu, and Y. S. Kwon, “Liquid-crystal waveguides for integrated optics,” IEEE J. Quantum Electron. 13, 262–267 (1977).
    [CrossRef]
  28. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38, 1669–1670 (2002).
    [CrossRef]
  29. W. R. Headley, G. T. Reed, and S. Howe, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85, 5523–5525 (2004).
    [CrossRef]
  30. K. Wörhoff, C. G. Roeloffzen, R. M. de Ridder, G. Sengo, L. T. Hilderink, P. V. Lambeck, and A. Driessen, “Tolerance and application of polarization independent waveguide for communication devices,” in Proceedings Symposium IEEE/LEOS Benelux Chapter (IEEE Computer Society, 2004) pp. 107–110.
  31. P. Malik and K. K. Raina, “Droplet orientation and optical properties of polymer dispersed liquid crystal composite films,” Opt. Mater. 27, 613–617 (2004).
    [CrossRef]
  32. S. S. Lee, Y. S. Jin, Y. S. Son, and T. K. Yoo, “Polymeric tunable optical attenuator with an optical monitoring tap for WDM transmission network,” IEEE Photonics Technol. Lett. 11, 590–592 (1999).

2013 (1)

2010 (2)

2009 (3)

2007 (1)

Q. Wang, R. Guo, M. R. Daj, S. W. Kang, and S. Kumar, “Flexible plastic displays fabricated using phase-separated composite films of liquid crystals,” Jpn. J. Appl. Phys. 46, 299–303 (2007).
[CrossRef]

2006 (2)

A. d’Alessandro, B. Bellini, D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron. 42, 1084–1090 (2006).
[CrossRef]

J. Beeckman, K. Neyts, X. Hutsebaut, and M. Haelterman, “Observation of out-coupling of nematicon,” Opto-Electron. Rev. 14, 263–267 (2006).
[CrossRef]

2005 (3)

J. Li, G. Baird, Y. H. Lin, H. Ren, and S. T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. Soc. Inf. Disp. 13, 1017–1026 (2005).
[CrossRef]

C. Schuller, J. P. Reithmaier, J. Zimmermann, M. Kamp, and A. Forchel, “Polarization-dependent optical properties of planar photonic crystals infiltrated with liquid crystals,” Appl. Phys. Lett. 87, 121105 (2005).
[CrossRef]

I. C. Khoo, Y. Zhang Williams, B. Lewis, and T. Mallouk, “Photorefractive CdSe and gold nanowire doped liquid crystals and polymer dispersed liquid crystal photonic crystals,” Mol. Cryst. Liq. Cryst. 446, 233–244 (2005).
[CrossRef]

2004 (2)

W. R. Headley, G. T. Reed, and S. Howe, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85, 5523–5525 (2004).
[CrossRef]

P. Malik and K. K. Raina, “Droplet orientation and optical properties of polymer dispersed liquid crystal composite films,” Opt. Mater. 27, 613–617 (2004).
[CrossRef]

2003 (1)

H. Ramanitra, P. Chanclou, B. Vinouze, and L. Dupont, “Application of polymer dispersed liquid crystal (PDLC) nematic: optical-fiber variable attenuator,” Mol. Cryst. Liq. Cryst. 404, 57–73 (2003).
[CrossRef]

2002 (4)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38, 1669–1670 (2002).
[CrossRef]

M. A. Karpierz, “Solitary waves in liquid crystalline waveguides,” Phys. Rev. E 66, 036603 (2002).
[CrossRef]

J. Yang, Q. Zhou, and R. T. Chen, “Polyimide-waveguide-based thermal optical switch using total-internal-reflection effect,” Appl. Phys. Lett. 81, 2947–2949 (2002).
[CrossRef]

A. Miniewicz, A. Gniewek, and J. Parka, “Liquid crystals for photonic applications,” Opt. Mater. 21, 605–610 (2002).
[CrossRef]

2000 (1)

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
[CrossRef]

1999 (1)

S. S. Lee, Y. S. Jin, Y. S. Son, and T. K. Yoo, “Polymeric tunable optical attenuator with an optical monitoring tap for WDM transmission network,” IEEE Photonics Technol. Lett. 11, 590–592 (1999).

