Abstract

A polymeric SU8 inverted-rib waveguide Bragg grating filter fabricated using reactive ion etching (RIE) and solvent assisted microcontact molding (SAMIM) is presented. SAMIM is one kind of soft lithography. The technique is unique in that a composite hard-polydimethysiloxane/polydimethysiloxane stamp is used to transfer the grating pattern onto an inverted SU8 rib waveguide system. The composite grating stamp can be used repeatedly several times without degradation. Using this stamp and inverter-rib waveguide structure, the Bragg grating filter fabrication can be significantly simplified. The experiment result shows an attenuation dip in the transmission spectra, with a value of 7dBm at 1550 nm for a grating with a period of 0.492 μm on an inverted-rib waveguide with 6.6 μm width and 4 μm height.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M.-C. Oh, K.-J. Kim, J.-H. Lee, H.-X. Chen, and K.-H. Koh, “Polymeric waveguide biosensors with calixarene monolayer for detecting potassium ion concentration,” Appl. Phys. Lett. 89, 25114 (2006).
  2. L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
  3. M.-C. Oh, M.-H. Lee, J.-H. Ahn, H.-J. Lee, and S. G. Han, “Polymeric wavelength filters with polymer gratings,” Appl. Phys. Lett. 72, 1559–1561 (1998).
    [CrossRef]
  4. N. Mukherjee, B. J. Eapen, D. M. Keicher, S. Q. Luong, and A. Mukherjee, “Distributed Bragg reflection in integrated waveguides of polymethylmethacrylate,” Appl. Phys. Lett. 67, 3715–3717 (1995).
    [CrossRef]
  5. J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823–3825 (2003).
    [CrossRef]
  6. S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, “Realization of integrated Bragg reflectors in DANS-polymer waveguides,” J. Lightwave Technol. 11, 1189–1195 (1993).
    [CrossRef]
  7. W. H. Wong, J. Zhou, and E. Y. B. Pun, “Polymeric waveguide wavelength filters using electron-beam direct writing,” Appl. Phys. Lett. 78, 2110–2112 (2001).
    [CrossRef]
  8. S.-W. Ahn, K.-D. Lee, D.-H. Kim, and S.-S. Lee, “Polymeric wavelength filter based on a Bragg grating using nanoimprint technique,” IEEE Photon. Technol. Lett. 17, 2122–2124 (2005).
  9. J. A. Rogers, M. Meier, and A. Dodabalapur, “Using printing and molding techniques to produce distributed feedback and Bragg reflector resonators for plastic lasers,” Appl. Phys. Lett. 73, 1766–1768 (1998).
    [CrossRef]
  10. R. Feng and R. J. Farris, “Influence of processing conditions on the thermal and mechanical properties of SU8 negative photoresist coatings,” J. Micormech. Microeng. 13, 80–88 (2003).
    [CrossRef]
  11. M. Rabarot, J. Bablet, M. Ruty, M. Kipp, I. Chartier, and C. Dubarry, “Thick SU-8 photolithography for BioMEMS,” Proc. SPIE 4979, 382–393 (2003).
  12. B. Beche, P. Papet, D. Debarnot, E. Gaviot, J. Zyss, and F. Poncin-Epaillard, “Fluorine plasma treatment on SU-8 polymer for integrated optics,” Opt. Commun. 246, 25–28 (2005).
    [CrossRef]
  13. M. Nordstrom, D. A. Zauner, A. Boisen, and J. Hubner, “Single-mode waveguides with SU-8 polymer core and cladding for MOEMS applications,” J. Lightwave Technol. 25, 1284–1289 (2007).
    [CrossRef]
  14. E. Kim, Y. Xia, X.-M. Zhao, and G. Whitesides, “Solvent-assisted microcontact molding: a convenient method for fabricating three-dimensional structures on surfaces of polymers,” Adv. Mater. 9, 651–654 (1997).
    [CrossRef]
  15. R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguide in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991).
  16. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. QE-9, 919–933 (1973).
  17. A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. QE-13233–252 (1977).
  18. H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, 1989).
  19. C. S. Huang, Y. B. Pun, and W. C. Wang, “Fabrication of a elastomeric rib waveguide with Bragg grating filter,” J. Opt. Soc. Am. B 26, 1256–1262 (2009).
    [CrossRef]
  20. T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir 18, 5314–5320 (2002).
    [CrossRef]
  21. C. S. Huang and W. C. Wang, “Large core single mode rib SU8 waveguide using solvent assisted microcontact molding,” Appl. Opt. 47, 4540–4547 (2008).
    [CrossRef]
  22. J.-S. Kim, J.-W. Kang, and J.-J. Kim, “Simple and low cost fabrication of thermally stable polymeric multimode waveguides using a UV-curable epoxy,” Jpn. J. Appl. Phys. 42, 1277–1279 (2003).
  23. T. C. Sum, A. A. Bettiol, J. A. Van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83, 1707–1709 (2003).
    [CrossRef]
  24. C. S. Huang, E. Y. B. Pun, and W. C. Wang, “SU-8 rib waveguide Bragg grating filter using composite stamp and solvent-assisted microcontact molding technique,” J. Micro/Nanolith. MEMS MOEMS 9, 023013 (2010).
    [CrossRef]

