Abstract

In this study, we develop software that estimates radiative properties of painted surfaces in the mid-wavelength infrared (MWIR) region inversely from the measured temperature and radiance variations with time by applying the repulsive particle swarm optimization algorithm. In this study the radiance in the MWIR region and surface temperature are obtained from a commercial software considering winter weather, and these results are used to estimate radiative reflection properties. Surface radiative reflection properties for three different paints are estimated by using the predetermined radiance in the MWIR region and surface temperature. This finding suggests that the process for obtaining surface radiative properties proposed in this study could be a useful way to obtain infrared signatures from objects with various surface coatings of unknown radiative properties.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Choi, “Characteristics analysis of surface temperatures and IR Signatures from ground objects by computer modeling and field measurement,” Doctoral thesis (University of Chung-Ang, Korea, 2009).
  2. D. K. Kim, “Characteristic analysis of IR signal due to multiple reflection on object surface,” Master thesis (University of Chung-Ang, Korea, 2011).
  3. K. I. Han, “Study on the effect of exhaust plume gas on IR image characteristics of a naval ship,” Master thesis (University of Chung-Ang, Korea, 2012).
  4. A. W. Houlbrook, M. A. Gilmore, I. R. Moorhead, D. Filbee, C. Stroud, G. Hutchings, and A. Kirk, “Scene simulation for camouflage assessment,” Proc. SPIE 4029, 247–255 (2000).
  5. S. Newman, M. A. Gilmore, I. R. Moorhead, and D. R. Filbee, “Validation of the use of synthetic imagery for camouflage effectiveness assessment,” Proc. SPIE 4718, 35–45 (2002).
  6. A. R. Curran and J. S. Curlee, “Integrating CameoSim and MuSES to support vehicle-terrain interaction in an IR synthetic scene,” Proc. SPIE 6239, 62390E (2006).
  7. H. Y. Li, “A genetic algorithm for inverse radiation problems,” Int. J. Heat Mass Transfer. 40, 1545–1549 (1997).
  8. S. M. Hosseini Sarvari and S. H. Mansouri, “Inverse boundary design radiation problem in absorbing-emitting media with irregular geometry,” Numer. Heat Transfer A 43, 565–584 (2003).
  9. L. H. Liu and J. Jiang, “Inverse radiation problem for reconstruction of temperature profile in axisymmetric free flames,” J. Quant. Spectrosc. Radiat. Transfer 70, 207–215 (2001).
  10. H. M. Park and T. Y. Yoon, “Solution of the inverse radiation problem using a conjugate gradient method,” Int. J. Heat Mass Transfer 43, 1767–1776 (2000).
  11. K. H. Lee, S. W. Baek, and K. W. Kim, “Inverse radiation analysis using repulsive particle swarm optimization algorithm,” Int. J. Heat Mass Transfer 51, 2772–2783 (2008).
  12. C. Lautenberger, G. Rein, and C. Fernadez-Pello, “The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data,” Fire Saf. J. 41, 204–214 (2006).
  13. H.-C. Chang, W.-H. Park, K.-B. Yoon, T.-K. Kim, D.-H. Lee, and W.-S. Jung, “Inverse estimation of properties for charring material using a hybrid genetic algorithm,” J. Mech. Sci. Tech. 25, 1429–1437 (2011).
  14. H.-C. Chang, “Study on inverse property estimation for thermal pyrolysis and radiation by using the RPSO method,” Doctoral thesis (Chung-Ang University, Korea, 2011).
  15. H.-C. Chang, W.-H. Park, K.-B. Yoon, and T.-K. Kim, “Estimation of the properties for charring material using the RPSO algorithm,” J. Fluid Mach. 14, 34–41 (2011).
  16. S. I. Harkiss, “A study of bi-directional reflectance distribution functions and their effect on infrared signature models,” AFIT/GE/ENP/07-01 (2007).
  17. J. Jafolla, D. Thomas, and J. Hilgers, “A comparison of BRDF representations and their effect on signatures,” (Surface Optics Corporation, San Diego, 1998), CA92127.
  18. J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proceedings of the 1995 International Conference on Neural Networks (IEEE, 1995), Vol. 4, pp. 1942–1948.

