Abstract

An all-optical humidity sensor based on direct and exhaustive guided-mode attenuation in an in-house developed zinc oxide (ZnO) nanoparticle-immobilized bare solgel fiber is reported. The main objective of the present work is to enhance the sensitivity considerably while realizing a throughout linear response over a wide dynamic range. The developed sensor is characterized and performance characteristics of the sensor are compared with an optical fiber humidity sensor employing an evanescent wave absorption scheme in a straight and uniform probe, with ZnO nanoparticles-immobilized solgel film as humidity sensing cladding. Sensor response is observed to be linear over a wide dynamic range of 5%–95% relative humidity (RH). The observed linear sensitivity is 0.0103/% RH, which is 9 times higher than the sensor employing the evanescent wave absorption scheme. In addition, sensor response is observed to be very fast, highly reversible, and repeatable.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription