Abstract

Gas-filled hollow optical fiber references based on the P(13) transition of the ν1+ν3 band of C122H2 promise portability with moderate accuracy and stability. Previous realizations are corrected (<1σ) by using proper modeling of a shift due to line-shape. To improve portability, a sealed photonic microcell is characterized on the C122H2 ν1+ν3 P(23) transition with somewhat reduced accuracy and stability. Effects of the photonic crystal fiber, including surface modes, are explored. Both polarization-maintaining (PM) and non-PM 7-cell photonic bandgap fiber are shown to be unsuitable for kilohertz-level frequency references.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Czajkowski, A. A. Madej, and P. Dubé, “Development and study of a 1.5 μm optical frequency standard referenced to the P(16) saturated absorption line in the (ν1+ν3) overtone band of C132H2,” Opt. Commun. 234, 259–268 (2004).
    [CrossRef]
  2. H. S. Moon, W. K. Lee, and H. S. Suh, “Absolute-frequency measurement of an acetylene-stabilized laser locked to the P(16) transition of C132H2 using an optical-frequency comb,” IEEE Trans. Instrum. Meas. 56, 509–512 (2007).
    [CrossRef]
  3. P. Balling, M. Fischer, P. Kubina, and R. Holzwarth, “Absolute frequency measurement of wavelength standard at 1542 nm: acetylene stabilized DFB laser,” Opt. Express 13, 9196–9201 (2005).
    [CrossRef]
  4. M. de Labachelerie, K. Nakagawa, and M. Ohtsu, “Ultranarrow C132H2 saturated-absorption lines at 1.5 μm,” Opt. Lett. 19, 840–842 (1994).
    [CrossRef]
  5. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
    [CrossRef]
  6. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers.” Nature 434, 488–491 (2005).
    [CrossRef]
  7. F. Couny, P. S. Light, F. Benabid, and P. St. J. Russell, “Electromagnetically induced transparency and saturable absorption in all-fiber devices based on C122H2-filled hollow-core photonic crystal fiber,” Opt. Commun. 263, 28–31 (2006).
    [CrossRef]
  8. K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. V. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on C122H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16026 (2009).
    [CrossRef]
  9. V. Ahtee, M. Merimaa, and K. Nyholm, “Fiber-based acetylene-stabilized laser,” IEEE Trans. Instrum. Meas. 58, 1211–1216 (2009).
    [CrossRef]
  10. A. Lurie, C. R. Locke, C. Perrella, P. S. Light, F. Benabid, and A. N. Luiten, “Towards a compact optical fibre clock,” in 2010 Conference on Precision Electromagnetic Measurements (CPEM) (IEEE, 2010), pp. 16–17.
  11. A. M. Cubillas, J. Hald, and J. C. Petersen, “High resolution spectroscopy of ammonia in a hollow-core fiber,” Opt. Express 16, 3976–3985 (2008).
    [CrossRef]
  12. G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
    [CrossRef]
  13. C. S. Edwards, G. P. Barwood, H. S. Margolisa, P. Gill, and W. R. C. Rowley, “High-precision frequency measurements of the ν1+ν3 combination band of C122H2 in the 1.5 μm region,” J. Mol. Spectrosc. 234, 143–148 (2005).
    [CrossRef]
  14. A. A. Madej, A. J. Alcock, A. Czajkowski, J. E. Bernard, and S. Chepurov, “Accurate absolute reference frequencies from 1511 to 1545 nm of the ν1+ν3 band of C122H2 determined with laser frequency comb interval measurements,” J. Opt. Soc. Am. B 23, 2200–2208 (2006).
    [CrossRef]
  15. F. Benabid, P. S. Light, and F. Couny, “Low insertion-loss (1.8 dB) and vacuum-pressure all-fiber gas cell based on hollow-core PCF,” in CLEO/Europe and IQEC 2007 Conference Digest, (Optical Society of America, 2007), paper 4386406.
  16. N. V. Wheeler, M. D. W. Grogan, P. S. Light, F. Couny, T. A. Birks, and F. Benabid, “Large-core acetylene-filled photonic microcells made by tapering a hollow-core photonic crystal fiber,” Opt. Lett. 35, 1875–1877 (2010).
    [CrossRef]
  17. F. Couny, F. Benabid, and P. S. Light, “Reduction of Fresnel back-reflection at splice interface between hollow core PCF and single-mode fiber,” IEEE Photon. Technol. Lett. 19, 1020–1022 (2007).
    [CrossRef]
  18. J. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
    [CrossRef]
  19. J. Lim, K. Knabe, K. A. Tillman, W. Neely, Y. Wang, R. Amezcua-Correa, F. Couny, P. S. Light, F. Benabid, J. C. Knight, K. L. Corwin, J. W. Nicholson, and B. R. Washburn, “A phase-stabilized carbon nanotube fiber laser frequency comb,” Opt. Express 17, 14115–14120 (2009).
    [CrossRef]
  20. J. E. Gray and D. W. Allan, “A method for estimating the frequency stability of an individual oscillator,” presented at 28th Annual Symposium on Frequency Control (1974).
  21. C. Wang, N. V. Wheeler, C. F. Dutin, M. Grogan, T. D. Bradley, B. R. Washburn, F. Benabid, and K. L. Corwin, “Accurate fiber-based acetylene frequency references,” in Conference on Lasers and Electro-Optics 2012 (Optical Society of America, 2012), paper CF2C.7.
  22. J. Hald, L. Nielsen, J. C. Petersen, P. Varming, and J. E. Pedersen, “Fiber laser optical frequency standard at 1.54 μm,” Opt. Express 19, 2052–2063 (2011).
    [CrossRef]
  23. W. Demtroder, Laser Spectroscopy: Basic Concepts and Instrumentation, Vol. 5 of Springer Series in Chemical Physics (Springer-Verlag, 1981).
  24. J. West, C. Smith, N. Borrelli, D. Allan, and K. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12, 1485–1496 (2004).
    [CrossRef]
  25. R. Thapa, K. Knabe, M. Faheem, A. Naweed, O. L. Weaver, and K. L. Corwin, “Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber,” Opt. Lett. 31, 2489–2491 (2006).
    [CrossRef]
  26. J. Henningsen, J. Hald, and J. C. Peterson, “Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers,” Opt. Express 13, 10475–10482 (2005).
    [CrossRef]
  27. C. Wang, N. V. Wheeler, J. Lim, K. Knabe, M. Grogan, Y. Y. Wang, B. R. Washburn, F. Benabid, and K. L. Corwin, “Portable acetylene frequency references inside sealed hollow-core kagome photonic crystal fiber,” in CLEO:2011—Laser Applications to Photonic Applications (Optical Society of America, 2011), paper CFC1.
  28. W. C. Swann and S. L. Gilbert, “Pressure-induced shift and broadening of 1510–1540 nm acetylene wavelength calibration lines,” J. Opt. Soc. Am. B 17, 1263–1270 (2000).
    [CrossRef]

2011

2010

2009

2008

2007

H. S. Moon, W. K. Lee, and H. S. Suh, “Absolute-frequency measurement of an acetylene-stabilized laser locked to the P(16) transition of C132H2 using an optical-frequency comb,” IEEE Trans. Instrum. Meas. 56, 509–512 (2007).
[CrossRef]

F. Couny, F. Benabid, and P. S. Light, “Reduction of Fresnel back-reflection at splice interface between hollow core PCF and single-mode fiber,” IEEE Photon. Technol. Lett. 19, 1020–1022 (2007).
[CrossRef]

2006

2005

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers.” Nature 434, 488–491 (2005).
[CrossRef]

C. S. Edwards, G. P. Barwood, H. S. Margolisa, P. Gill, and W. R. C. Rowley, “High-precision frequency measurements of the ν1+ν3 combination band of C122H2 in the 1.5 μm region,” J. Mol. Spectrosc. 234, 143–148 (2005).
[CrossRef]

P. Balling, M. Fischer, P. Kubina, and R. Holzwarth, “Absolute frequency measurement of wavelength standard at 1542 nm: acetylene stabilized DFB laser,” Opt. Express 13, 9196–9201 (2005).
[CrossRef]

J. Henningsen, J. Hald, and J. C. Peterson, “Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers,” Opt. Express 13, 10475–10482 (2005).
[CrossRef]

2004

A. Czajkowski, A. A. Madej, and P. Dubé, “Development and study of a 1.5 μm optical frequency standard referenced to the P(16) saturated absorption line in the (ν1+ν3) overtone band of C132H2,” Opt. Commun. 234, 259–268 (2004).
[CrossRef]

J. West, C. Smith, N. Borrelli, D. Allan, and K. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12, 1485–1496 (2004).
[CrossRef]

2002

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[CrossRef]

2000

1994

1983

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

1981

J. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

Ahtee, V.

V. Ahtee, M. Merimaa, and K. Nyholm, “Fiber-based acetylene-stabilized laser,” IEEE Trans. Instrum. Meas. 58, 1211–1216 (2009).
[CrossRef]

Alcock, A. J.

Allan, D.

Allan, D. W.

J. E. Gray and D. W. Allan, “A method for estimating the frequency stability of an individual oscillator,” presented at 28th Annual Symposium on Frequency Control (1974).

Amezcua-Correa, R.

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[CrossRef]

Baer, T.

J. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

Balling, P.

Barwood, G. P.

C. S. Edwards, G. P. Barwood, H. S. Margolisa, P. Gill, and W. R. C. Rowley, “High-precision frequency measurements of the ν1+ν3 combination band of C122H2 in the 1.5 μm region,” J. Mol. Spectrosc. 234, 143–148 (2005).
[CrossRef]

Benabid, F.

N. V. Wheeler, M. D. W. Grogan, P. S. Light, F. Couny, T. A. Birks, and F. Benabid, “Large-core acetylene-filled photonic microcells made by tapering a hollow-core photonic crystal fiber,” Opt. Lett. 35, 1875–1877 (2010).
[CrossRef]

J. Lim, K. Knabe, K. A. Tillman, W. Neely, Y. Wang, R. Amezcua-Correa, F. Couny, P. S. Light, F. Benabid, J. C. Knight, K. L. Corwin, J. W. Nicholson, and B. R. Washburn, “A phase-stabilized carbon nanotube fiber laser frequency comb,” Opt. Express 17, 14115–14120 (2009).
[CrossRef]

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. V. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on C122H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16026 (2009).
[CrossRef]

F. Couny, F. Benabid, and P. S. Light, “Reduction of Fresnel back-reflection at splice interface between hollow core PCF and single-mode fiber,” IEEE Photon. Technol. Lett. 19, 1020–1022 (2007).
[CrossRef]

F. Couny, P. S. Light, F. Benabid, and P. St. J. Russell, “Electromagnetically induced transparency and saturable absorption in all-fiber devices based on C122H2-filled hollow-core photonic crystal fiber,” Opt. Commun. 263, 28–31 (2006).
[CrossRef]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers.” Nature 434, 488–491 (2005).
[CrossRef]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[CrossRef]

A. Lurie, C. R. Locke, C. Perrella, P. S. Light, F. Benabid, and A. N. Luiten, “Towards a compact optical fibre clock,” in 2010 Conference on Precision Electromagnetic Measurements (CPEM) (IEEE, 2010), pp. 16–17.

C. Wang, N. V. Wheeler, J. Lim, K. Knabe, M. Grogan, Y. Y. Wang, B. R. Washburn, F. Benabid, and K. L. Corwin, “Portable acetylene frequency references inside sealed hollow-core kagome photonic crystal fiber,” in CLEO:2011—Laser Applications to Photonic Applications (Optical Society of America, 2011), paper CFC1.

C. Wang, N. V. Wheeler, C. F. Dutin, M. Grogan, T. D. Bradley, B. R. Washburn, F. Benabid, and K. L. Corwin, “Accurate fiber-based acetylene frequency references,” in Conference on Lasers and Electro-Optics 2012 (Optical Society of America, 2012), paper CF2C.7.

F. Benabid, P. S. Light, and F. Couny, “Low insertion-loss (1.8 dB) and vacuum-pressure all-fiber gas cell based on hollow-core PCF,” in CLEO/Europe and IQEC 2007 Conference Digest, (Optical Society of America, 2007), paper 4386406.

Bernard, J. E.

Birks, T. A.

N. V. Wheeler, M. D. W. Grogan, P. S. Light, F. Couny, T. A. Birks, and F. Benabid, “Large-core acetylene-filled photonic microcells made by tapering a hollow-core photonic crystal fiber,” Opt. Lett. 35, 1875–1877 (2010).
[CrossRef]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers.” Nature 434, 488–491 (2005).
[CrossRef]

Bjorklund, G. C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

Borrelli, N.

Bradley, T. D.

C. Wang, N. V. Wheeler, C. F. Dutin, M. Grogan, T. D. Bradley, B. R. Washburn, F. Benabid, and K. L. Corwin, “Accurate fiber-based acetylene frequency references,” in Conference on Lasers and Electro-Optics 2012 (Optical Society of America, 2012), paper CF2C.7.

Chepurov, S.

Corwin, K. L.

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. V. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on C122H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16026 (2009).
[CrossRef]

J. Lim, K. Knabe, K. A. Tillman, W. Neely, Y. Wang, R. Amezcua-Correa, F. Couny, P. S. Light, F. Benabid, J. C. Knight, K. L. Corwin, J. W. Nicholson, and B. R. Washburn, “A phase-stabilized carbon nanotube fiber laser frequency comb,” Opt. Express 17, 14115–14120 (2009).
[CrossRef]

R. Thapa, K. Knabe, M. Faheem, A. Naweed, O. L. Weaver, and K. L. Corwin, “Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber,” Opt. Lett. 31, 2489–2491 (2006).
[CrossRef]

C. Wang, N. V. Wheeler, J. Lim, K. Knabe, M. Grogan, Y. Y. Wang, B. R. Washburn, F. Benabid, and K. L. Corwin, “Portable acetylene frequency references inside sealed hollow-core kagome photonic crystal fiber,” in CLEO:2011—Laser Applications to Photonic Applications (Optical Society of America, 2011), paper CFC1.

C. Wang, N. V. Wheeler, C. F. Dutin, M. Grogan, T. D. Bradley, B. R. Washburn, F. Benabid, and K. L. Corwin, “Accurate fiber-based acetylene frequency references,” in Conference on Lasers and Electro-Optics 2012 (Optical Society of America, 2012), paper CF2C.7.

Couny, F.

N. V. Wheeler, M. D. W. Grogan, P. S. Light, F. Couny, T. A. Birks, and F. Benabid, “Large-core acetylene-filled photonic microcells made by tapering a hollow-core photonic crystal fiber,” Opt. Lett. 35, 1875–1877 (2010).
[CrossRef]

J. Lim, K. Knabe, K. A. Tillman, W. Neely, Y. Wang, R. Amezcua-Correa, F. Couny, P. S. Light, F. Benabid, J. C. Knight, K. L. Corwin, J. W. Nicholson, and B. R. Washburn, “A phase-stabilized carbon nanotube fiber laser frequency comb,” Opt. Express 17, 14115–14120 (2009).
[CrossRef]

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. V. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on C122H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16026 (2009).
[CrossRef]

F. Couny, F. Benabid, and P. S. Light, “Reduction of Fresnel back-reflection at splice interface between hollow core PCF and single-mode fiber,” IEEE Photon. Technol. Lett. 19, 1020–1022 (2007).
[CrossRef]

F. Couny, P. S. Light, F. Benabid, and P. St. J. Russell, “Electromagnetically induced transparency and saturable absorption in all-fiber devices based on C122H2-filled hollow-core photonic crystal fiber,” Opt. Commun. 263, 28–31 (2006).
[CrossRef]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers.” Nature 434, 488–491 (2005).
[CrossRef]

F. Benabid, P. S. Light, and F. Couny, “Low insertion-loss (1.8 dB) and vacuum-pressure all-fiber gas cell based on hollow-core PCF,” in CLEO/Europe and IQEC 2007 Conference Digest, (Optical Society of America, 2007), paper 4386406.

Cubillas, A. M.

Czajkowski, A.

A. A. Madej, A. J. Alcock, A. Czajkowski, J. E. Bernard, and S. Chepurov, “Accurate absolute reference frequencies from 1511 to 1545 nm of the ν1+ν3 band of C122H2 determined with laser frequency comb interval measurements,” J. Opt. Soc. Am. B 23, 2200–2208 (2006).
[CrossRef]

A. Czajkowski, A. A. Madej, and P. Dubé, “Development and study of a 1.5 μm optical frequency standard referenced to the P(16) saturated absorption line in the (ν1+ν3) overtone band of C132H2,” Opt. Commun. 234, 259–268 (2004).
[CrossRef]

de Labachelerie, M.

Demtroder, W.

W. Demtroder, Laser Spectroscopy: Basic Concepts and Instrumentation, Vol. 5 of Springer Series in Chemical Physics (Springer-Verlag, 1981).

Dubé, P.

A. Czajkowski, A. A. Madej, and P. Dubé, “Development and study of a 1.5 μm optical frequency standard referenced to the P(16) saturated absorption line in the (ν1+ν3) overtone band of C132H2,” Opt. Commun. 234, 259–268 (2004).
[CrossRef]

Dutin, C. F.

C. Wang, N. V. Wheeler, C. F. Dutin, M. Grogan, T. D. Bradley, B. R. Washburn, F. Benabid, and K. L. Corwin, “Accurate fiber-based acetylene frequency references,” in Conference on Lasers and Electro-Optics 2012 (Optical Society of America, 2012), paper CF2C.7.

Edwards, C. S.

C. S. Edwards, G. P. Barwood, H. S. Margolisa, P. Gill, and W. R. C. Rowley, “High-precision frequency measurements of the ν1+ν3 combination band of C122H2 in the 1.5 μm region,” J. Mol. Spectrosc. 234, 143–148 (2005).
[CrossRef]

Faheem, M.

Fischer, M.

Gilbert, S. L.

Gill, P.

C. S. Edwards, G. P. Barwood, H. S. Margolisa, P. Gill, and W. R. C. Rowley, “High-precision frequency measurements of the ν1+ν3 combination band of C122H2 in the 1.5 μm region,” J. Mol. Spectrosc. 234, 143–148 (2005).
[CrossRef]

Gray, J. E.

J. E. Gray and D. W. Allan, “A method for estimating the frequency stability of an individual oscillator,” presented at 28th Annual Symposium on Frequency Control (1974).

Grogan, M.

C. Wang, N. V. Wheeler, J. Lim, K. Knabe, M. Grogan, Y. Y. Wang, B. R. Washburn, F. Benabid, and K. L. Corwin, “Portable acetylene frequency references inside sealed hollow-core kagome photonic crystal fiber,” in CLEO:2011—Laser Applications to Photonic Applications (Optical Society of America, 2011), paper CFC1.

C. Wang, N. V. Wheeler, C. F. Dutin, M. Grogan, T. D. Bradley, B. R. Washburn, F. Benabid, and K. L. Corwin, “Accurate fiber-based acetylene frequency references,” in Conference on Lasers and Electro-Optics 2012 (Optical Society of America, 2012), paper CF2C.7.

Grogan, M. D. W.

Hald, J.

Hall, J.

J. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

Henningsen, J.

Hollberg, L.

J. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

Holzwarth, R.

Jones, A. M.

Knabe, K.

Knight, J. C.

J. Lim, K. Knabe, K. A. Tillman, W. Neely, Y. Wang, R. Amezcua-Correa, F. Couny, P. S. Light, F. Benabid, J. C. Knight, K. L. Corwin, J. W. Nicholson, and B. R. Washburn, “A phase-stabilized carbon nanotube fiber laser frequency comb,” Opt. Express 17, 14115–14120 (2009).
[CrossRef]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers.” Nature 434, 488–491 (2005).
[CrossRef]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[CrossRef]

Koch, K.

Kubina, P.

Lee, W. K.

H. S. Moon, W. K. Lee, and H. S. Suh, “Absolute-frequency measurement of an acetylene-stabilized laser locked to the P(16) transition of C132H2 using an optical-frequency comb,” IEEE Trans. Instrum. Meas. 56, 509–512 (2007).
[CrossRef]

Lenth, W.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

Levenson, M. D.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

Light, P. S.

N. V. Wheeler, M. D. W. Grogan, P. S. Light, F. Couny, T. A. Birks, and F. Benabid, “Large-core acetylene-filled photonic microcells made by tapering a hollow-core photonic crystal fiber,” Opt. Lett. 35, 1875–1877 (2010).
[CrossRef]

J. Lim, K. Knabe, K. A. Tillman, W. Neely, Y. Wang, R. Amezcua-Correa, F. Couny, P. S. Light, F. Benabid, J. C. Knight, K. L. Corwin, J. W. Nicholson, and B. R. Washburn, “A phase-stabilized carbon nanotube fiber laser frequency comb,” Opt. Express 17, 14115–14120 (2009).
[CrossRef]

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. V. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on C122H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16026 (2009).
[CrossRef]

F. Couny, F. Benabid, and P. S. Light, “Reduction of Fresnel back-reflection at splice interface between hollow core PCF and single-mode fiber,” IEEE Photon. Technol. Lett. 19, 1020–1022 (2007).
[CrossRef]

F. Couny, P. S. Light, F. Benabid, and P. St. J. Russell, “Electromagnetically induced transparency and saturable absorption in all-fiber devices based on C122H2-filled hollow-core photonic crystal fiber,” Opt. Commun. 263, 28–31 (2006).
[CrossRef]

F. Benabid, P. S. Light, and F. Couny, “Low insertion-loss (1.8 dB) and vacuum-pressure all-fiber gas cell based on hollow-core PCF,” in CLEO/Europe and IQEC 2007 Conference Digest, (Optical Society of America, 2007), paper 4386406.

A. Lurie, C. R. Locke, C. Perrella, P. S. Light, F. Benabid, and A. N. Luiten, “Towards a compact optical fibre clock,” in 2010 Conference on Precision Electromagnetic Measurements (CPEM) (IEEE, 2010), pp. 16–17.

Lim, J.

Locke, C. R.

A. Lurie, C. R. Locke, C. Perrella, P. S. Light, F. Benabid, and A. N. Luiten, “Towards a compact optical fibre clock,” in 2010 Conference on Precision Electromagnetic Measurements (CPEM) (IEEE, 2010), pp. 16–17.

Luiten, A. N.

A. Lurie, C. R. Locke, C. Perrella, P. S. Light, F. Benabid, and A. N. Luiten, “Towards a compact optical fibre clock,” in 2010 Conference on Precision Electromagnetic Measurements (CPEM) (IEEE, 2010), pp. 16–17.

Lurie, A.

A. Lurie, C. R. Locke, C. Perrella, P. S. Light, F. Benabid, and A. N. Luiten, “Towards a compact optical fibre clock,” in 2010 Conference on Precision Electromagnetic Measurements (CPEM) (IEEE, 2010), pp. 16–17.

Madej, A. A.

A. A. Madej, A. J. Alcock, A. Czajkowski, J. E. Bernard, and S. Chepurov, “Accurate absolute reference frequencies from 1511 to 1545 nm of the ν1+ν3 band of C122H2 determined with laser frequency comb interval measurements,” J. Opt. Soc. Am. B 23, 2200–2208 (2006).
[CrossRef]

A. Czajkowski, A. A. Madej, and P. Dubé, “Development and study of a 1.5 μm optical frequency standard referenced to the P(16) saturated absorption line in the (ν1+ν3) overtone band of C132H2,” Opt. Commun. 234, 259–268 (2004).
[CrossRef]

Margolisa, H. S.

C. S. Edwards, G. P. Barwood, H. S. Margolisa, P. Gill, and W. R. C. Rowley, “High-precision frequency measurements of the ν1+ν3 combination band of C122H2 in the 1.5 μm region,” J. Mol. Spectrosc. 234, 143–148 (2005).
[CrossRef]

Merimaa, M.

V. Ahtee, M. Merimaa, and K. Nyholm, “Fiber-based acetylene-stabilized laser,” IEEE Trans. Instrum. Meas. 58, 1211–1216 (2009).
[CrossRef]

Moon, H. S.

H. S. Moon, W. K. Lee, and H. S. Suh, “Absolute-frequency measurement of an acetylene-stabilized laser locked to the P(16) transition of C132H2 using an optical-frequency comb,” IEEE Trans. Instrum. Meas. 56, 509–512 (2007).
[CrossRef]

Nakagawa, K.

Naweed, A.

Neely, W.

Nicholson, J. W.

Nielsen, L.

Nyholm, K.

V. Ahtee, M. Merimaa, and K. Nyholm, “Fiber-based acetylene-stabilized laser,” IEEE Trans. Instrum. Meas. 58, 1211–1216 (2009).
[CrossRef]

Ohtsu, M.

Ortiz, C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

Pedersen, J. E.

Perrella, C.

A. Lurie, C. R. Locke, C. Perrella, P. S. Light, F. Benabid, and A. N. Luiten, “Towards a compact optical fibre clock,” in 2010 Conference on Precision Electromagnetic Measurements (CPEM) (IEEE, 2010), pp. 16–17.

Petersen, J. C.

Peterson, J. C.

Robinson, H. G.

J. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

Rowley, W. R. C.