2011 (2)

H.-C. Chang, W.-H. Park, K.-B. Yoon, T.-K. Kim, D.-H. Lee, and W.-S. Jung, “Inverse estimation of properties for charring material using a hybrid genetic algorithm,” J. Mech. Sci. Tech. 25, 1429–1437 (2011).

H.-C. Chang, W.-H. Park, K.-B. Yoon, and T.-K. Kim, “Estimation of the properties for charring material using the RPSO algorithm,” J. Fluid Mach. 14, 34–41 (2011).

2008 (1)

K. H. Lee, S. W. Baek, and K. W. Kim, “Inverse radiation analysis using repulsive particle swarm optimization algorithm,” Int. J. Heat Mass Transfer 51, 2772–2783 (2008).

2006 (2)

C. Lautenberger, G. Rein, and C. Fernadez-Pello, “The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data,” Fire Saf. J. 41, 204–214 (2006).

A. R. Curran and J. S. Curlee, “Integrating CameoSim and MuSES to support vehicle-terrain interaction in an IR synthetic scene,” Proc. SPIE 6239, 62390E (2006).

2003 (1)

S. M. Hosseini Sarvari and S. H. Mansouri, “Inverse boundary design radiation problem in absorbing-emitting media with irregular geometry,” Numer. Heat Transfer A 43, 565–584 (2003).

2002 (1)

S. Newman, M. A. Gilmore, I. R. Moorhead, and D. R. Filbee, “Validation of the use of synthetic imagery for camouflage effectiveness assessment,” Proc. SPIE 4718, 35–45 (2002).

2001 (1)

L. H. Liu and J. Jiang, “Inverse radiation problem for reconstruction of temperature profile in axisymmetric free flames,” J. Quant. Spectrosc. Radiat. Transfer 70, 207–215 (2001).

2000 (2)

H. M. Park and T. Y. Yoon, “Solution of the inverse radiation problem using a conjugate gradient method,” Int. J. Heat Mass Transfer 43, 1767–1776 (2000).

A. W. Houlbrook, M. A. Gilmore, I. R. Moorhead, D. Filbee, C. Stroud, G. Hutchings, and A. Kirk, “Scene simulation for camouflage assessment,” Proc. SPIE 4029, 247–255 (2000).

1997 (1)

H. Y. Li, “A genetic algorithm for inverse radiation problems,” Int. J. Heat Mass Transfer. 40, 1545–1549 (1997).

Baek, S. W.

K. H. Lee, S. W. Baek, and K. W. Kim, “Inverse radiation analysis using repulsive particle swarm optimization algorithm,” Int. J. Heat Mass Transfer 51, 2772–2783 (2008).

Chang, H.-C.

H.-C. Chang, W.-H. Park, K.-B. Yoon, and T.-K. Kim, “Estimation of the properties for charring material using the RPSO algorithm,” J. Fluid Mach. 14, 34–41 (2011).

H.-C. Chang, W.-H. Park, K.-B. Yoon, T.-K. Kim, D.-H. Lee, and W.-S. Jung, “Inverse estimation of properties for charring material using a hybrid genetic algorithm,” J. Mech. Sci. Tech. 25, 1429–1437 (2011).

H.-C. Chang, “Study on inverse property estimation for thermal pyrolysis and radiation by using the RPSO method,” Doctoral thesis (Chung-Ang University, Korea, 2011).

Choi, J. H.

J. H. Choi, “Characteristics analysis of surface temperatures and IR Signatures from ground objects by computer modeling and field measurement,” Doctoral thesis (University of Chung-Ang, Korea, 2009).

Curlee, J. S.