1998 (1)

1994 (1)

A. Ying-Guey Fuh, C.-Y. Huang, B.-W. Tzen, C.-R. Sheu, Y.-N. Chyr, G.-L. Lin, and T.-C. Ko, “Electrooptical devices based on polymer-dispersed liquid crystal films,” Jpn. J. Appl. Phys. 33, 1088–1090 (1994).
[CrossRef]

1993 (1)

J. L. West, R. B. Akins, J. Francl, and J. W. Doane, “Cholesteric/polymer dispersed light shutters,” Appl. Phys. Lett. 63, 1471–1473 (1993).
[CrossRef]

1992 (1)

M. Haruna, Y. Segawa, and H. Nishihara, “Nondestructive and simple method of optical-waveguide loss measurement with optimisation of end-fire coupling,” Electron. Lett. 28, 1612–1613 (1992).
[CrossRef]

1991 (1)

R. J. Deri and E. Kapon, “Low-loss III-V semiconductor optical waveguides,” IEEE J. Quantum Electron. 27, 626–640 (1991).
[CrossRef]

1990 (1)

M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22, 391–416 (1990).
[CrossRef]

1977 (1)

J. R. Winnery, C. Hu, and Y. S. Kwon, “Liquid-crystal waveguides for integrated optics,” IEEE J. Quantum Electron. 13, 262–267 (1977).
[CrossRef]

1974 (1)

Abbate, G.

Akins, R. B.

J. L. West, R. B. Akins, J. Francl, and J. W. Doane, “Cholesteric/polymer dispersed light shutters,” Appl. Phys. Lett. 63, 1471–1473 (1993).
[CrossRef]

Asquini, R.

A. d’Alessandro, B. Bellini, D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron. 42, 1084–1090 (2006).
[CrossRef]

Baets, R.

Baird, G.

J. Li, G. Baird, Y. H. Lin, H. Ren, and S. T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. Soc. Inf. Disp. 13, 1017–1026 (2005).
[CrossRef]

Beccherelli, R.

A. d’Alessandro, B. Bellini, D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron. 42, 1084–1090 (2006).
[CrossRef]

Beeckman, J.

Bellini, B.

A. d’Alessandro, B. Bellini, D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron. 42, 1084–1090 (2006).
[CrossRef]

Chan, H. P.

Chanclou, P.

H. Ramanitra, P. Chanclou, B. Vinouze, and L. Dupont, “Application of polymer dispersed liquid crystal (PDLC) nematic: optical-fiber variable attenuator,” Mol. Cryst. Liq. Cryst. 404, 57–73 (2003).
[CrossRef]

Chen, J.

Chen, K. M.

K. M. Chen, H. Ren, and S. T. Wu, “PDLC-based VOA with a small polarization dependent loss,” Opt. Commun. 282, 4374–4377 (2009).
[CrossRef]

Chen, R.

R. Chen, “Polymer offers fabrication and economic advantages for photonic integrated circuits,” SPIE OE Magazine, 24–26 (2002).

Chen, R. T.

J. Yang, Q. Zhou, and R. T. Chen, “Polyimide-waveguide-based thermal optical switch using total-internal-reflection effect,” Appl. Phys. Lett. 81, 2947–2949 (2002).
[CrossRef]

Chung, P. S.

Chyr, Y.-N.

A. Ying-Guey Fuh, C.-Y. Huang, B.-W. Tzen, C.-R. Sheu, Y.-N. Chyr, G.-L. Lin, and T.-C. Ko, “Electrooptical devices based on polymer-dispersed liquid crystal films,” Jpn. J. Appl. Phys. 33, 1088–1090 (1994).
[CrossRef]

d’Alessandro, A.

A. d’Alessandro, B. Bellini, D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron. 42, 1084–1090 (2006).
[CrossRef]

Daj, M. R.

Q. Wang, R. Guo, M. R. Daj, S. W. Kang, and S. Kumar, “Flexible plastic displays fabricated using phase-separated composite films of liquid crystals,” Jpn. J. Appl. Phys. 46, 299–303 (2007).
[CrossRef]

de Ridder, R. M.

K. Wörhoff, C. G. Roeloffzen, R. M. de Ridder, G. Sengo, L. T. Hilderink, P. V. Lambeck, and A. Driessen, “Tolerance and application of polarization independent waveguide for communication devices,” in Proceedings Symposium IEEE/LEOS Benelux Chapter (IEEE Computer Society, 2004) pp. 107–110.