C. S. Edwards, G. P. Barwood, H. S. Margolisa, P. Gill, and W. R. C. Rowley, “High-precision frequency measurements of the ν1+ν3 combination band of C122H2 in the 1.5 μm region,” J. Mol. Spectrosc. 234, 143–148 (2005).
[CrossRef]

Russell, P. St. J.

F. Couny, P. S. Light, F. Benabid, and P. St. J. Russell, “Electromagnetically induced transparency and saturable absorption in all-fiber devices based on C122H2-filled hollow-core photonic crystal fiber,” Opt. Commun. 263, 28–31 (2006).
[CrossRef]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers.” Nature 434, 488–491 (2005).
[CrossRef]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[CrossRef]

Smith, C.

Suh, H. S.

H. S. Moon, W. K. Lee, and H. S. Suh, “Absolute-frequency measurement of an acetylene-stabilized laser locked to the P(16) transition of C132H2 using an optical-frequency comb,” IEEE Trans. Instrum. Meas. 56, 509–512 (2007).
[CrossRef]

Swann, W. C.

Thapa, R.

Tillman, K. A.

Varming, P.

Wang, C.

C. Wang, N. V. Wheeler, C. F. Dutin, M. Grogan, T. D. Bradley, B. R. Washburn, F. Benabid, and K. L. Corwin, “Accurate fiber-based acetylene frequency references,” in Conference on Lasers and Electro-Optics 2012 (Optical Society of America, 2012), paper CF2C.7.

C. Wang, N. V. Wheeler, J. Lim, K. Knabe, M. Grogan, Y. Y. Wang, B. R. Washburn, F. Benabid, and K. L. Corwin, “Portable acetylene frequency references inside sealed hollow-core kagome photonic crystal fiber,” in CLEO:2011—Laser Applications to Photonic Applications (Optical Society of America, 2011), paper CFC1.

Wang, Y.

Wang, Y. Y.

C. Wang, N. V. Wheeler, J. Lim, K. Knabe, M. Grogan, Y. Y. Wang, B. R. Washburn, F. Benabid, and K. L. Corwin, “Portable acetylene frequency references inside sealed hollow-core kagome photonic crystal fiber,” in CLEO:2011—Laser Applications to Photonic Applications (Optical Society of America, 2011), paper CFC1.

Washburn, B. R.

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. V. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on C122H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16026 (2009).
[CrossRef]

J. Lim, K. Knabe, K. A. Tillman, W. Neely, Y. Wang, R. Amezcua-Correa, F. Couny, P. S. Light, F. Benabid, J. C. Knight, K. L. Corwin, J. W. Nicholson, and B. R. Washburn, “A phase-stabilized carbon nanotube fiber laser frequency comb,” Opt. Express 17, 14115–14120 (2009).
[CrossRef]

C. Wang, N. V. Wheeler, J. Lim, K. Knabe, M. Grogan, Y. Y. Wang, B. R. Washburn, F. Benabid, and K. L. Corwin, “Portable acetylene frequency references inside sealed hollow-core kagome photonic crystal fiber,” in CLEO:2011—Laser Applications to Photonic Applications (Optical Society of America, 2011), paper CFC1.

C. Wang, N. V. Wheeler, C. F. Dutin, M. Grogan, T. D. Bradley, B. R. Washburn, F. Benabid, and K. L. Corwin, “Accurate fiber-based acetylene frequency references,” in Conference on Lasers and Electro-Optics 2012 (Optical Society of America, 2012), paper CF2C.7.

Weaver, O. L.

West, J.

Wheeler, N. V.

N. V. Wheeler, M. D. W. Grogan, P. S. Light, F. Couny, T. A. Birks, and F. Benabid, “Large-core acetylene-filled photonic microcells made by tapering a hollow-core photonic crystal fiber,” Opt. Lett. 35, 1875–1877 (2010).
[CrossRef]

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. V. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on C122H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16026 (2009).
[CrossRef]

C. Wang, N. V. Wheeler, J. Lim, K. Knabe, M. Grogan, Y. Y. Wang, B. R. Washburn, F. Benabid, and K. L. Corwin, “Portable acetylene frequency references inside sealed hollow-core kagome photonic crystal fiber,” in CLEO:2011—Laser Applications to Photonic Applications (Optical Society of America, 2011), paper CFC1.

C. Wang, N. V. Wheeler, C. F. Dutin, M. Grogan, T. D. Bradley, B. R. Washburn, F. Benabid, and K. L. Corwin, “Accurate fiber-based acetylene frequency references,” in Conference on Lasers and Electro-Optics 2012 (Optical Society of America, 2012), paper CF2C.7.

Wu, S.

Appl. Phys. B

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B 32, 145–152 (1983).
[CrossRef]

Appl. Phys. Lett.

J. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981).
[CrossRef]

IEEE Photon. Technol. Lett.

F. Couny, F. Benabid, and P. S. Light, “Reduction of Fresnel back-reflection at splice interface between hollow core PCF and single-mode fiber,” IEEE Photon. Technol. Lett. 19, 1020–1022 (2007).
[CrossRef]

IEEE Trans. Instrum. Meas.

