Abstract

An all-optical humidity sensor based on direct and exhaustive guided-mode attenuation in an in-house developed zinc oxide (ZnO) nanoparticle-immobilized bare solgel fiber is reported. The main objective of the present work is to enhance the sensitivity considerably while realizing a throughout linear response over a wide dynamic range. The developed sensor is characterized and performance characteristics of the sensor are compared with an optical fiber humidity sensor employing an evanescent wave absorption scheme in a straight and uniform probe, with ZnO nanoparticles-immobilized solgel film as humidity sensing cladding. Sensor response is observed to be linear over a wide dynamic range of 5%–95% relative humidity (RH). The observed linear sensitivity is 0.0103/% RH, which is 9 times higher than the sensor employing the evanescent wave absorption scheme. In addition, sensor response is observed to be very fast, highly reversible, and repeatable.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Aneesh and S. K. Khijwania, “Zinc oxide nanoparticle based optical fiber humidity sensor having linear response throughout a large dynamic range,” Appl. Opt. 50, 5310–5314 (2011).
    [CrossRef]
  2. J. M. Corres, I. R. Matias, M. Hernandez, J. Bravo, and F. J. Arregui, “Optical fiber humidity sensors using nanostructured coatings of SiO2 nanoparticles,” IEEE J. Sens. 8, 281–285 (2008).
    [CrossRef]
  3. D. S. Ballantine and H. Wohltjen, “Optical waveguide humidity detector,” Anal. Chem. 58, 2883–2885 (1986).
    [CrossRef]
  4. D. C. Bownass, J. S. Barton, and J. D. C. Jones, “Detection of high humidity by optical fiber sensing at telecommunications wavelengths,” Opt. Commun. 146, 90–94 (1998).
    [CrossRef]
  5. S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fiber sensor real-time humidity monitoring,” Meas. Sci. Technol. 14, 746–750 (2003).
    [CrossRef]
  6. A. A. Herrero, H. Guerrero, and D. Levy, “High-sensitivity sensor of low relative humidity based on overlay on side-polished fibers,” IEEE J. Sens. 4, 52–56 (2004).
    [CrossRef]
  7. S. K. Shukla, G. K. Parashar, A. P. Mishra, P. Misra, B. C. Yadav, R. K. Shukla, L. M. Bali, and G. C. Dubey, “Nano-like magnesium oxide films and its significance in optical fiber humidity sensor,” Sens. Actuators B 98, 5–11 (2004).
    [CrossRef]
  8. S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “Performance optimized optical fiber sensor for humidity measurement,” Opt. Eng. 44, 34401–34407 (2005).
    [CrossRef]
  9. L. Zhang, F. Gu, J. Lou, X. Yin, and L. Tong, “Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,” Opt. Express 16, 13349–13352 (2008).
    [CrossRef]
  10. A. Vijayan, M. Fuke, R. Hawaldar, M. Kulkarni, D. Amalnerkar, and R. C. Aiyar, “Optical fiber based humidity sensor using Co-polyaniline clad,” Sens. Actuators B 129, 106–112 (2008).
    [CrossRef]
  11. K. L. Sreenivasan, S. K. Khijwania, T. Philip, and J. P. Singh, “Humidity estimation using neural network and optical fiber sensor,” Microw. Opt. Technol. Lett. 51, 641–645 (2009).
    [CrossRef]
  12. J. Mathew, Y. Semenova, and G. Farrell, “A fiber bend based humidity sensor with a wide linear range and fast measurement speed,” Sens. Actuators A 174, 47–51 (2012).
    [CrossRef]
  13. T. Venugopalan, T. L. Yeo, T. Sun, and K. T. V. Grattan, “LPG-based PVA coated sensor for relative humidity measurement,” IEEE J. Sens. 8, 1093–1098 (2008).
    [CrossRef]
  14. Y. Liu, L. Wang, M. Zhang, D. Tu, X. Mao, and Y. Liao, “Long-period grating relative humidity sensor with hydrogel coating,” IEEE Photon. Technol. Lett. 19, 880–882 (2007).
    [CrossRef]
  15. K. M. Tan, C. M. Tay, S. C. Tjin, C. C. Chan, and H. Rahardjo, “High relative humidity measurements using gelatin coated long-period grating sensors,” Sens. Actuators B 110, 335–341 (2005).
    [CrossRef]
  16. T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterization of a polymer-coated fiber Bragg grating sensor for relative humidity sensing,” Sens. Actuators B 110, 148–156 (2005).
    [CrossRef]
  17. X. F. Huang, D. R. Sheng, K. F. Cen, and H. Zhou, “Low-cost relative humidity sensor based on thermoplastic polymide-coated fiber Bragg grating,” Sens. Actuators B 127, 518–524 (2007).
    [CrossRef]
  18. Q. Wu, Y. Semenova, J. Mathew, P. Wang, and G. Farrell, “Humidity sensor based on a single- mode hetero-core fiber structure,” Opt. Lett. 36, 1752–1754 (2011).
    [CrossRef]
  19. J. Mathew, Y. Semenova, and G. Farrell, “Effect of coating thickness on the sensitivity of a humidity sensor based on an agarose coated photonics crystal fiber interferometer,” Opt. Express 21, 6313–6320 (2013).
    [CrossRef]
  20. J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, “Humidity sensor based on photonics crystal fiber interferometer,” Electron. Lett. 46, 1341–1342 (2010).
    [CrossRef]
  21. S. Khijwania and B. D. Gupta, “Fiber optics evanescent field absorption sensor based on tapered probe: effect of fiber parameters on the response curve,” Proc. SPIE 3666, 578–584 (1999).
    [CrossRef]
  22. Q. Zhou, M. R. Shahriari, D. Kritz, and G. H. Sigel, “Porous fiber-optic sensor for high-sensitivity humidity measurement,” Anal. Chem. 60, 2317–2320 (1988).
    [CrossRef]
  23. S. Tao, C. B. Winstead, R. Jindal, and J. P. Singh, “Optical-fiber sensor using tailored porous solgel fiber core,” IEEE J. Sens. 4, 322–328 (2004).
    [CrossRef]
  24. J. Jaglarz, P. Karasinski, and E. Skoczek, “Optical properties of silica antireflective films formed in solgel processes,” Phys. Status Solidi C 8, 2645–2648 (2011).
    [CrossRef]
  25. C. J. Brinker, G. C. Frye, A. J. Hurd, and C. S. Ashley, “Fundamentals of solgel dip coatings,” Thin Solid Films 201, 97–108 (1991).
    [CrossRef]
  26. S. Otsuki, K. Adachi, and T. Taguchi, “A novel fiber optic gas-sensing configuration using extremely curved optical fibers and an attempt for optical humidity detection,” Sens. Actuators B 53, 91–96 (1998).
    [CrossRef]