DeCort, W.

Deri, R. J.

R. J. Deri and E. Kapon, “Low-loss III-V semiconductor optical waveguides,” IEEE J. Quantum Electron. 27, 626–640 (1991).
[CrossRef]

Doane, J. W.

J. L. West, R. B. Akins, J. Francl, and J. W. Doane, “Cholesteric/polymer dispersed light shutters,” Appl. Phys. Lett. 63, 1471–1473 (1993).
[CrossRef]

Donisi, D.

A. d’Alessandro, B. Bellini, D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron. 42, 1084–1090 (2006).
[CrossRef]

Driessen, A.

K. Wörhoff, C. G. Roeloffzen, R. M. de Ridder, G. Sengo, L. T. Hilderink, P. V. Lambeck, and A. Driessen, “Tolerance and application of polarization independent waveguide for communication devices,” in Proceedings Symposium IEEE/LEOS Benelux Chapter (IEEE Computer Society, 2004) pp. 107–110.

Dupont, L.

H. Ramanitra, P. Chanclou, B. Vinouze, and L. Dupont, “Application of polymer dispersed liquid crystal (PDLC) nematic: optical-fiber variable attenuator,” Mol. Cryst. Liq. Cryst. 404, 57–73 (2003).
[CrossRef]

Eldada, L.

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
[CrossRef]

Fernández, F. A.

Forchel, A.

C. Schuller, J. P. Reithmaier, J. Zimmermann, M. Kamp, and A. Forchel, “Polarization-dependent optical properties of planar photonic crystals infiltrated with liquid crystals,” Appl. Phys. Lett. 87, 121105 (2005).
[CrossRef]

Francl, J.

J. L. West, R. B. Akins, J. Francl, and J. W. Doane, “Cholesteric/polymer dispersed light shutters,” Appl. Phys. Lett. 63, 1471–1473 (1993).
[CrossRef]

Ghada, M.

M. Ghada, M. Nabil, and A. Hassanein, “Characterization of polymer dispersed liquid crystal for photonic device applications,” Ph.D. thesis (Electronic Engineering Department, City University of Hong Kong, 2012).

Gniewek, A.

A. Miniewicz, A. Gniewek, and J. Parka, “Liquid crystals for photonic applications,” Opt. Mater. 21, 605–610 (2002).
[CrossRef]

Guo, R.

Q. Wang, R. Guo, M. R. Daj, S. W. Kang, and S. Kumar, “Flexible plastic displays fabricated using phase-separated composite films of liquid crystals,” Jpn. J. Appl. Phys. 46, 299–303 (2007).
[CrossRef]

Haelterman, M.

J. Beeckman, K. Neyts, X. Hutsebaut, and M. Haelterman, “Observation of out-coupling of nematicon,” Opto-Electron. Rev. 14, 263–267 (2006).
[CrossRef]

Haruna, M.

M. Haruna, Y. Segawa, and H. Nishihara, “Nondestructive and simple method of optical-waveguide loss measurement with optimisation of end-fire coupling,” Electron. Lett. 28, 1612–1613 (1992).
[CrossRef]

Hassanein, A.

M. Ghada, M. Nabil, and A. Hassanein, “Characterization of polymer dispersed liquid crystal for photonic device applications,” Ph.D. thesis (Electronic Engineering Department, City University of Hong Kong, 2012).

Headley, W. R.

W. R. Headley, G. T. Reed, and S. Howe, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85, 5523–5525 (2004).
[CrossRef]

Henninot, J. F.

Hilderink, L. T.

K. Wörhoff, C. G. Roeloffzen, R. M. de Ridder, G. Sengo, L. T. Hilderink, P. V. Lambeck, and A. Driessen, “Tolerance and application of polarization independent waveguide for communication devices,” in Proceedings Symposium IEEE/LEOS Benelux Chapter (IEEE Computer Society, 2004) pp. 107–110.

Howe, S.

W. R. Headley, G. T. Reed, and S. Howe, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85, 5523–5525 (2004).
[CrossRef]

Hu, C.

J. R. Winnery, C. Hu, and Y. S. Kwon, “Liquid-crystal waveguides for integrated optics,” IEEE J. Quantum Electron. 13, 262–267 (1977).
[CrossRef]

C. Hu and J. R. Whinnery, “Losses of a nematic liquid crystal waveguide,” J. Opt. Soc. Am. 64, 1424–1432 (1974).
[CrossRef]

Huang, C.-Y.