A. R. Curran and J. S. Curlee, “Integrating CameoSim and MuSES to support vehicle-terrain interaction in an IR synthetic scene,” Proc. SPIE 6239, 62390E (2006).

Curran, A. R.

A. R. Curran and J. S. Curlee, “Integrating CameoSim and MuSES to support vehicle-terrain interaction in an IR synthetic scene,” Proc. SPIE 6239, 62390E (2006).

Eberhart, R. C.

J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proceedings of the 1995 International Conference on Neural Networks (IEEE, 1995), Vol. 4, pp. 1942–1948.

Fernadez-Pello, C.

C. Lautenberger, G. Rein, and C. Fernadez-Pello, “The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data,” Fire Saf. J. 41, 204–214 (2006).

Filbee, D.

A. W. Houlbrook, M. A. Gilmore, I. R. Moorhead, D. Filbee, C. Stroud, G. Hutchings, and A. Kirk, “Scene simulation for camouflage assessment,” Proc. SPIE 4029, 247–255 (2000).

Filbee, D. R.

S. Newman, M. A. Gilmore, I. R. Moorhead, and D. R. Filbee, “Validation of the use of synthetic imagery for camouflage effectiveness assessment,” Proc. SPIE 4718, 35–45 (2002).

Gilmore, M. A.

S. Newman, M. A. Gilmore, I. R. Moorhead, and D. R. Filbee, “Validation of the use of synthetic imagery for camouflage effectiveness assessment,” Proc. SPIE 4718, 35–45 (2002).

A. W. Houlbrook, M. A. Gilmore, I. R. Moorhead, D. Filbee, C. Stroud, G. Hutchings, and A. Kirk, “Scene simulation for camouflage assessment,” Proc. SPIE 4029, 247–255 (2000).

Han, K. I.

K. I. Han, “Study on the effect of exhaust plume gas on IR image characteristics of a naval ship,” Master thesis (University of Chung-Ang, Korea, 2012).

Harkiss, S. I.

S. I. Harkiss, “A study of bi-directional reflectance distribution functions and their effect on infrared signature models,” AFIT/GE/ENP/07-01 (2007).

Hilgers, J.

J. Jafolla, D. Thomas, and J. Hilgers, “A comparison of BRDF representations and their effect on signatures,” (Surface Optics Corporation, San Diego, 1998), CA92127.

Hosseini Sarvari, S. M.

S. M. Hosseini Sarvari and S. H. Mansouri, “Inverse boundary design radiation problem in absorbing-emitting media with irregular geometry,” Numer. Heat Transfer A 43, 565–584 (2003).

Houlbrook, A. W.

A. W. Houlbrook, M. A. Gilmore, I. R. Moorhead, D. Filbee, C. Stroud, G. Hutchings, and A. Kirk, “Scene simulation for camouflage assessment,” Proc. SPIE 4029, 247–255 (2000).

Hutchings, G.

A. W. Houlbrook, M. A. Gilmore, I. R. Moorhead, D. Filbee, C. Stroud, G. Hutchings, and A. Kirk, “Scene simulation for camouflage assessment,” Proc. SPIE 4029, 247–255 (2000).

Jafolla, J.

J. Jafolla, D. Thomas, and J. Hilgers, “A comparison of BRDF representations and their effect on signatures,” (Surface Optics Corporation, San Diego, 1998), CA92127.

Jiang, J.

L. H. Liu and J. Jiang, “Inverse radiation problem for reconstruction of temperature profile in axisymmetric free flames,” J. Quant. Spectrosc. Radiat. Transfer 70, 207–215 (2001).

Jung, W.-S.

H.-C. Chang, W.-H. Park, K.-B. Yoon, T.-K. Kim, D.-H. Lee, and W.-S. Jung, “Inverse estimation of properties for charring material using a hybrid genetic algorithm,” J. Mech. Sci. Tech. 25, 1429–1437 (2011).

Kennedy, J.

J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proceedings of the 1995 International Conference on Neural Networks (IEEE, 1995), Vol. 4, pp. 1942–1948.