2013 (1)

2012 (1)

J. Mathew, Y. Semenova, and G. Farrell, “A fiber bend based humidity sensor with a wide linear range and fast measurement speed,” Sens. Actuators A 174, 47–51 (2012).
[CrossRef]

2011 (3)

2010 (1)

J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, “Humidity sensor based on photonics crystal fiber interferometer,” Electron. Lett. 46, 1341–1342 (2010).
[CrossRef]

2009 (1)

K. L. Sreenivasan, S. K. Khijwania, T. Philip, and J. P. Singh, “Humidity estimation using neural network and optical fiber sensor,” Microw. Opt. Technol. Lett. 51, 641–645 (2009).
[CrossRef]

2008 (4)

T. Venugopalan, T. L. Yeo, T. Sun, and K. T. V. Grattan, “LPG-based PVA coated sensor for relative humidity measurement,” IEEE J. Sens. 8, 1093–1098 (2008).
[CrossRef]

J. M. Corres, I. R. Matias, M. Hernandez, J. Bravo, and F. J. Arregui, “Optical fiber humidity sensors using nanostructured coatings of SiO2 nanoparticles,” IEEE J. Sens. 8, 281–285 (2008).
[CrossRef]

L. Zhang, F. Gu, J. Lou, X. Yin, and L. Tong, “Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,” Opt. Express 16, 13349–13352 (2008).
[CrossRef]

A. Vijayan, M. Fuke, R. Hawaldar, M. Kulkarni, D. Amalnerkar, and R. C. Aiyar, “Optical fiber based humidity sensor using Co-polyaniline clad,” Sens. Actuators B 129, 106–112 (2008).
[CrossRef]

2007 (2)

Y. Liu, L. Wang, M. Zhang, D. Tu, X. Mao, and Y. Liao, “Long-period grating relative humidity sensor with hydrogel coating,” IEEE Photon. Technol. Lett. 19, 880–882 (2007).
[CrossRef]

X. F. Huang, D. R. Sheng, K. F. Cen, and H. Zhou, “Low-cost relative humidity sensor based on thermoplastic polymide-coated fiber Bragg grating,” Sens. Actuators B 127, 518–524 (2007).
[CrossRef]

2005 (3)

S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “Performance optimized optical fiber sensor for humidity measurement,” Opt. Eng. 44, 34401–34407 (2005).
[CrossRef]

K. M. Tan, C. M. Tay, S. C. Tjin, C. C. Chan, and H. Rahardjo, “High relative humidity measurements using gelatin coated long-period grating sensors,” Sens. Actuators B 110, 335–341 (2005).
[CrossRef]

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterization of a polymer-coated fiber Bragg grating sensor for relative humidity sensing,” Sens. Actuators B 110, 148–156 (2005).
[CrossRef]

2004 (3)

A. A. Herrero, H. Guerrero, and D. Levy, “High-sensitivity sensor of low relative humidity based on overlay on side-polished fibers,” IEEE J. Sens. 4, 52–56 (2004).
[CrossRef]

S. K. Shukla, G. K. Parashar, A. P. Mishra, P. Misra, B. C. Yadav, R. K. Shukla, L. M. Bali, and G. C. Dubey, “Nano-like magnesium oxide films and its significance in optical fiber humidity sensor,” Sens. Actuators B 98, 5–11 (2004).
[CrossRef]

S. Tao, C. B. Winstead, R. Jindal, and J. P. Singh, “Optical-fiber sensor using tailored porous solgel fiber core,” IEEE J. Sens. 4, 322–328 (2004).
[CrossRef]

2003 (1)

S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fiber sensor real-time humidity monitoring,” Meas. Sci. Technol. 14, 746–750 (2003).
[CrossRef]

1999 (1)