2010 (1)

C. S. Huang, E. Y. B. Pun, and W. C. Wang, “SU-8 rib waveguide Bragg grating filter using composite stamp and solvent-assisted microcontact molding technique,” J. Micro/Nanolith. MEMS MOEMS 9, 023013 (2010).
[CrossRef]

2009 (1)

2008 (1)

2007 (1)

2006 (1)

M.-C. Oh, K.-J. Kim, J.-H. Lee, H.-X. Chen, and K.-H. Koh, “Polymeric waveguide biosensors with calixarene monolayer for detecting potassium ion concentration,” Appl. Phys. Lett. 89, 25114 (2006).

2005 (2)

S.-W. Ahn, K.-D. Lee, D.-H. Kim, and S.-S. Lee, “Polymeric wavelength filter based on a Bragg grating using nanoimprint technique,” IEEE Photon. Technol. Lett. 17, 2122–2124 (2005).

B. Beche, P. Papet, D. Debarnot, E. Gaviot, J. Zyss, and F. Poncin-Epaillard, “Fluorine plasma treatment on SU-8 polymer for integrated optics,” Opt. Commun. 246, 25–28 (2005).
[CrossRef]

2003 (5)

R. Feng and R. J. Farris, “Influence of processing conditions on the thermal and mechanical properties of SU8 negative photoresist coatings,” J. Micormech. Microeng. 13, 80–88 (2003).
[CrossRef]

M. Rabarot, J. Bablet, M. Ruty, M. Kipp, I. Chartier, and C. Dubarry, “Thick SU-8 photolithography for BioMEMS,” Proc. SPIE 4979, 382–393 (2003).

J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823–3825 (2003).
[CrossRef]

J.-S. Kim, J.-W. Kang, and J.-J. Kim, “Simple and low cost fabrication of thermally stable polymeric multimode waveguides using a UV-curable epoxy,” Jpn. J. Appl. Phys. 42, 1277–1279 (2003).

T. C. Sum, A. A. Bettiol, J. A. Van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83, 1707–1709 (2003).
[CrossRef]

2002 (1)

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir 18, 5314–5320 (2002).
[CrossRef]

2001 (1)

W. H. Wong, J. Zhou, and E. Y. B. Pun, “Polymeric waveguide wavelength filters using electron-beam direct writing,” Appl. Phys. Lett. 78, 2110–2112 (2001).
[CrossRef]

2000 (1)

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).