Kim, D. K.

D. K. Kim, “Characteristic analysis of IR signal due to multiple reflection on object surface,” Master thesis (University of Chung-Ang, Korea, 2011).

Kim, K. W.

K. H. Lee, S. W. Baek, and K. W. Kim, “Inverse radiation analysis using repulsive particle swarm optimization algorithm,” Int. J. Heat Mass Transfer 51, 2772–2783 (2008).

Kim, T.-K.

H.-C. Chang, W.-H. Park, K.-B. Yoon, and T.-K. Kim, “Estimation of the properties for charring material using the RPSO algorithm,” J. Fluid Mach. 14, 34–41 (2011).

H.-C. Chang, W.-H. Park, K.-B. Yoon, T.-K. Kim, D.-H. Lee, and W.-S. Jung, “Inverse estimation of properties for charring material using a hybrid genetic algorithm,” J. Mech. Sci. Tech. 25, 1429–1437 (2011).

Kirk, A.

A. W. Houlbrook, M. A. Gilmore, I. R. Moorhead, D. Filbee, C. Stroud, G. Hutchings, and A. Kirk, “Scene simulation for camouflage assessment,” Proc. SPIE 4029, 247–255 (2000).

Lautenberger, C.

C. Lautenberger, G. Rein, and C. Fernadez-Pello, “The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data,” Fire Saf. J. 41, 204–214 (2006).

Lee, D.-H.

H.-C. Chang, W.-H. Park, K.-B. Yoon, T.-K. Kim, D.-H. Lee, and W.-S. Jung, “Inverse estimation of properties for charring material using a hybrid genetic algorithm,” J. Mech. Sci. Tech. 25, 1429–1437 (2011).

Lee, K. H.

K. H. Lee, S. W. Baek, and K. W. Kim, “Inverse radiation analysis using repulsive particle swarm optimization algorithm,” Int. J. Heat Mass Transfer 51, 2772–2783 (2008).

Li, H. Y.

H. Y. Li, “A genetic algorithm for inverse radiation problems,” Int. J. Heat Mass Transfer. 40, 1545–1549 (1997).

Liu, L. H.

L. H. Liu and J. Jiang, “Inverse radiation problem for reconstruction of temperature profile in axisymmetric free flames,” J. Quant. Spectrosc. Radiat. Transfer 70, 207–215 (2001).

Mansouri, S. H.

S. M. Hosseini Sarvari and S. H. Mansouri, “Inverse boundary design radiation problem in absorbing-emitting media with irregular geometry,” Numer. Heat Transfer A 43, 565–584 (2003).

Moorhead, I. R.

S. Newman, M. A. Gilmore, I. R. Moorhead, and D. R. Filbee, “Validation of the use of synthetic imagery for camouflage effectiveness assessment,” Proc. SPIE 4718, 35–45 (2002).

A. W. Houlbrook, M. A. Gilmore, I. R. Moorhead, D. Filbee, C. Stroud, G. Hutchings, and A. Kirk, “Scene simulation for camouflage assessment,” Proc. SPIE 4029, 247–255 (2000).

Newman, S.

S. Newman, M. A. Gilmore, I. R. Moorhead, and D. R. Filbee, “Validation of the use of synthetic imagery for camouflage effectiveness assessment,” Proc. SPIE 4718, 35–45 (2002).

Park, H. M.

H. M. Park and T. Y. Yoon, “Solution of the inverse radiation problem using a conjugate gradient method,” Int. J. Heat Mass Transfer 43, 1767–1776 (2000).

Park, W.-H.

H.-C. Chang, W.-H. Park, K.-B. Yoon, T.-K. Kim, D.-H. Lee, and W.-S. Jung, “Inverse estimation of properties for charring material using a hybrid genetic algorithm,” J. Mech. Sci. Tech. 25, 1429–1437 (2011).