S. Khijwania and B. D. Gupta, “Fiber optics evanescent field absorption sensor based on tapered probe: effect of fiber parameters on the response curve,” Proc. SPIE 3666, 578–584 (1999).
[CrossRef]

1998 (2)

S. Otsuki, K. Adachi, and T. Taguchi, “A novel fiber optic gas-sensing configuration using extremely curved optical fibers and an attempt for optical humidity detection,” Sens. Actuators B 53, 91–96 (1998).
[CrossRef]

D. C. Bownass, J. S. Barton, and J. D. C. Jones, “Detection of high humidity by optical fiber sensing at telecommunications wavelengths,” Opt. Commun. 146, 90–94 (1998).
[CrossRef]

1991 (1)

C. J. Brinker, G. C. Frye, A. J. Hurd, and C. S. Ashley, “Fundamentals of solgel dip coatings,” Thin Solid Films 201, 97–108 (1991).
[CrossRef]

1988 (1)

Q. Zhou, M. R. Shahriari, D. Kritz, and G. H. Sigel, “Porous fiber-optic sensor for high-sensitivity humidity measurement,” Anal. Chem. 60, 2317–2320 (1988).
[CrossRef]

1986 (1)

D. S. Ballantine and H. Wohltjen, “Optical waveguide humidity detector,” Anal. Chem. 58, 2883–2885 (1986).
[CrossRef]

Adachi, K.

S. Otsuki, K. Adachi, and T. Taguchi, “A novel fiber optic gas-sensing configuration using extremely curved optical fibers and an attempt for optical humidity detection,” Sens. Actuators B 53, 91–96 (1998).
[CrossRef]

Aiyar, R. C.

A. Vijayan, M. Fuke, R. Hawaldar, M. Kulkarni, D. Amalnerkar, and R. C. Aiyar, “Optical fiber based humidity sensor using Co-polyaniline clad,” Sens. Actuators B 129, 106–112 (2008).
[CrossRef]

Amalnerkar, D.

A. Vijayan, M. Fuke, R. Hawaldar, M. Kulkarni, D. Amalnerkar, and R. C. Aiyar, “Optical fiber based humidity sensor using Co-polyaniline clad,” Sens. Actuators B 129, 106–112 (2008).
[CrossRef]

Amano, T.

S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fiber sensor real-time humidity monitoring,” Meas. Sci. Technol. 14, 746–750 (2003).
[CrossRef]

Aneesh, R.

Arregui, F. J.

J. M. Corres, I. R. Matias, M. Hernandez, J. Bravo, and F. J. Arregui, “Optical fiber humidity sensors using nanostructured coatings of SiO2 nanoparticles,” IEEE J. Sens. 8, 281–285 (2008).
[CrossRef]

Ashley, C. S.

C. J. Brinker, G. C. Frye, A. J. Hurd, and C. S. Ashley, “Fundamentals of solgel dip coatings,” Thin Solid Films 201, 97–108 (1991).
[CrossRef]

Bali, L. M.

S. K. Shukla, G. K. Parashar, A. P. Mishra, P. Misra, B. C. Yadav, R. K. Shukla, L. M. Bali, and G. C. Dubey, “Nano-like magnesium oxide films and its significance in optical fiber humidity sensor,” Sens. Actuators B 98, 5–11 (2004).
[CrossRef]

Ballantine, D. S.

D. S. Ballantine and H. Wohltjen, “Optical waveguide humidity detector,” Anal. Chem. 58, 2883–2885 (1986).
[CrossRef]

Barton, J. S.

D. C. Bownass, J. S. Barton, and J. D. C. Jones, “Detection of high humidity by optical fiber sensing at telecommunications wavelengths,” Opt. Commun. 146, 90–94 (1998).
[CrossRef]

Bownass, D. C.

D. C. Bownass, J. S. Barton, and J. D. C. Jones, “Detection of high humidity by optical fiber sensing at telecommunications wavelengths,” Opt. Commun. 146, 90–94 (1998).
[CrossRef]

Bravo, J.

J. M. Corres, I. R. Matias, M. Hernandez, J. Bravo, and F. J. Arregui, “Optical fiber humidity sensors using nanostructured coatings of SiO2 nanoparticles,” IEEE J. Sens. 8, 281–285 (2008).
[CrossRef]

Brinker, C. J.

C. J. Brinker, G. C. Frye, A. J. Hurd, and C. S. Ashley, “Fundamentals of solgel dip coatings,” Thin Solid Films 201, 97–108 (1991).
[CrossRef]

Cen, K. F.

X. F. Huang, D. R. Sheng, K. F. Cen, and H. Zhou, “Low-cost relative humidity sensor based on thermoplastic polymide-coated fiber Bragg grating,” Sens. Actuators B 127, 518–524 (2007).
[CrossRef]

Chan, C. C.

K. M. Tan, C. M. Tay, S. C. Tjin, C. C. Chan, and H. Rahardjo, “High relative humidity measurements using gelatin coated long-period grating sensors,” Sens. Actuators B 110, 335–341 (2005).
[CrossRef]

Corres, J. M.

J. M. Corres, I. R. Matias, M. Hernandez, J. Bravo, and F. J. Arregui, “Optical fiber humidity sensors using nanostructured coatings of SiO2 nanoparticles,” IEEE J. Sens. 8, 281–285 (2008).
[CrossRef]

Dubey, G. C.