1998 (2)

M.-C. Oh, M.-H. Lee, J.-H. Ahn, H.-J. Lee, and S. G. Han, “Polymeric wavelength filters with polymer gratings,” Appl. Phys. Lett. 72, 1559–1561 (1998).
[CrossRef]

J. A. Rogers, M. Meier, and A. Dodabalapur, “Using printing and molding techniques to produce distributed feedback and Bragg reflector resonators for plastic lasers,” Appl. Phys. Lett. 73, 1766–1768 (1998).
[CrossRef]

1997 (1)

E. Kim, Y. Xia, X.-M. Zhao, and G. Whitesides, “Solvent-assisted microcontact molding: a convenient method for fabricating three-dimensional structures on surfaces of polymers,” Adv. Mater. 9, 651–654 (1997).
[CrossRef]

1995 (1)

N. Mukherjee, B. J. Eapen, D. M. Keicher, S. Q. Luong, and A. Mukherjee, “Distributed Bragg reflection in integrated waveguides of polymethylmethacrylate,” Appl. Phys. Lett. 67, 3715–3717 (1995).
[CrossRef]

1993 (1)

S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, “Realization of integrated Bragg reflectors in DANS-polymer waveguides,” J. Lightwave Technol. 11, 1189–1195 (1993).
[CrossRef]

1991 (1)

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguide in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991).

1977 (1)

A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. QE-13233–252 (1977).

1973 (1)

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. QE-9, 919–933 (1973).

Ahn, J.-H.

M.-C. Oh, M.-H. Lee, J.-H. Ahn, H.-J. Lee, and S. G. Han, “Polymeric wavelength filters with polymer gratings,” Appl. Phys. Lett. 72, 1559–1561 (1998).
[CrossRef]

Ahn, S.-W.

S.-W. Ahn, K.-D. Lee, D.-H. Kim, and S.-S. Lee, “Polymeric wavelength filter based on a Bragg grating using nanoimprint technique,” IEEE Photon. Technol. Lett. 17, 2122–2124 (2005).

Aramaki, S.

S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, “Realization of integrated Bragg reflectors in DANS-polymer waveguides,” J. Lightwave Technol. 11, 1189–1195 (1993).
[CrossRef]

Assanto, G.

S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, “Realization of integrated Bragg reflectors in DANS-polymer waveguides,” J. Lightwave Technol. 11, 1189–1195 (1993).
[CrossRef]

Bablet, J.

M. Rabarot, J. Bablet, M. Ruty, M. Kipp, I. Chartier, and C. Dubarry, “Thick SU-8 photolithography for BioMEMS,” Proc. SPIE 4979, 382–393 (2003).

Beche, B.

B. Beche, P. Papet, D. Debarnot, E. Gaviot, J. Zyss, and F. Poncin-Epaillard, “Fluorine plasma treatment on SU-8 polymer for integrated optics,” Opt. Commun. 246, 25–28 (2005).
[CrossRef]

Bettiol, A. A.

T. C. Sum, A. A. Bettiol, J. A. Van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83, 1707–1709 (2003).
[CrossRef]

Boisen, A.

Chartier, I.

M. Rabarot, J. Bablet, M. Ruty, M. Kipp, I. Chartier, and C. Dubarry, “Thick SU-8 photolithography for BioMEMS,” Proc. SPIE 4979, 382–393 (2003).

Chen, H.-X.

M.-C. Oh, K.-J. Kim, J.-H. Lee, H.-X. Chen, and K.-H. Koh, “Polymeric waveguide biosensors with calixarene monolayer for detecting potassium ion concentration,” Appl. Phys. Lett. 89, 25114 (2006).

Debarnot, D.

B. Beche, P. Papet, D. Debarnot, E. Gaviot, J. Zyss, and F. Poncin-Epaillard, “Fluorine plasma treatment on SU-8 polymer for integrated optics,” Opt. Commun. 246, 25–28 (2005).
[CrossRef]

Dodabalapur, A.

J. A. Rogers, M. Meier, and A. Dodabalapur, “Using printing and molding techniques to produce distributed feedback and Bragg reflector resonators for plastic lasers,” Appl. Phys. Lett. 73, 1766–1768 (1998).
[CrossRef]

Dubarry, C.

M. Rabarot, J. Bablet, M. Ruty, M. Kipp, I. Chartier, and C. Dubarry, “Thick SU-8 photolithography for BioMEMS,” Proc. SPIE 4979, 382–393 (2003).