A. Ying-Guey Fuh, C.-Y. Huang, B.-W. Tzen, C.-R. Sheu, Y.-N. Chyr, G.-L. Lin, and T.-C. Ko, “Electrooptical devices based on polymer-dispersed liquid crystal films,” Jpn. J. Appl. Phys. 33, 1088–1090 (1994).
[CrossRef]

Huang, Y.

Hutsebaut, X.

J. Beeckman, K. Neyts, X. Hutsebaut, and M. Haelterman, “Observation of out-coupling of nematicon,” Opto-Electron. Rev. 14, 263–267 (2006).
[CrossRef]

James, R.

Jin, Y. S.

S. S. Lee, Y. S. Jin, Y. S. Son, and T. K. Yoo, “Polymeric tunable optical attenuator with an optical monitoring tap for WDM transmission network,” IEEE Photonics Technol. Lett. 11, 590–592 (1999).

Kamp, M.

C. Schuller, J. P. Reithmaier, J. Zimmermann, M. Kamp, and A. Forchel, “Polarization-dependent optical properties of planar photonic crystals infiltrated with liquid crystals,” Appl. Phys. Lett. 87, 121105 (2005).
[CrossRef]

Kang, S. W.

Q. Wang, R. Guo, M. R. Daj, S. W. Kang, and S. Kumar, “Flexible plastic displays fabricated using phase-separated composite films of liquid crystals,” Jpn. J. Appl. Phys. 46, 299–303 (2007).
[CrossRef]

Kapon, E.

R. J. Deri and E. Kapon, “Low-loss III-V semiconductor optical waveguides,” IEEE J. Quantum Electron. 27, 626–640 (1991).
[CrossRef]

Karpierz, M. A.

M. A. Karpierz, “Solitary waves in liquid crystalline waveguides,” Phys. Rev. E 66, 036603 (2002).
[CrossRef]

Kato, A.

Kawachi, M.

M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22, 391–416 (1990).
[CrossRef]

Khoo, I. C.

I. C. Khoo, Y. Zhang Williams, B. Lewis, and T. Mallouk, “Photorefractive CdSe and gold nanowire doped liquid crystals and polymer dispersed liquid crystal photonic crystals,” Mol. Cryst. Liq. Cryst. 446, 233–244 (2005).
[CrossRef]

Ko, T.-C.

A. Ying-Guey Fuh, C.-Y. Huang, B.-W. Tzen, C.-R. Sheu, Y.-N. Chyr, G.-L. Lin, and T.-C. Ko, “Electrooptical devices based on polymer-dispersed liquid crystal films,” Jpn. J. Appl. Phys. 33, 1088–1090 (1994).
[CrossRef]

Kumar, S.

Q. Wang, R. Guo, M. R. Daj, S. W. Kang, and S. Kumar, “Flexible plastic displays fabricated using phase-separated composite films of liquid crystals,” Jpn. J. Appl. Phys. 46, 299–303 (2007).
[CrossRef]

Kwon, Y. S.

J. R. Winnery, C. Hu, and Y. S. Kwon, “Liquid-crystal waveguides for integrated optics,” IEEE J. Quantum Electron. 13, 262–267 (1977).
[CrossRef]

Lambeck, P. V.

K. Wörhoff, C. G. Roeloffzen, R. M. de Ridder, G. Sengo, L. T. Hilderink, P. V. Lambeck, and A. Driessen, “Tolerance and application of polarization independent waveguide for communication devices,” in Proceedings Symposium IEEE/LEOS Benelux Chapter (IEEE Computer Society, 2004) pp. 107–110.

Lee, S. S.

S. S. Lee, Y. S. Jin, Y. S. Son, and T. K. Yoo, “Polymeric tunable optical attenuator with an optical monitoring tap for WDM transmission network,” IEEE Photonics Technol. Lett. 11, 590–592 (1999).

Lewis, B.

I. C. Khoo, Y. Zhang Williams, B. Lewis, and T. Mallouk, “Photorefractive CdSe and gold nanowire doped liquid crystals and polymer dispersed liquid crystal photonic crystals,” Mol. Cryst. Liq. Cryst. 446, 233–244 (2005).
[CrossRef]

Li, J.