S. K. Shukla, G. K. Parashar, A. P. Mishra, P. Misra, B. C. Yadav, R. K. Shukla, L. M. Bali, and G. C. Dubey, “Nano-like magnesium oxide films and its significance in optical fiber humidity sensor,” Sens. Actuators B 98, 5–11 (2004).
[CrossRef]

Farrell, G.

J. Mathew, Y. Semenova, and G. Farrell, “Effect of coating thickness on the sensitivity of a humidity sensor based on an agarose coated photonics crystal fiber interferometer,” Opt. Express 21, 6313–6320 (2013).
[CrossRef]

J. Mathew, Y. Semenova, and G. Farrell, “A fiber bend based humidity sensor with a wide linear range and fast measurement speed,” Sens. Actuators A 174, 47–51 (2012).
[CrossRef]

Q. Wu, Y. Semenova, J. Mathew, P. Wang, and G. Farrell, “Humidity sensor based on a single- mode hetero-core fiber structure,” Opt. Lett. 36, 1752–1754 (2011).
[CrossRef]

J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, “Humidity sensor based on photonics crystal fiber interferometer,” Electron. Lett. 46, 1341–1342 (2010).
[CrossRef]

Frye, G. C.

C. J. Brinker, G. C. Frye, A. J. Hurd, and C. S. Ashley, “Fundamentals of solgel dip coatings,” Thin Solid Films 201, 97–108 (1991).
[CrossRef]

Fuke, M.

A. Vijayan, M. Fuke, R. Hawaldar, M. Kulkarni, D. Amalnerkar, and R. C. Aiyar, “Optical fiber based humidity sensor using Co-polyaniline clad,” Sens. Actuators B 129, 106–112 (2008).
[CrossRef]

Grattan, K. T. V.

T. Venugopalan, T. L. Yeo, T. Sun, and K. T. V. Grattan, “LPG-based PVA coated sensor for relative humidity measurement,” IEEE J. Sens. 8, 1093–1098 (2008).
[CrossRef]

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterization of a polymer-coated fiber Bragg grating sensor for relative humidity sensing,” Sens. Actuators B 110, 148–156 (2005).
[CrossRef]

Gu, F.

Guerrero, H.

A. A. Herrero, H. Guerrero, and D. Levy, “High-sensitivity sensor of low relative humidity based on overlay on side-polished fibers,” IEEE J. Sens. 4, 52–56 (2004).
[CrossRef]

Gupta, B. D.

S. Khijwania and B. D. Gupta, “Fiber optics evanescent field absorption sensor based on tapered probe: effect of fiber parameters on the response curve,” Proc. SPIE 3666, 578–584 (1999).
[CrossRef]

Hawaldar, R.

A. Vijayan, M. Fuke, R. Hawaldar, M. Kulkarni, D. Amalnerkar, and R. C. Aiyar, “Optical fiber based humidity sensor using Co-polyaniline clad,” Sens. Actuators B 129, 106–112 (2008).
[CrossRef]

Hernandez, M.

J. M. Corres, I. R. Matias, M. Hernandez, J. Bravo, and F. J. Arregui, “Optical fiber humidity sensors using nanostructured coatings of SiO2 nanoparticles,” IEEE J. Sens. 8, 281–285 (2008).
[CrossRef]

Herrero, A. A.

A. A. Herrero, H. Guerrero, and D. Levy, “High-sensitivity sensor of low relative humidity based on overlay on side-polished fibers,” IEEE J. Sens. 4, 52–56 (2004).
[CrossRef]

Huang, X. F.

X. F. Huang, D. R. Sheng, K. F. Cen, and H. Zhou, “Low-cost relative humidity sensor based on thermoplastic polymide-coated fiber Bragg grating,” Sens. Actuators B 127, 518–524 (2007).
[CrossRef]

Hurd, A. J.

C. J. Brinker, G. C. Frye, A. J. Hurd, and C. S. Ashley, “Fundamentals of solgel dip coatings,” Thin Solid Films 201, 97–108 (1991).
[CrossRef]

Jaglarz, J.

J. Jaglarz, P. Karasinski, and E. Skoczek, “Optical properties of silica antireflective films formed in solgel processes,” Phys. Status Solidi C 8, 2645–2648 (2011).
[CrossRef]

Jindal, R.

S. Tao, C. B. Winstead, R. Jindal, and J. P. Singh, “Optical-fiber sensor using tailored porous solgel fiber core,” IEEE J. Sens. 4, 322–328 (2004).
[CrossRef]

Jones, J. D. C.

D. C. Bownass, J. S. Barton, and J. D. C. Jones, “Detection of high humidity by optical fiber sensing at telecommunications wavelengths,” Opt. Commun. 146, 90–94 (1998).
[CrossRef]

Karasinski, P.

J. Jaglarz, P. Karasinski, and E. Skoczek, “Optical properties of silica antireflective films formed in solgel processes,” Phys. Status Solidi C 8, 2645–2648 (2011).
[CrossRef]

Khijwania, S.

S. Khijwania and B. D. Gupta, “Fiber optics evanescent field absorption sensor based on tapered probe: effect of fiber parameters on the response curve,” Proc. SPIE 3666, 578–584 (1999).
[CrossRef]

Khijwania, S. K.