H.-C. Chang, W.-H. Park, K.-B. Yoon, and T.-K. Kim, “Estimation of the properties for charring material using the RPSO algorithm,” J. Fluid Mach. 14, 34–41 (2011).

Rein, G.

C. Lautenberger, G. Rein, and C. Fernadez-Pello, “The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data,” Fire Saf. J. 41, 204–214 (2006).

Stroud, C.

A. W. Houlbrook, M. A. Gilmore, I. R. Moorhead, D. Filbee, C. Stroud, G. Hutchings, and A. Kirk, “Scene simulation for camouflage assessment,” Proc. SPIE 4029, 247–255 (2000).

Thomas, D.

J. Jafolla, D. Thomas, and J. Hilgers, “A comparison of BRDF representations and their effect on signatures,” (Surface Optics Corporation, San Diego, 1998), CA92127.

Yoon, K.-B.

H.-C. Chang, W.-H. Park, K.-B. Yoon, and T.-K. Kim, “Estimation of the properties for charring material using the RPSO algorithm,” J. Fluid Mach. 14, 34–41 (2011).

H.-C. Chang, W.-H. Park, K.-B. Yoon, T.-K. Kim, D.-H. Lee, and W.-S. Jung, “Inverse estimation of properties for charring material using a hybrid genetic algorithm,” J. Mech. Sci. Tech. 25, 1429–1437 (2011).

Yoon, T. Y.

H. M. Park and T. Y. Yoon, “Solution of the inverse radiation problem using a conjugate gradient method,” Int. J. Heat Mass Transfer 43, 1767–1776 (2000).

Fire Saf. J. (1)

C. Lautenberger, G. Rein, and C. Fernadez-Pello, “The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data,” Fire Saf. J. 41, 204–214 (2006).

Int. J. Heat Mass Transfer (2)

H. M. Park and T. Y. Yoon, “Solution of the inverse radiation problem using a conjugate gradient method,” Int. J. Heat Mass Transfer 43, 1767–1776 (2000).

K. H. Lee, S. W. Baek, and K. W. Kim, “Inverse radiation analysis using repulsive particle swarm optimization algorithm,” Int. J. Heat Mass Transfer 51, 2772–2783 (2008).

Int. J. Heat Mass Transfer. (1)

H. Y. Li, “A genetic algorithm for inverse radiation problems,” Int. J. Heat Mass Transfer. 40, 1545–1549 (1997).

J. Fluid Mach. (1)

H.-C. Chang, W.-H. Park, K.-B. Yoon, and T.-K. Kim, “Estimation of the properties for charring material using the RPSO algorithm,” J. Fluid Mach. 14, 34–41 (2011).

J. Mech. Sci. Tech. (1)

H.-C. Chang, W.-H. Park, K.-B. Yoon, T.-K. Kim, D.-H. Lee, and W.-S. Jung, “Inverse estimation of properties for charring material using a hybrid genetic algorithm,” J. Mech. Sci. Tech. 25, 1429–1437 (2011).

J. Quant. Spectrosc. Radiat. Transfer (1)

L. H. Liu and J. Jiang, “Inverse radiation problem for reconstruction of temperature profile in axisymmetric free flames,” J. Quant. Spectrosc. Radiat. Transfer 70, 207–215 (2001).

Numer. Heat Transfer A (1)

S. M. Hosseini Sarvari and S. H. Mansouri, “Inverse boundary design radiation problem in absorbing-emitting media with irregular geometry,” Numer. Heat Transfer A 43, 565–584 (2003).

Proc. SPIE (3)

A. W. Houlbrook, M. A. Gilmore, I. R. Moorhead, D. Filbee, C. Stroud, G. Hutchings, and A. Kirk, “Scene simulation for camouflage assessment,” Proc. SPIE 4029, 247–255 (2000).

S. Newman, M. A. Gilmore, I. R. Moorhead, and D. R. Filbee, “Validation of the use of synthetic imagery for camouflage effectiveness assessment,” Proc. SPIE 4718, 35–45 (2002).