J. Li, G. Baird, Y. H. Lin, H. Ren, and S. T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. Soc. Inf. Disp. 13, 1017–1026 (2005).
[CrossRef]

Lin, G.-L.

A. Ying-Guey Fuh, C.-Y. Huang, B.-W. Tzen, C.-R. Sheu, Y.-N. Chyr, G.-L. Lin, and T.-C. Ko, “Electrooptical devices based on polymer-dispersed liquid crystal films,” Jpn. J. Appl. Phys. 33, 1088–1090 (1994).
[CrossRef]

Lin, Y. H.

J. Li, G. Baird, Y. H. Lin, H. Ren, and S. T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. Soc. Inf. Disp. 13, 1017–1026 (2005).
[CrossRef]

Malik, P.

P. Malik and K. K. Raina, “Droplet orientation and optical properties of polymer dispersed liquid crystal composite films,” Opt. Mater. 27, 613–617 (2004).
[CrossRef]

Mallouk, T.

I. C. Khoo, Y. Zhang Williams, B. Lewis, and T. Mallouk, “Photorefractive CdSe and gold nanowire doped liquid crystals and polymer dispersed liquid crystal photonic crystals,” Mol. Cryst. Liq. Cryst. 446, 233–244 (2005).
[CrossRef]

Miniewicz, A.

A. Miniewicz, A. Gniewek, and J. Parka, “Liquid crystals for photonic applications,” Opt. Mater. 21, 605–610 (2002).
[CrossRef]

Morita, H.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38, 1669–1670 (2002).
[CrossRef]

Nabil, M.

M. Ghada, M. Nabil, and A. Hassanein, “Characterization of polymer dispersed liquid crystal for photonic device applications,” Ph.D. thesis (Electronic Engineering Department, City University of Hong Kong, 2012).

Nakagami, T.

Nakatsuhara, K.

Neyts, K.

Ni, Z.

Nishihara, H.

M. Haruna, Y. Segawa, and H. Nishihara, “Nondestructive and simple method of optical-waveguide loss measurement with optimisation of end-fire coupling,” Electron. Lett. 28, 1612–1613 (1992).
[CrossRef]

Parka, J.

A. Miniewicz, A. Gniewek, and J. Parka, “Liquid crystals for photonic applications,” Opt. Mater. 21, 605–610 (2002).
[CrossRef]

Raina, K. K.

P. Malik and K. K. Raina, “Droplet orientation and optical properties of polymer dispersed liquid crystal composite films,” Opt. Mater. 27, 613–617 (2004).
[CrossRef]

Ramanitra, H.

H. Ramanitra, P. Chanclou, B. Vinouze, and L. Dupont, “Application of polymer dispersed liquid crystal (PDLC) nematic: optical-fiber variable attenuator,” Mol. Cryst. Liq. Cryst. 404, 57–73 (2003).
[CrossRef]

Reed, G. T.

W. R. Headley, G. T. Reed, and S. Howe, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85, 5523–5525 (2004).
[CrossRef]

Reithmaier, J. P.

C. Schuller, J. P. Reithmaier, J. Zimmermann, M. Kamp, and A. Forchel, “Polarization-dependent optical properties of planar photonic crystals infiltrated with liquid crystals,” Appl. Phys. Lett. 87, 121105 (2005).
[CrossRef]

Ren, H.

K. M. Chen, H. Ren, and S. T. Wu, “PDLC-based VOA with a small polarization dependent loss,” Opt. Commun. 282, 4374–4377 (2009).
[CrossRef]

J. Li, G. Baird, Y. H. Lin, H. Ren, and S. T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. Soc. Inf. Disp. 13, 1017–1026 (2005).
[CrossRef]

Roeloffzen, C. G.

K. Wörhoff, C. G. Roeloffzen, R. M. de Ridder, G. Sengo, L. T. Hilderink, P. V. Lambeck, and A. Driessen, “Tolerance and application of polarization independent waveguide for communication devices,” in Proceedings Symposium IEEE/LEOS Benelux Chapter (IEEE Computer Society, 2004) pp. 107–110.

Schuller, C.

C. Schuller, J. P. Reithmaier, J. Zimmermann, M. Kamp, and A. Forchel, “Polarization-dependent optical properties of planar photonic crystals infiltrated with liquid crystals,” Appl. Phys. Lett. 87, 121105 (2005).
[CrossRef]

Segawa, Y.