R. Aneesh and S. K. Khijwania, “Zinc oxide nanoparticle based optical fiber humidity sensor having linear response throughout a large dynamic range,” Appl. Opt. 50, 5310–5314 (2011).
[CrossRef]

K. L. Sreenivasan, S. K. Khijwania, T. Philip, and J. P. Singh, “Humidity estimation using neural network and optical fiber sensor,” Microw. Opt. Technol. Lett. 51, 641–645 (2009).
[CrossRef]

S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “Performance optimized optical fiber sensor for humidity measurement,” Opt. Eng. 44, 34401–34407 (2005).
[CrossRef]

Kritz, D.

Q. Zhou, M. R. Shahriari, D. Kritz, and G. H. Sigel, “Porous fiber-optic sensor for high-sensitivity humidity measurement,” Anal. Chem. 60, 2317–2320 (1988).
[CrossRef]

Kulkarni, M.

A. Vijayan, M. Fuke, R. Hawaldar, M. Kulkarni, D. Amalnerkar, and R. C. Aiyar, “Optical fiber based humidity sensor using Co-polyaniline clad,” Sens. Actuators B 129, 106–112 (2008).
[CrossRef]

Lade, R.

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterization of a polymer-coated fiber Bragg grating sensor for relative humidity sensing,” Sens. Actuators B 110, 148–156 (2005).
[CrossRef]

Levy, D.

A. A. Herrero, H. Guerrero, and D. Levy, “High-sensitivity sensor of low relative humidity based on overlay on side-polished fibers,” IEEE J. Sens. 4, 52–56 (2004).
[CrossRef]

Liao, Y.

Y. Liu, L. Wang, M. Zhang, D. Tu, X. Mao, and Y. Liao, “Long-period grating relative humidity sensor with hydrogel coating,” IEEE Photon. Technol. Lett. 19, 880–882 (2007).
[CrossRef]

Liu, Y.

Y. Liu, L. Wang, M. Zhang, D. Tu, X. Mao, and Y. Liao, “Long-period grating relative humidity sensor with hydrogel coating,” IEEE Photon. Technol. Lett. 19, 880–882 (2007).
[CrossRef]

Lou, J.

Mao, X.

Y. Liu, L. Wang, M. Zhang, D. Tu, X. Mao, and Y. Liao, “Long-period grating relative humidity sensor with hydrogel coating,” IEEE Photon. Technol. Lett. 19, 880–882 (2007).
[CrossRef]

Mathew, J.

J. Mathew, Y. Semenova, and G. Farrell, “Effect of coating thickness on the sensitivity of a humidity sensor based on an agarose coated photonics crystal fiber interferometer,” Opt. Express 21, 6313–6320 (2013).
[CrossRef]

J. Mathew, Y. Semenova, and G. Farrell, “A fiber bend based humidity sensor with a wide linear range and fast measurement speed,” Sens. Actuators A 174, 47–51 (2012).
[CrossRef]

Q. Wu, Y. Semenova, J. Mathew, P. Wang, and G. Farrell, “Humidity sensor based on a single- mode hetero-core fiber structure,” Opt. Lett. 36, 1752–1754 (2011).
[CrossRef]

J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, “Humidity sensor based on photonics crystal fiber interferometer,” Electron. Lett. 46, 1341–1342 (2010).
[CrossRef]

Matias, I. R.

J. M. Corres, I. R. Matias, M. Hernandez, J. Bravo, and F. J. Arregui, “Optical fiber humidity sensors using nanostructured coatings of SiO2 nanoparticles,” IEEE J. Sens. 8, 281–285 (2008).
[CrossRef]

Mishra, A. P.

S. K. Shukla, G. K. Parashar, A. P. Mishra, P. Misra, B. C. Yadav, R. K. Shukla, L. M. Bali, and G. C. Dubey, “Nano-like magnesium oxide films and its significance in optical fiber humidity sensor,” Sens. Actuators B 98, 5–11 (2004).
[CrossRef]

Misra, P.

S. K. Shukla, G. K. Parashar, A. P. Mishra, P. Misra, B. C. Yadav, R. K. Shukla, L. M. Bali, and G. C. Dubey, “Nano-like magnesium oxide films and its significance in optical fiber humidity sensor,” Sens. Actuators B 98, 5–11 (2004).
[CrossRef]

Morisawa, M.

S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fiber sensor real-time humidity monitoring,” Meas. Sci. Technol. 14, 746–750 (2003).
[CrossRef]

Muto, S.

S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fiber sensor real-time humidity monitoring,” Meas. Sci. Technol. 14, 746–750 (2003).
[CrossRef]

Otsuki, S.

S. Otsuki, K. Adachi, and T. Taguchi, “A novel fiber optic gas-sensing configuration using extremely curved optical fibers and an attempt for optical humidity detection,” Sens. Actuators B 53, 91–96 (1998).
[CrossRef]

Parashar, G. K.

S. K. Shukla, G. K. Parashar, A. P. Mishra, P. Misra, B. C. Yadav, R. K. Shukla, L. M. Bali, and G. C. Dubey, “Nano-like magnesium oxide films and its significance in optical fiber humidity sensor,” Sens. Actuators B 98, 5–11 (2004).
[CrossRef]

Parry, D.