H. S. Moon, W. K. Lee, and H. S. Suh, “Absolute-frequency measurement of an acetylene-stabilized laser locked to the P(16) transition of C132H2 using an optical-frequency comb,” IEEE Trans. Instrum. Meas. 56, 509–512 (2007).
[CrossRef]

V. Ahtee, M. Merimaa, and K. Nyholm, “Fiber-based acetylene-stabilized laser,” IEEE Trans. Instrum. Meas. 58, 1211–1216 (2009).
[CrossRef]

J. Mol. Spectrosc.

C. S. Edwards, G. P. Barwood, H. S. Margolisa, P. Gill, and W. R. C. Rowley, “High-precision frequency measurements of the ν1+ν3 combination band of C122H2 in the 1.5 μm region,” J. Mol. Spectrosc. 234, 143–148 (2005).
[CrossRef]

J. Opt. Soc. Am. B

Nature

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, “Compact, stable and efficient all-fiber gas cells using hollow-core photonic crystal fibers.” Nature 434, 488–491 (2005).
[CrossRef]

Opt. Commun.

F. Couny, P. S. Light, F. Benabid, and P. St. J. Russell, “Electromagnetically induced transparency and saturable absorption in all-fiber devices based on C122H2-filled hollow-core photonic crystal fiber,” Opt. Commun. 263, 28–31 (2006).
[CrossRef]

A. Czajkowski, A. A. Madej, and P. Dubé, “Development and study of a 1.5 μm optical frequency standard referenced to the P(16) saturated absorption line in the (ν1+ν3) overtone band of C132H2,” Opt. Commun. 234, 259–268 (2004).
[CrossRef]

Opt. Express

J. West, C. Smith, N. Borrelli, D. Allan, and K. Koch, “Surface modes in air-core photonic band-gap fibers,” Opt. Express 12, 1485–1496 (2004).
[CrossRef]

P. Balling, M. Fischer, P. Kubina, and R. Holzwarth, “Absolute frequency measurement of wavelength standard at 1542 nm: acetylene stabilized DFB laser,” Opt. Express 13, 9196–9201 (2005).
[CrossRef]

J. Henningsen, J. Hald, and J. C. Peterson, “Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers,” Opt. Express 13, 10475–10482 (2005).
[CrossRef]

A. M. Cubillas, J. Hald, and J. C. Petersen, “High resolution spectroscopy of ammonia in a hollow-core fiber,” Opt. Express 16, 3976–3985 (2008).
[CrossRef]

J. Lim, K. Knabe, K. A. Tillman, W. Neely, Y. Wang, R. Amezcua-Correa, F. Couny, P. S. Light, F. Benabid, J. C. Knight, K. L. Corwin, J. W. Nicholson, and B. R. Washburn, “A phase-stabilized carbon nanotube fiber laser frequency comb,” Opt. Express 17, 14115–14120 (2009).
[CrossRef]

K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. V. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on C122H2-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16026 (2009).
[CrossRef]

J. Hald, L. Nielsen, J. C. Petersen, P. Varming, and J. E. Pedersen, “Fiber laser optical frequency standard at 1.54 μm,” Opt. Express 19, 2052–2063 (2011).
[CrossRef]

Opt. Lett.

Science

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[CrossRef]

Other

F. Benabid, P. S. Light, and F. Couny, “Low insertion-loss (1.8 dB) and vacuum-pressure all-fiber gas cell based on hollow-core PCF,” in CLEO/Europe and IQEC 2007 Conference Digest, (Optical Society of America, 2007), paper 4386406.

A. Lurie, C. R. Locke, C. Perrella, P. S. Light, F. Benabid, and A. N. Luiten, “Towards a compact optical fibre clock,” in 2010 Conference on Precision Electromagnetic Measurements (CPEM) (IEEE, 2010), pp. 16–17.

J. E. Gray and D. W. Allan, “A method for estimating the frequency stability of an individual oscillator,” presented at 28th Annual Symposium on Frequency Control (1974).

C. Wang, N. V. Wheeler, C. F. Dutin, M. Grogan, T. D. Bradley, B. R. Washburn, F. Benabid, and K. L. Corwin, “Accurate fiber-based acetylene frequency references,” in Conference on Lasers and Electro-Optics 2012 (Optical Society of America, 2012), paper CF2C.7.

W. Demtroder, Laser Spectroscopy: Basic Concepts and Instrumentation, Vol. 5 of Springer Series in Chemical Physics (Springer-Verlag, 1981).

C. Wang, N. V. Wheeler, J. Lim, K. Knabe, M. Grogan, Y. Y. Wang, B. R. Washburn, F. Benabid, and K. L. Corwin, “Portable acetylene frequency references inside sealed hollow-core kagome photonic crystal fiber,” in CLEO:2011—Laser Applications to Photonic Applications (Optical Society of America, 2011), paper CFC1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Optical schematic of gas-filled hollow fiber frequency references based on (a) hollow core fiber between two vacuum chambers and (b) a sealed PMC. AM, amplitude modulator; AOM, acousto-optic modulator; EOM, electro-optic modulator; PBS, polarizing beam splitter; OI, optical isolator; λ / 2 , half-wave plate; λ / 4 , quarter-wave plate; C, optical circulator; and PD, photodetectors.

Fig. 2.
Fig. 2.