A. R. Curran and J. S. Curlee, “Integrating CameoSim and MuSES to support vehicle-terrain interaction in an IR synthetic scene,” Proc. SPIE 6239, 62390E (2006).

Other (7)

J. H. Choi, “Characteristics analysis of surface temperatures and IR Signatures from ground objects by computer modeling and field measurement,” Doctoral thesis (University of Chung-Ang, Korea, 2009).

D. K. Kim, “Characteristic analysis of IR signal due to multiple reflection on object surface,” Master thesis (University of Chung-Ang, Korea, 2011).

K. I. Han, “Study on the effect of exhaust plume gas on IR image characteristics of a naval ship,” Master thesis (University of Chung-Ang, Korea, 2012).

H.-C. Chang, “Study on inverse property estimation for thermal pyrolysis and radiation by using the RPSO method,” Doctoral thesis (Chung-Ang University, Korea, 2011).

S. I. Harkiss, “A study of bi-directional reflectance distribution functions and their effect on infrared signature models,” AFIT/GE/ENP/07-01 (2007).

J. Jafolla, D. Thomas, and J. Hilgers, “A comparison of BRDF representations and their effect on signatures,” (Surface Optics Corporation, San Diego, 1998), CA92127.

J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proceedings of the 1995 International Conference on Neural Networks (IEEE, 1995), Vol. 4, pp. 1942–1948.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Glint, referenced to the source, observation, and normal vectors.

Fig. 2.
Fig. 2.

Schematic of the simulation condition.

Fig. 3.
Fig. 3.

Sun and sensor locations considered.

Fig. 4.
Fig. 4.

Solar power distribution with time for clear sky condition.

Fig. 5.
Fig. 5.

Surface temperature modeled by using the commercial software (RadThermIR).

Fig. 6.
Fig. 6.

Total radiance modeled by using the commercial software (RadThermIR).

Fig. 7.
Fig. 7.

Comparison between the RadThermIR data and the recalculated surface temperature.

Fig. 8.
Fig. 8.

Comparison between the RadThermIR data and the recalculated total radiance in the MWIR region.

Tables (3)

Tables Icon

Table 1. Reference Property Considered [RadThermIR]

Tables Icon

Table 2. Estimated Properties by Using RPSO Algorithm and Relative Errors

Tables Icon

Table 3. Mean Errors of Total Radiance in MWIR Region and  Surface Temperature

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

Lsensor=Lself,emi+Lsol,dir,refl+Lsol,diff,refl.
Lself,emi=λ1λ2Iself,emi(λ,Ts)·ψ(λ)dλ,
Iself,emi(λ,Ts)=ε(λ)·Iλb(λ,Ts),
Iλb(λ,Ts)=C1πλ5(exp(C2/λTs)1),
Lrefl=Lsol,dir,refl+Lsol,diff,refl=λ1λ2fr(θi,ϕi,θr,ϕr,λ)Esun(λ)dλ,
fr=fd+fs,
fd=1πg(θr)g(θi)ρD(λ)G(b)2,
fs=14πρs(θi,λ)h(α)H(θi)cos(θr),
g(θr)=11+b2tan2(θr),
g(θi)=11+b2tan2(θi),
h(α)=1(e2cos2(α)+sin2(α))2,
G(b)=11b2[1b21b2log(1b2)],
H(θi)=12e2[(1e2)cos(θi)+2e2+(1e2)2cos2(θi)(1e2)2cos2(θi)+4e2],
ρs(θi,λ)=G(b)ρD(λ)ε(λ,θi),
vi+1=ωvi+αr1(x^ixi)+ωβr2(x^hixi)+ωγr3ς,
xi+1=xi+vi+1,
f=l=1N{(Lsensor,exp,lL¯sensor)2(Lsensor,exp,lLsensor,try,l)2}i=1Ni(Lsensor,exp,lL¯sensor)2,

Metrics