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterization of a polymer-coated fiber Bragg grating sensor for relative humidity sensing,” Sens. Actuators B 110, 148–156 (2005).
[CrossRef]

Philip, T.

K. L. Sreenivasan, S. K. Khijwania, T. Philip, and J. P. Singh, “Humidity estimation using neural network and optical fiber sensor,” Microw. Opt. Technol. Lett. 51, 641–645 (2009).
[CrossRef]

Powell, B. D.

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterization of a polymer-coated fiber Bragg grating sensor for relative humidity sensing,” Sens. Actuators B 110, 148–156 (2005).
[CrossRef]

Rahardjo, H.

K. M. Tan, C. M. Tay, S. C. Tjin, C. C. Chan, and H. Rahardjo, “High relative humidity measurements using gelatin coated long-period grating sensors,” Sens. Actuators B 110, 335–341 (2005).
[CrossRef]

Rajan, G.

J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, “Humidity sensor based on photonics crystal fiber interferometer,” Electron. Lett. 46, 1341–1342 (2010).
[CrossRef]

Semenova, Y.

J. Mathew, Y. Semenova, and G. Farrell, “Effect of coating thickness on the sensitivity of a humidity sensor based on an agarose coated photonics crystal fiber interferometer,” Opt. Express 21, 6313–6320 (2013).
[CrossRef]

J. Mathew, Y. Semenova, and G. Farrell, “A fiber bend based humidity sensor with a wide linear range and fast measurement speed,” Sens. Actuators A 174, 47–51 (2012).
[CrossRef]

Q. Wu, Y. Semenova, J. Mathew, P. Wang, and G. Farrell, “Humidity sensor based on a single- mode hetero-core fiber structure,” Opt. Lett. 36, 1752–1754 (2011).
[CrossRef]

J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, “Humidity sensor based on photonics crystal fiber interferometer,” Electron. Lett. 46, 1341–1342 (2010).
[CrossRef]

Shahriari, M. R.

Q. Zhou, M. R. Shahriari, D. Kritz, and G. H. Sigel, “Porous fiber-optic sensor for high-sensitivity humidity measurement,” Anal. Chem. 60, 2317–2320 (1988).
[CrossRef]

Sheng, D. R.

X. F. Huang, D. R. Sheng, K. F. Cen, and H. Zhou, “Low-cost relative humidity sensor based on thermoplastic polymide-coated fiber Bragg grating,” Sens. Actuators B 127, 518–524 (2007).
[CrossRef]

Shukla, R. K.

S. K. Shukla, G. K. Parashar, A. P. Mishra, P. Misra, B. C. Yadav, R. K. Shukla, L. M. Bali, and G. C. Dubey, “Nano-like magnesium oxide films and its significance in optical fiber humidity sensor,” Sens. Actuators B 98, 5–11 (2004).
[CrossRef]

Shukla, S. K.

S. K. Shukla, G. K. Parashar, A. P. Mishra, P. Misra, B. C. Yadav, R. K. Shukla, L. M. Bali, and G. C. Dubey, “Nano-like magnesium oxide films and its significance in optical fiber humidity sensor,” Sens. Actuators B 98, 5–11 (2004).
[CrossRef]

Sigel, G. H.

Q. Zhou, M. R. Shahriari, D. Kritz, and G. H. Sigel, “Porous fiber-optic sensor for high-sensitivity humidity measurement,” Anal. Chem. 60, 2317–2320 (1988).
[CrossRef]

Singh, J. P.

K. L. Sreenivasan, S. K. Khijwania, T. Philip, and J. P. Singh, “Humidity estimation using neural network and optical fiber sensor,” Microw. Opt. Technol. Lett. 51, 641–645 (2009).
[CrossRef]

S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “Performance optimized optical fiber sensor for humidity measurement,” Opt. Eng. 44, 34401–34407 (2005).
[CrossRef]

S. Tao, C. B. Winstead, R. Jindal, and J. P. Singh, “Optical-fiber sensor using tailored porous solgel fiber core,” IEEE J. Sens. 4, 322–328 (2004).
[CrossRef]

Skoczek, E.

J. Jaglarz, P. Karasinski, and E. Skoczek, “Optical properties of silica antireflective films formed in solgel processes,” Phys. Status Solidi C 8, 2645–2648 (2011).
[CrossRef]

Sreenivasan, K. L.

K. L. Sreenivasan, S. K. Khijwania, T. Philip, and J. P. Singh, “Humidity estimation using neural network and optical fiber sensor,” Microw. Opt. Technol. Lett. 51, 641–645 (2009).
[CrossRef]

Srinivasan, K. L.

S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “Performance optimized optical fiber sensor for humidity measurement,” Opt. Eng. 44, 34401–34407 (2005).
[CrossRef]

Sun, T.

T. Venugopalan, T. L. Yeo, T. Sun, and K. T. V. Grattan, “LPG-based PVA coated sensor for relative humidity measurement,” IEEE J. Sens. 8, 1093–1098 (2008).
[CrossRef]

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterization of a polymer-coated fiber Bragg grating sensor for relative humidity sensing,” Sens. Actuators B 110, 148–156 (2005).
[CrossRef]

Suzuki, O.

S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fiber sensor real-time humidity monitoring,” Meas. Sci. Technol. 14, 746–750 (2003).
[CrossRef]

Taguchi, T.