M. Haruna, Y. Segawa, and H. Nishihara, “Nondestructive and simple method of optical-waveguide loss measurement with optimisation of end-fire coupling,” Electron. Lett. 28, 1612–1613 (1992).
[CrossRef]

Sengo, G.

K. Wörhoff, C. G. Roeloffzen, R. M. de Ridder, G. Sengo, L. T. Hilderink, P. V. Lambeck, and A. Driessen, “Tolerance and application of polarization independent waveguide for communication devices,” in Proceedings Symposium IEEE/LEOS Benelux Chapter (IEEE Computer Society, 2004) pp. 107–110.

Shacklette, L. W.

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
[CrossRef]

Sheu, C.-R.

A. Ying-Guey Fuh, C.-Y. Huang, B.-W. Tzen, C.-R. Sheu, Y.-N. Chyr, G.-L. Lin, and T.-C. Ko, “Electrooptical devices based on polymer-dispersed liquid crystal films,” Jpn. J. Appl. Phys. 33, 1088–1090 (1994).
[CrossRef]

Shoji, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38, 1669–1670 (2002).
[CrossRef]

Son, Y. S.

S. S. Lee, Y. S. Jin, Y. S. Son, and T. K. Yoo, “Polymeric tunable optical attenuator with an optical monitoring tap for WDM transmission network,” IEEE Photonics Technol. Lett. 11, 590–592 (1999).

Tsuchizawa, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38, 1669–1670 (2002).
[CrossRef]

Tzen, B.-W.

A. Ying-Guey Fuh, C.-Y. Huang, B.-W. Tzen, C.-R. Sheu, Y.-N. Chyr, G.-L. Lin, and T.-C. Ko, “Electrooptical devices based on polymer-dispersed liquid crystal films,” Jpn. J. Appl. Phys. 33, 1088–1090 (1994).
[CrossRef]

Uddin, M. A.

Vinouze, B.

H. Ramanitra, P. Chanclou, B. Vinouze, and L. Dupont, “Application of polymer dispersed liquid crystal (PDLC) nematic: optical-fiber variable attenuator,” Mol. Cryst. Liq. Cryst. 404, 57–73 (2003).
[CrossRef]

Wang, Q.

Q. Wang, D. Zhang, Y. Huang, Z. Ni, J. Chen, Y. Zhong, and S. Zhuang, “Type of tunable guided-mode resonance filter based on electro-optic characteristic of polymer-dispersed liquid crystal,” Opt. Lett. 35, 1236–1238 (2010).
[CrossRef]

Q. Wang, R. Guo, M. R. Daj, S. W. Kang, and S. Kumar, “Flexible plastic displays fabricated using phase-separated composite films of liquid crystals,” Jpn. J. Appl. Phys. 46, 299–303 (2007).
[CrossRef]

Warenghem, M.

Watanabe, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38, 1669–1670 (2002).
[CrossRef]

West, J. L.

J. L. West, R. B. Akins, J. Francl, and J. W. Doane, “Cholesteric/polymer dispersed light shutters,” Appl. Phys. Lett. 63, 1471–1473 (1993).
[CrossRef]

Whinnery, J. R.

Winnery, J. R.

J. R. Winnery, C. Hu, and Y. S. Kwon, “Liquid-crystal waveguides for integrated optics,” IEEE J. Quantum Electron. 13, 262–267 (1977).
[CrossRef]

Wörhoff, K.

K. Wörhoff, C. G. Roeloffzen, R. M. de Ridder, G. Sengo, L. T. Hilderink, P. V. Lambeck, and A. Driessen, “Tolerance and application of polarization independent waveguide for communication devices,” in Proceedings Symposium IEEE/LEOS Benelux Chapter (IEEE Computer Society, 2004) pp. 107–110.

Wu, S. T.

K. M. Chen, H. Ren, and S. T. Wu, “PDLC-based VOA with a small polarization dependent loss,” Opt. Commun. 282, 4374–4377 (2009).
[CrossRef]

J. Li, G. Baird, Y. H. Lin, H. Ren, and S. T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. Soc. Inf. Disp. 13, 1017–1026 (2005).
[CrossRef]

Xu, Y.