Eapen, B. J.

N. Mukherjee, B. J. Eapen, D. M. Keicher, S. Q. Luong, and A. Mukherjee, “Distributed Bragg reflection in integrated waveguides of polymethylmethacrylate,” Appl. Phys. Lett. 67, 3715–3717 (1995).
[CrossRef]

Eldada, L.

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).

Farris, R. J.

R. Feng and R. J. Farris, “Influence of processing conditions on the thermal and mechanical properties of SU8 negative photoresist coatings,” J. Micormech. Microeng. 13, 80–88 (2003).
[CrossRef]

Feng, R.

R. Feng and R. J. Farris, “Influence of processing conditions on the thermal and mechanical properties of SU8 negative photoresist coatings,” J. Micormech. Microeng. 13, 80–88 (2003).
[CrossRef]

Gaviot, E.

B. Beche, P. Papet, D. Debarnot, E. Gaviot, J. Zyss, and F. Poncin-Epaillard, “Fluorine plasma treatment on SU-8 polymer for integrated optics,” Opt. Commun. 246, 25–28 (2005).
[CrossRef]

Han, S. G.

M.-C. Oh, M.-H. Lee, J.-H. Ahn, H.-J. Lee, and S. G. Han, “Polymeric wavelength filters with polymer gratings,” Appl. Phys. Lett. 72, 1559–1561 (1998).
[CrossRef]

Haruna, M.

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, 1989).

Huang, C. S.

Hubner, J.

Kang, J.-W.

J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823–3825 (2003).
[CrossRef]

J.-S. Kim, J.-W. Kang, and J.-J. Kim, “Simple and low cost fabrication of thermally stable polymeric multimode waveguides using a UV-curable epoxy,” Jpn. J. Appl. Phys. 42, 1277–1279 (2003).

Keicher, D. M.

N. Mukherjee, B. J. Eapen, D. M. Keicher, S. Q. Luong, and A. Mukherjee, “Distributed Bragg reflection in integrated waveguides of polymethylmethacrylate,” Appl. Phys. Lett. 67, 3715–3717 (1995).
[CrossRef]

Kim, D. Y.

J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823–3825 (2003).
[CrossRef]

Kim, D.-H.

S.-W. Ahn, K.-D. Lee, D.-H. Kim, and S.-S. Lee, “Polymeric wavelength filter based on a Bragg grating using nanoimprint technique,” IEEE Photon. Technol. Lett. 17, 2122–2124 (2005).

Kim, E.

E. Kim, Y. Xia, X.-M. Zhao, and G. Whitesides, “Solvent-assisted microcontact molding: a convenient method for fabricating three-dimensional structures on surfaces of polymers,” Adv. Mater. 9, 651–654 (1997).
[CrossRef]

Kim, J.-J.

J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823–3825 (2003).
[CrossRef]

J.-S. Kim, J.-W. Kang, and J.-J. Kim, “Simple and low cost fabrication of thermally stable polymeric multimode waveguides using a UV-curable epoxy,” Jpn. J. Appl. Phys. 42, 1277–1279 (2003).

Kim, J.-P.

J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823–3825 (2003).
[CrossRef]

Kim, J.-S.

J.-S. Kim, J.-W. Kang, and J.-J. Kim, “Simple and low cost fabrication of thermally stable polymeric multimode waveguides using a UV-curable epoxy,” Jpn. J. Appl. Phys. 42, 1277–1279 (2003).

Kim, K.-J.

M.-C. Oh, K.-J. Kim, J.-H. Lee, H.-X. Chen, and K.-H. Koh, “Polymeric waveguide biosensors with calixarene monolayer for detecting potassium ion concentration,” Appl. Phys. Lett. 89, 25114 (2006).

Kim, M.-J.

J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823–3825 (2003).
[CrossRef]

Kipp, M.

M. Rabarot, J. Bablet, M. Ruty, M. Kipp, I. Chartier, and C. Dubarry, “Thick SU-8 photolithography for BioMEMS,” Proc. SPIE 4979, 382–393 (2003).