S. Otsuki, K. Adachi, and T. Taguchi, “A novel fiber optic gas-sensing configuration using extremely curved optical fibers and an attempt for optical humidity detection,” Sens. Actuators B 53, 91–96 (1998).
[CrossRef]

Tan, K. M.

K. M. Tan, C. M. Tay, S. C. Tjin, C. C. Chan, and H. Rahardjo, “High relative humidity measurements using gelatin coated long-period grating sensors,” Sens. Actuators B 110, 335–341 (2005).
[CrossRef]

Tao, S.

S. Tao, C. B. Winstead, R. Jindal, and J. P. Singh, “Optical-fiber sensor using tailored porous solgel fiber core,” IEEE J. Sens. 4, 322–328 (2004).
[CrossRef]

Tay, C. M.

K. M. Tan, C. M. Tay, S. C. Tjin, C. C. Chan, and H. Rahardjo, “High relative humidity measurements using gelatin coated long-period grating sensors,” Sens. Actuators B 110, 335–341 (2005).
[CrossRef]

Tjin, S. C.

K. M. Tan, C. M. Tay, S. C. Tjin, C. C. Chan, and H. Rahardjo, “High relative humidity measurements using gelatin coated long-period grating sensors,” Sens. Actuators B 110, 335–341 (2005).
[CrossRef]

Tong, L.

Tu, D.

Y. Liu, L. Wang, M. Zhang, D. Tu, X. Mao, and Y. Liao, “Long-period grating relative humidity sensor with hydrogel coating,” IEEE Photon. Technol. Lett. 19, 880–882 (2007).
[CrossRef]

Venugopalan, T.

T. Venugopalan, T. L. Yeo, T. Sun, and K. T. V. Grattan, “LPG-based PVA coated sensor for relative humidity measurement,” IEEE J. Sens. 8, 1093–1098 (2008).
[CrossRef]

Vijayan, A.

A. Vijayan, M. Fuke, R. Hawaldar, M. Kulkarni, D. Amalnerkar, and R. C. Aiyar, “Optical fiber based humidity sensor using Co-polyaniline clad,” Sens. Actuators B 129, 106–112 (2008).
[CrossRef]

Wang, L.

Y. Liu, L. Wang, M. Zhang, D. Tu, X. Mao, and Y. Liao, “Long-period grating relative humidity sensor with hydrogel coating,” IEEE Photon. Technol. Lett. 19, 880–882 (2007).
[CrossRef]

Wang, P.

Winstead, C. B.

S. Tao, C. B. Winstead, R. Jindal, and J. P. Singh, “Optical-fiber sensor using tailored porous solgel fiber core,” IEEE J. Sens. 4, 322–328 (2004).
[CrossRef]

Wohltjen, H.

D. S. Ballantine and H. Wohltjen, “Optical waveguide humidity detector,” Anal. Chem. 58, 2883–2885 (1986).
[CrossRef]

Wu, Q.

Yadav, B. C.

S. K. Shukla, G. K. Parashar, A. P. Mishra, P. Misra, B. C. Yadav, R. K. Shukla, L. M. Bali, and G. C. Dubey, “Nano-like magnesium oxide films and its significance in optical fiber humidity sensor,” Sens. Actuators B 98, 5–11 (2004).
[CrossRef]

Yeo, T. L.

T. Venugopalan, T. L. Yeo, T. Sun, and K. T. V. Grattan, “LPG-based PVA coated sensor for relative humidity measurement,” IEEE J. Sens. 8, 1093–1098 (2008).
[CrossRef]

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterization of a polymer-coated fiber Bragg grating sensor for relative humidity sensing,” Sens. Actuators B 110, 148–156 (2005).
[CrossRef]

Yin, X.

Zhang, L.

Zhang, M.

Y. Liu, L. Wang, M. Zhang, D. Tu, X. Mao, and Y. Liao, “Long-period grating relative humidity sensor with hydrogel coating,” IEEE Photon. Technol. Lett. 19, 880–882 (2007).
[CrossRef]

Zhou, H.

X. F. Huang, D. R. Sheng, K. F. Cen, and H. Zhou, “Low-cost relative humidity sensor based on thermoplastic polymide-coated fiber Bragg grating,” Sens. Actuators B 127, 518–524 (2007).
[CrossRef]

Zhou, Q.

Q. Zhou, M. R. Shahriari, D. Kritz, and G. H. Sigel, “Porous fiber-optic sensor for high-sensitivity humidity measurement,” Anal. Chem. 60, 2317–2320 (1988).
[CrossRef]

Anal. Chem. (2)

D. S. Ballantine and H. Wohltjen, “Optical waveguide humidity detector,” Anal. Chem. 58, 2883–2885 (1986).
[CrossRef]

Q. Zhou, M. R. Shahriari, D. Kritz, and G. H. Sigel, “Porous fiber-optic sensor for high-sensitivity humidity measurement,” Anal. Chem. 60, 2317–2320 (1988).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (1)

J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, “Humidity sensor based on photonics crystal fiber interferometer,” Electron. Lett. 46, 1341–1342 (2010).
[CrossRef]

IEEE J. Sens. (4)

S. Tao, C. B. Winstead, R. Jindal, and J. P. Singh, “Optical-fiber sensor using tailored porous solgel fiber core,” IEEE J. Sens. 4, 322–328 (2004).
[CrossRef]