(a) Top, FT of a 4.1 m long kagome HC-PCF with a C 12 2 H 2 pressure of 42 mTorr, and a pump power of 25 mW exiting the fiber; bottom, error signal of sub-Doppler versus scanned frequency away from the P(13) transition. The laser frequency was scanned at 1.2 GHz / s . (b) same as (a), but zoomed in on the sub-Doppler absorption feature.

Fig. 3.
Fig. 3.

(a) Schematic of the three-cornered hat measurement between two acetylene-stabilized fiber lasers and a phase stabilized CNFL comb. (b) Fractional Allan deviation of beat frequency between two acetylene-stabilized fiber lasers, compared with [22] and [3]. The individual stability of each laser obtained from a three-cornered hat measurement is also shown.

Fig. 4.
Fig. 4.

(a) Calculated SAS of P(13) line of C 12 2 H 2 , with a FT of 50%, and exiting fiber pump power of 32 mW. (b) Normalized dispersive error signal of the P(13) line. The calculated error signal is proportional to that detected by the PD. (c) Same as (b) but plotted over a smaller range to show the frequency of the zero crossing.

Fig. 5.
Fig. 5.

Absolute frequency f exp of the C 12 2 H 2 -stabilized laser versus C 12 2 H 2 pressure inside the 4.1 m long kagome fiber with a linear fit. Solid triangles with the solid linear fit line denotes absolute frequency before correction by Δ f ; open diamonds with the dashed linear fit indicates absolute frequency after correction by Δ f : each data point indicates an independent alignment to avoid frequency offsets due to free-space coupling into the kagome fiber. After applying the locking frequency shift, the linear fit gives a zero-pressure intercept of 195, 580, 979, 371.4 ± 9.3 kHz , compared with the previously reported [8] zero-pressure intercept of 195, 580, 979, 379.6 ± 9.3 kHz .

Fig. 6.
Fig. 6.

Measured absolute frequency of the C 12 2 H 2 -stabilized laser versus time with a C 12 2 H 2 pressure of 51 mTorr inside the 7.9 m long kagome fiber, recorded at a 1 s gate time using a counter: (a) before correcting for the shift caused by frequency difference between probe and pump, (b) after correction. Black open circles: probe frequency was shifted by 60 MHz with respect to the pump (AOM1). Red solid squares: probe frequency was shifted by + 200 MHz with respect to the pump (AOM2).

Fig. 7.
Fig. 7.

Fractional instability of the beat between the frequency comb and the fiber-based acetylene reference made with different HC-PCFs shown in Table 1 (fibers A–D); GPS stability is shown here for comparison.

Fig. 8.
Fig. 8.

(a) Calculated error signal in acetylene-filled 10 μm PBGF with the nonlinear effect caused by pump power modulation. (b) Experimental error signal. (c) Calculated maximum locking frequency change verse different surface mode contrast when varying only Δ Φ (not Δ Φ NL ) by π to mimic slow thermal drift.

Fig. 9.
Fig. 9.

(a) Contrast ratio of probe power exiting fiber versus the angle of probe polarization in vacuum; solid line, fitting curve of measured data. (b) Absolute frequency measurement of C 12 2 H 2 P(13) line inside 10 μm PM PBGF (fiber B); zero frequency corresponds to the published value [14].

Fig. 10.
Fig. 10.

(a) Beat frequency versus time in C 12 2 H 2 -filled 10 μm PBGF PMC for the P(13) line transition. (b) Beat frequency versus time in C 12 2 H 2 -filled 45 μm kagome PMC for the P(23) line transition.

Fig. 11.
Fig. 11.

Fractional instability versus averaging time in two PMCs: P(13) line of C 12 2 H 2 PBGF PMC and P(23) line of C 12 2 H 2 kagome PMC.

Fig. 12.
Fig. 12.

(a) Fractional Allan deviation of the beat note between the fiber-based acetylene stabilized laser and the CNFL comb: cyan hexagons, yellow squares, and red triangles, P(23) line in sealed PMC at different dates; green stars, P(13) line of acetylene filled large-core kagome HC-PCF in vacuum chamber; black pentagons, GPS-disciplined Rb oscillator. (b) Experimentally measured repeatability of the absolute frequency in the kagome PMC of the P(23) ν 1 + ν 3 transition in C 12 2 H 2 at a different date and time; red line, average value of measured absolute frequencies.

Tables (2)

Tables Icon

Table 1. Mean C 12 2 H 2 v 1 + v 3 P(13) Frequency and Uncertainty for This Worka and for Refs. [13,14]

Tables Icon

Table 2. Fiber Parameters for HC-PCFa

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

φ ( ω ) = 1 π P δ ( ω ) ω ω d ω .
δ D ( ω ) = 1 2 · A g · exp [ ( ω + 2 π · 0.5 f AOM ) 2 0.6 · ω D 2 ] ,
δ ( ω ) = δ D ( ω ) · ( 1 A l R 2 [ ω ] + 1 ) ,
R [ ω ] = ω 2 π f l / 2 .
f meas = f v 0 , P 1 2 f AOM Δ f = f meas Δ f
A = V 1 V 2 ( V 1 + V 2 ) / 2 ,
V PD = V core + V SM + 2 V core V SM cos ( Δ Φ + Δ Φ NL ) ,

Metrics