Yamada, K.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38, 1669–1670 (2002).
[CrossRef]

Yang, J.

J. Yang, Q. Zhou, and R. T. Chen, “Polyimide-waveguide-based thermal optical switch using total-internal-reflection effect,” Appl. Phys. Lett. 81, 2947–2949 (2002).
[CrossRef]

Ying-Guey Fuh, A.

A. Ying-Guey Fuh, C.-Y. Huang, B.-W. Tzen, C.-R. Sheu, Y.-N. Chyr, G.-L. Lin, and T.-C. Ko, “Electrooptical devices based on polymer-dispersed liquid crystal films,” Jpn. J. Appl. Phys. 33, 1088–1090 (1994).
[CrossRef]

Yoo, T. K.

S. S. Lee, Y. S. Jin, Y. S. Son, and T. K. Yoo, “Polymeric tunable optical attenuator with an optical monitoring tap for WDM transmission network,” IEEE Photonics Technol. Lett. 11, 590–592 (1999).

Zhang, D.

Zhang Williams, Y.

I. C. Khoo, Y. Zhang Williams, B. Lewis, and T. Mallouk, “Photorefractive CdSe and gold nanowire doped liquid crystals and polymer dispersed liquid crystal photonic crystals,” Mol. Cryst. Liq. Cryst. 446, 233–244 (2005).
[CrossRef]

Zhong, Y.

Zhou, Q.

J. Yang, Q. Zhou, and R. T. Chen, “Polyimide-waveguide-based thermal optical switch using total-internal-reflection effect,” Appl. Phys. Lett. 81, 2947–2949 (2002).
[CrossRef]

Zhuang, S.

Zimmermann, J.

C. Schuller, J. P. Reithmaier, J. Zimmermann, M. Kamp, and A. Forchel, “Polarization-dependent optical properties of planar photonic crystals infiltrated with liquid crystals,” Appl. Phys. Lett. 87, 121105 (2005).
[CrossRef]

Appl. Phys. Lett. (4)

J. Yang, Q. Zhou, and R. T. Chen, “Polyimide-waveguide-based thermal optical switch using total-internal-reflection effect,” Appl. Phys. Lett. 81, 2947–2949 (2002).
[CrossRef]

J. L. West, R. B. Akins, J. Francl, and J. W. Doane, “Cholesteric/polymer dispersed light shutters,” Appl. Phys. Lett. 63, 1471–1473 (1993).
[CrossRef]

C. Schuller, J. P. Reithmaier, J. Zimmermann, M. Kamp, and A. Forchel, “Polarization-dependent optical properties of planar photonic crystals infiltrated with liquid crystals,” Appl. Phys. Lett. 87, 121105 (2005).
[CrossRef]

W. R. Headley, G. T. Reed, and S. Howe, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85, 5523–5525 (2004).
[CrossRef]

Electron. Lett. (2)

M. Haruna, Y. Segawa, and H. Nishihara, “Nondestructive and simple method of optical-waveguide loss measurement with optimisation of end-fire coupling,” Electron. Lett. 28, 1612–1613 (1992).
[CrossRef]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibers,” Electron. Lett. 38, 1669–1670 (2002).
[CrossRef]

IEEE J. Quantum Electron. (3)

J. R. Winnery, C. Hu, and Y. S. Kwon, “Liquid-crystal waveguides for integrated optics,” IEEE J. Quantum Electron. 13, 262–267 (1977).
[CrossRef]

R. J. Deri and E. Kapon, “Low-loss III-V semiconductor optical waveguides,” IEEE J. Quantum Electron. 27, 626–640 (1991).
[CrossRef]

A. d’Alessandro, B. Bellini, D. Donisi, R. Beccherelli, and R. Asquini, “Nematic liquid crystal optical channel waveguides on silicon,” IEEE J. Quantum Electron. 42, 1084–1090 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

S. S. Lee, Y. S. Jin, Y. S. Son, and T. K. Yoo, “Polymeric tunable optical attenuator with an optical monitoring tap for WDM transmission network,” IEEE Photonics Technol. Lett. 11, 590–592 (1999).