J. M. Corres, I. R. Matias, M. Hernandez, J. Bravo, and F. J. Arregui, “Optical fiber humidity sensors using nanostructured coatings of SiO2 nanoparticles,” IEEE J. Sens. 8, 281–285 (2008).
[CrossRef]

A. A. Herrero, H. Guerrero, and D. Levy, “High-sensitivity sensor of low relative humidity based on overlay on side-polished fibers,” IEEE J. Sens. 4, 52–56 (2004).
[CrossRef]

T. Venugopalan, T. L. Yeo, T. Sun, and K. T. V. Grattan, “LPG-based PVA coated sensor for relative humidity measurement,” IEEE J. Sens. 8, 1093–1098 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Liu, L. Wang, M. Zhang, D. Tu, X. Mao, and Y. Liao, “Long-period grating relative humidity sensor with hydrogel coating,” IEEE Photon. Technol. Lett. 19, 880–882 (2007).
[CrossRef]

Meas. Sci. Technol. (1)

S. Muto, O. Suzuki, T. Amano, and M. Morisawa, “A plastic optical fiber sensor real-time humidity monitoring,” Meas. Sci. Technol. 14, 746–750 (2003).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

K. L. Sreenivasan, S. K. Khijwania, T. Philip, and J. P. Singh, “Humidity estimation using neural network and optical fiber sensor,” Microw. Opt. Technol. Lett. 51, 641–645 (2009).
[CrossRef]

Opt. Commun. (1)

D. C. Bownass, J. S. Barton, and J. D. C. Jones, “Detection of high humidity by optical fiber sensing at telecommunications wavelengths,” Opt. Commun. 146, 90–94 (1998).
[CrossRef]

Opt. Eng. (1)

S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “Performance optimized optical fiber sensor for humidity measurement,” Opt. Eng. 44, 34401–34407 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Status Solidi C (1)

J. Jaglarz, P. Karasinski, and E. Skoczek, “Optical properties of silica antireflective films formed in solgel processes,” Phys. Status Solidi C 8, 2645–2648 (2011).
[CrossRef]

Proc. SPIE (1)

S. Khijwania and B. D. Gupta, “Fiber optics evanescent field absorption sensor based on tapered probe: effect of fiber parameters on the response curve,” Proc. SPIE 3666, 578–584 (1999).
[CrossRef]

Sens. Actuators A (1)

J. Mathew, Y. Semenova, and G. Farrell, “A fiber bend based humidity sensor with a wide linear range and fast measurement speed,” Sens. Actuators A 174, 47–51 (2012).
[CrossRef]

Sens. Actuators B (6)

K. M. Tan, C. M. Tay, S. C. Tjin, C. C. Chan, and H. Rahardjo, “High relative humidity measurements using gelatin coated long-period grating sensors,” Sens. Actuators B 110, 335–341 (2005).
[CrossRef]

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterization of a polymer-coated fiber Bragg grating sensor for relative humidity sensing,” Sens. Actuators B 110, 148–156 (2005).
[CrossRef]

X. F. Huang, D. R. Sheng, K. F. Cen, and H. Zhou, “Low-cost relative humidity sensor based on thermoplastic polymide-coated fiber Bragg grating,” Sens. Actuators B 127, 518–524 (2007).
[CrossRef]

A. Vijayan, M. Fuke, R. Hawaldar, M. Kulkarni, D. Amalnerkar, and R. C. Aiyar, “Optical fiber based humidity sensor using Co-polyaniline clad,” Sens. Actuators B 129, 106–112 (2008).
[CrossRef]

S. K. Shukla, G. K. Parashar, A. P. Mishra, P. Misra, B. C. Yadav, R. K. Shukla, L. M. Bali, and G. C. Dubey, “Nano-like magnesium oxide films and its significance in optical fiber humidity sensor,” Sens. Actuators B 98, 5–11 (2004).
[CrossRef]

S. Otsuki, K. Adachi, and T. Taguchi, “A novel fiber optic gas-sensing configuration using extremely curved optical fibers and an attempt for optical humidity detection,” Sens. Actuators B 53, 91–96 (1998).
[CrossRef]

Thin Solid Films (1)

C. J. Brinker, G. C. Frye, A. J. Hurd, and C. S. Ashley, “Fundamentals of solgel dip coatings,” Thin Solid Films 201, 97–108 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) FE-SEM image of ZnO nanoparticle-immobilized microstructured solgel silica fiber core. (b) FE-SEM pattern of surface morphology of ZnO nanoparticle-immobilized microstructured solgel silica fiber core.

Fig. 2.
Fig. 2.

Schematic diagram of alignment of ZnO nanoparticle-immobilized microstructured solgel silica fiber core sensor between two plastic-clad silica-core (PCS) multimode fibers.

Fig. 3.
Fig. 3.

Schematic diagram of experimental setup for sensor characterization.

Fig. 4.
Fig. 4.

Time variation of commercial humidity sensor and fiber humidity sensor.

Fig. 5.
Fig. 5.

Experimentally observed response for the developed reagent-immobilized microstructured solgel bare fiber RH sensor.

Fig. 6.
Fig. 6.

Time response of nanoparticle-immobilized solgel bare fiber humidity sensor for cyclic humidity perturbations.

Metrics