Koh, K.-H.

M.-C. Oh, K.-J. Kim, J.-H. Lee, H.-X. Chen, and K.-H. Koh, “Polymeric waveguide biosensors with calixarene monolayer for detecting potassium ion concentration,” Appl. Phys. Lett. 89, 25114 (2006).

Lee, H.-J.

M.-C. Oh, M.-H. Lee, J.-H. Ahn, H.-J. Lee, and S. G. Han, “Polymeric wavelength filters with polymer gratings,” Appl. Phys. Lett. 72, 1559–1561 (1998).
[CrossRef]

Lee, J.-H.

M.-C. Oh, K.-J. Kim, J.-H. Lee, H.-X. Chen, and K.-H. Koh, “Polymeric waveguide biosensors with calixarene monolayer for detecting potassium ion concentration,” Appl. Phys. Lett. 89, 25114 (2006).

Lee, J.-S.

J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823–3825 (2003).
[CrossRef]

Lee, K.-D.

S.-W. Ahn, K.-D. Lee, D.-H. Kim, and S.-S. Lee, “Polymeric wavelength filter based on a Bragg grating using nanoimprint technique,” IEEE Photon. Technol. Lett. 17, 2122–2124 (2005).

Lee, M.-H.

M.-C. Oh, M.-H. Lee, J.-H. Ahn, H.-J. Lee, and S. G. Han, “Polymeric wavelength filters with polymer gratings,” Appl. Phys. Lett. 72, 1559–1561 (1998).
[CrossRef]

Lee, S.-S.

S.-W. Ahn, K.-D. Lee, D.-H. Kim, and S.-S. Lee, “Polymeric wavelength filter based on a Bragg grating using nanoimprint technique,” IEEE Photon. Technol. Lett. 17, 2122–2124 (2005).

Love, J. C.

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir 18, 5314–5320 (2002).
[CrossRef]

Luong, S. Q.

N. Mukherjee, B. J. Eapen, D. M. Keicher, S. Q. Luong, and A. Mukherjee, “Distributed Bragg reflection in integrated waveguides of polymethylmethacrylate,” Appl. Phys. Lett. 67, 3715–3717 (1995).
[CrossRef]

Marciniak, M.

S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, “Realization of integrated Bragg reflectors in DANS-polymer waveguides,” J. Lightwave Technol. 11, 1189–1195 (1993).
[CrossRef]

Meier, M.

J. A. Rogers, M. Meier, and A. Dodabalapur, “Using printing and molding techniques to produce distributed feedback and Bragg reflector resonators for plastic lasers,” Appl. Phys. Lett. 73, 1766–1768 (1998).
[CrossRef]

Mukherjee, A.

N. Mukherjee, B. J. Eapen, D. M. Keicher, S. Q. Luong, and A. Mukherjee, “Distributed Bragg reflection in integrated waveguides of polymethylmethacrylate,” Appl. Phys. Lett. 67, 3715–3717 (1995).
[CrossRef]

Mukherjee, N.

N. Mukherjee, B. J. Eapen, D. M. Keicher, S. Q. Luong, and A. Mukherjee, “Distributed Bragg reflection in integrated waveguides of polymethylmethacrylate,” Appl. Phys. Lett. 67, 3715–3717 (1995).
[CrossRef]

Nakamura, M.

A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. QE-13233–252 (1977).

Nishihara, H.

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, 1989).

Nordstrom, M.

Odom, T. W.

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir 18, 5314–5320 (2002).
[CrossRef]

Oh, M.-C.

M.-C. Oh, K.-J. Kim, J.-H. Lee, H.-X. Chen, and K.-H. Koh, “Polymeric waveguide biosensors with calixarene monolayer for detecting potassium ion concentration,” Appl. Phys. Lett. 89, 25114 (2006).

M.-C. Oh, M.-H. Lee, J.-H. Ahn, H.-J. Lee, and S. G. Han, “Polymeric wavelength filters with polymer gratings,” Appl. Phys. Lett. 72, 1559–1561 (1998).
[CrossRef]

Papet, P.

B. Beche, P. Papet, D. Debarnot, E. Gaviot, J. Zyss, and F. Poncin-Epaillard, “Fluorine plasma treatment on SU-8 polymer for integrated optics,” Opt. Commun. 246, 25–28 (2005).
[CrossRef]

Paul, K. E.

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir 18, 5314–5320 (2002).
[CrossRef]

Petermann, K.

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguide in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991).

Poncin-Epaillard, F.

B. Beche, P. Papet, D. Debarnot, E. Gaviot, J. Zyss, and F. Poncin-Epaillard, “Fluorine plasma treatment on SU-8 polymer for integrated optics,” Opt. Commun. 246, 25–28 (2005).
[CrossRef]

Pun, E. Y. B.

C. S. Huang, E. Y. B. Pun, and W. C. Wang, “SU-8 rib waveguide Bragg grating filter using composite stamp and solvent-assisted microcontact molding technique,” J. Micro/Nanolith. MEMS MOEMS 9, 023013 (2010).
[CrossRef]

T. C. Sum, A. A. Bettiol, J. A. Van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83, 1707–1709 (2003).
[CrossRef]

W. H. Wong, J. Zhou, and E. Y. B. Pun, “Polymeric waveguide wavelength filters using electron-beam direct writing,” Appl. Phys. Lett. 78, 2110–2112 (2001).
[CrossRef]

Pun, Y. B.

Rabarot, M.

M. Rabarot, J. Bablet, M. Ruty, M. Kipp, I. Chartier, and C. Dubarry, “Thick SU-8 photolithography for BioMEMS,” Proc. SPIE 4979, 382–393 (2003).

Rogers, J. A.

J. A. Rogers, M. Meier, and A. Dodabalapur, “Using printing and molding techniques to produce distributed feedback and Bragg reflector resonators for plastic lasers,” Appl. Phys. Lett. 73, 1766–1768 (1998).
[CrossRef]

Ruty, M.

M. Rabarot, J. Bablet, M. Ruty, M. Kipp, I. Chartier, and C. Dubarry, “Thick SU-8 photolithography for BioMEMS,” Proc. SPIE 4979, 382–393 (2003).

Schmidtchen, J.

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguide in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991).

Shacklette, L. W.

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).

Soref, R. A.

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguide in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991).

Stegeman, G. I.

S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, “Realization of integrated Bragg reflectors in DANS-polymer waveguides,” J. Lightwave Technol. 11, 1189–1195 (1993).
[CrossRef]

Suhara, T.

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, 1989).

Sum, T. C.

T. C. Sum, A. A. Bettiol, J. A. Van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83, 1707–1709 (2003).
[CrossRef]

Tung, K. K.

T. C. Sum, A. A. Bettiol, J. A. Van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83, 1707–1709 (2003).
[CrossRef]

Van Kan, J. A.

T. C. Sum, A. A. Bettiol, J. A. Van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83, 1707–1709 (2003).
[CrossRef]

Wang, W. C.

Watt, F.

T. C. Sum, A. A. Bettiol, J. A. Van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83, 1707–1709 (2003).
[CrossRef]

Whitesides, G.

E. Kim, Y. Xia, X.-M. Zhao, and G. Whitesides, “Solvent-assisted microcontact molding: a convenient method for fabricating three-dimensional structures on surfaces of polymers,” Adv. Mater. 9, 651–654 (1997).
[CrossRef]

Whitesides, G. M.

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir 18, 5314–5320 (2002).
[CrossRef]

Wolfe, D. B.

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir 18, 5314–5320 (2002).
[CrossRef]

Wong, W. H.

W. H. Wong, J. Zhou, and E. Y. B. Pun, “Polymeric waveguide wavelength filters using electron-beam direct writing,” Appl. Phys. Lett. 78, 2110–2112 (2001).
[CrossRef]

Xia, Y.