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

J. Soc. Inf. Disp. (1)

J. Li, G. Baird, Y. H. Lin, H. Ren, and S. T. Wu, “Refractive-index matching between liquid crystals and photopolymers,” J. Soc. Inf. Disp. 13, 1017–1026 (2005).
[CrossRef]

Jpn. J. Appl. Phys. (2)

Q. Wang, R. Guo, M. R. Daj, S. W. Kang, and S. Kumar, “Flexible plastic displays fabricated using phase-separated composite films of liquid crystals,” Jpn. J. Appl. Phys. 46, 299–303 (2007).
[CrossRef]

A. Ying-Guey Fuh, C.-Y. Huang, B.-W. Tzen, C.-R. Sheu, Y.-N. Chyr, G.-L. Lin, and T.-C. Ko, “Electrooptical devices based on polymer-dispersed liquid crystal films,” Jpn. J. Appl. Phys. 33, 1088–1090 (1994).
[CrossRef]

Mol. Cryst. Liq. Cryst. (2)

I. C. Khoo, Y. Zhang Williams, B. Lewis, and T. Mallouk, “Photorefractive CdSe and gold nanowire doped liquid crystals and polymer dispersed liquid crystal photonic crystals,” Mol. Cryst. Liq. Cryst. 446, 233–244 (2005).
[CrossRef]

H. Ramanitra, P. Chanclou, B. Vinouze, and L. Dupont, “Application of polymer dispersed liquid crystal (PDLC) nematic: optical-fiber variable attenuator,” Mol. Cryst. Liq. Cryst. 404, 57–73 (2003).
[CrossRef]

Opt. Commun. (1)

K. M. Chen, H. Ren, and S. T. Wu, “PDLC-based VOA with a small polarization dependent loss,” Opt. Commun. 282, 4374–4377 (2009).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. (2)

P. Malik and K. K. Raina, “Droplet orientation and optical properties of polymer dispersed liquid crystal composite films,” Opt. Mater. 27, 613–617 (2004).
[CrossRef]

A. Miniewicz, A. Gniewek, and J. Parka, “Liquid crystals for photonic applications,” Opt. Mater. 21, 605–610 (2002).
[CrossRef]

Opt. Quantum Electron. (1)

M. Kawachi, “Silica waveguides on silicon and their application to integrated-optic components,” Opt. Quantum Electron. 22, 391–416 (1990).
[CrossRef]

Opto-Electron. Rev. (1)

J. Beeckman, K. Neyts, X. Hutsebaut, and M. Haelterman, “Observation of out-coupling of nematicon,” Opto-Electron. Rev. 14, 263–267 (2006).
[CrossRef]

Phys. Rev. E (1)

M. A. Karpierz, “Solitary waves in liquid crystalline waveguides,” Phys. Rev. E 66, 036603 (2002).
[CrossRef]

Other (3)

R. Chen, “Polymer offers fabrication and economic advantages for photonic integrated circuits,” SPIE OE Magazine, 24–26 (2002).

K. Wörhoff, C. G. Roeloffzen, R. M. de Ridder, G. Sengo, L. T. Hilderink, P. V. Lambeck, and A. Driessen, “Tolerance and application of polarization independent waveguide for communication devices,” in Proceedings Symposium IEEE/LEOS Benelux Chapter (IEEE Computer Society, 2004) pp. 107–110.

M. Ghada, M. Nabil, and A. Hassanein, “Characterization of polymer dispersed liquid crystal for photonic device applications,” Ph.D. thesis (Electronic Engineering Department, City University of Hong Kong, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Illustration of the inverted channel waveguide cross section.

Fig. 2.
Fig. 2.

Structure of the three fabricated inverted channel waveguides with (a) nonaligned PDLC, (b) aligned PDLC, and (c) aligned LC upper cladding layers.

Fig. 3.
Fig. 3.

Schematic diagram of experimental setup of end-fire coupling setup.

Fig. 4.
Fig. 4.

Normalized output power as a function of applied electric field strength (E) of TE and TM modes for the waveguides with (a) nonaligned PDLC, (b) aligned PDLC, and (c) aligned LC upper claddings at 1550 nm.

Tables (1)

Tables Icon

Table 1. TM- and TE-Mode Threshold and Cutoff Field Strengths, and the Attenuation Range (at 0.9V/μm) in the Case of Nonaligned PDLC, Aligned PDLC, and Aligned LC Upper Claddings

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ne(θ)=nonene2cos2(θ)+no2sin2(θ),
nPDLC=nLC+(1f)np,

Metrics