E. Kim, Y. Xia, X.-M. Zhao, and G. Whitesides, “Solvent-assisted microcontact molding: a convenient method for fabricating three-dimensional structures on surfaces of polymers,” Adv. Mater. 9, 651–654 (1997).
[CrossRef]

Yariv, A.

A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. QE-13233–252 (1977).

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. QE-9, 919–933 (1973).

Yoo, S.-J.

J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823–3825 (2003).
[CrossRef]

Zauner, D. A.

Zhao, X.-M.

E. Kim, Y. Xia, X.-M. Zhao, and G. Whitesides, “Solvent-assisted microcontact molding: a convenient method for fabricating three-dimensional structures on surfaces of polymers,” Adv. Mater. 9, 651–654 (1997).
[CrossRef]

Zhou, J.

W. H. Wong, J. Zhou, and E. Y. B. Pun, “Polymeric waveguide wavelength filters using electron-beam direct writing,” Appl. Phys. Lett. 78, 2110–2112 (2001).
[CrossRef]

Zyss, J.

B. Beche, P. Papet, D. Debarnot, E. Gaviot, J. Zyss, and F. Poncin-Epaillard, “Fluorine plasma treatment on SU-8 polymer for integrated optics,” Opt. Commun. 246, 25–28 (2005).
[CrossRef]

Adv. Mater. (1)

E. Kim, Y. Xia, X.-M. Zhao, and G. Whitesides, “Solvent-assisted microcontact molding: a convenient method for fabricating three-dimensional structures on surfaces of polymers,” Adv. Mater. 9, 651–654 (1997).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (7)

T. C. Sum, A. A. Bettiol, J. A. Van Kan, F. Watt, E. Y. B. Pun, and K. K. Tung, “Proton beam writing of low-loss polymer optical waveguides,” Appl. Phys. Lett. 83, 1707–1709 (2003).
[CrossRef]

J. A. Rogers, M. Meier, and A. Dodabalapur, “Using printing and molding techniques to produce distributed feedback and Bragg reflector resonators for plastic lasers,” Appl. Phys. Lett. 73, 1766–1768 (1998).
[CrossRef]

M.-C. Oh, M.-H. Lee, J.-H. Ahn, H.-J. Lee, and S. G. Han, “Polymeric wavelength filters with polymer gratings,” Appl. Phys. Lett. 72, 1559–1561 (1998).
[CrossRef]

N. Mukherjee, B. J. Eapen, D. M. Keicher, S. Q. Luong, and A. Mukherjee, “Distributed Bragg reflection in integrated waveguides of polymethylmethacrylate,” Appl. Phys. Lett. 67, 3715–3717 (1995).
[CrossRef]

J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823–3825 (2003).
[CrossRef]

M.-C. Oh, K.-J. Kim, J.-H. Lee, H.-X. Chen, and K.-H. Koh, “Polymeric waveguide biosensors with calixarene monolayer for detecting potassium ion concentration,” Appl. Phys. Lett. 89, 25114 (2006).

W. H. Wong, J. Zhou, and E. Y. B. Pun, “Polymeric waveguide wavelength filters using electron-beam direct writing,” Appl. Phys. Lett. 78, 2110–2112 (2001).
[CrossRef]

IEEE J. Quantum Electron. (3)

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguide in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991).

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. QE-9, 919–933 (1973).

A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. QE-13233–252 (1977).

IEEE J. Sel. Top. Quantum Electron. (1)

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).

IEEE Photon. Technol. Lett. (1)

S.-W. Ahn, K.-D. Lee, D.-H. Kim, and S.-S. Lee, “Polymeric wavelength filter based on a Bragg grating using nanoimprint technique,” IEEE Photon. Technol. Lett. 17, 2122–2124 (2005).

J. Lightwave Technol. (2)

S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, “Realization of integrated Bragg reflectors in DANS-polymer waveguides,” J. Lightwave Technol. 11, 1189–1195 (1993).
[CrossRef]

M. Nordstrom, D. A. Zauner, A. Boisen, and J. Hubner, “Single-mode waveguides with SU-8 polymer core and cladding for MOEMS applications,” J. Lightwave Technol. 25, 1284–1289 (2007).
[CrossRef]

J. Micormech. Microeng. (1)

R. Feng and R. J. Farris, “Influence of processing conditions on the thermal and mechanical properties of SU8 negative photoresist coatings,” J. Micormech. Microeng. 13, 80–88 (2003).
[CrossRef]

J. Micro/Nanolith. MEMS MOEMS (1)

C. S. Huang, E. Y. B. Pun, and W. C. Wang, “SU-8 rib waveguide Bragg grating filter using composite stamp and solvent-assisted microcontact molding technique,” J. Micro/Nanolith. MEMS MOEMS 9, 023013 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

J.-S. Kim, J.-W. Kang, and J.-J. Kim, “Simple and low cost fabrication of thermally stable polymeric multimode waveguides using a UV-curable epoxy,” Jpn. J. Appl. Phys. 42, 1277–1279 (2003).

Langmuir (1)

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir 18, 5314–5320 (2002).
[CrossRef]

Opt. Commun. (1)

B. Beche, P. Papet, D. Debarnot, E. Gaviot, J. Zyss, and F. Poncin-Epaillard, “Fluorine plasma treatment on SU-8 polymer for integrated optics,” Opt. Commun. 246, 25–28 (2005).
[CrossRef]

Proc. SPIE (1)

M. Rabarot, J. Bablet, M. Ruty, M. Kipp, I. Chartier, and C. Dubarry, “Thick SU-8 photolithography for BioMEMS,” Proc. SPIE 4979, 382–393 (2003).

Other (1)

H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Microscope image of the inverted-rib waveguide. (b) Cross section of the inverted-rib waveguide.

Fig. 2.
Fig. 2.

Sketch of a cross section of a SU8 rib waveguide.

Fig. 3.
Fig. 3.

(a) Numerical result shows that dimensions above curved surface will result in multimode propagation and in the single-mode propagation when the dimensions are chosen below the surface. (b) Maximum width allowed for given H and r .

Fig. 4.
Fig. 4.

Process flow for inverted-rib waveguide Bragg grating filter. (a) Etch mask is patterned by photolithography. (b) RIE is used to etch a waveguide trench. (c)  SiO 2 is sputtered on top of the Si. (d) Grating structure is fabricated using two-beam interference. (e) hPDMS and PDMS is spin-coated on the grating structure. (f) hPDMS/PDMS can be separated from grating once it cured. (g) SU8 is spin-coated on top of waveguide trench and prebaked. (h) SAMIM is used to transfer grating into SU8 and followed by UV exposure and post-exposure bake.

Fig. 5.
Fig. 5.

Setup of two-beam interference lithography.

Fig. 6.
Fig. 6.

(a) Inverted-rib waveguide with grating structure on top through SAMIM transferring. (b) Cross section of SU8 grating transferred through hPDMS stamp using SAMIM.

Fig. 7.
Fig. 7.

(a) Cross section of the model used in the simulation with dimensions and refractive indices. (b) Well-confined fundamental mode. (c) Grating output transmission spectrum. The grating period, depth, and length used in the simulation are 0.492, 0.1, and 3000 μm, respectively.

Fig. 8.
Fig. 8.

(a) Displayed guided mode profile from a 7 μm inverted-rib waveguide. (b) Output spectra from Bragg grating. Simulation shows λ Bragg = 1536 nm and experiment measures λ Bragg = 1550 nm .

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

H λ n f 2 n s 2 1 ,
0.5 r h H < 1 ,
a b = W H ( q + 4 π b 4 π b ) 1 + 0.3 ( q + 4 π b q + 4 π r b ) 2 1 ( q + 4 π b q + 4 π r b ) 2 1 ,
q = γ c n f 2 n c 2 + γ s n f 2 n s 2 ,
β m β n = 2 π / Λ .
λ B = 2 Λ N eff .
η o = tanh ( | κ | L ) .
κ = 2 π λ B sin ( q a π ) q π d h eff n f 2 N eff 2 N eff .
Λ = λ sin θ 1 + sin θ 2 .

Metrics