Abstract

Erbium-doped GaN (GaN:Er) epilayers were synthesized by metal organic chemical vapor deposition. GaN:Er waveguides were fabricated based on four different GaN:Er layer structures: GaN:Er/GaN/Al2O3, GaN:Er/GaN/AlN/Al2O3, GaN:Er/GaN/Al0.75Ga0.25N/AlN/Al2O3, and GaN/GaN:Er/GaN/Al2O3. Optical loss at 1.54 μm in these waveguide structures has been measured. It was found that the optical attenuation coefficient of the GaN:Er waveguide increases almost linearly with the GaN (002) x-ray rocking curve linewidth. The lowest measured loss was 6dB/cm.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Zimmerman and L. H. Spiekman, “Amplifiers for the masses: EDFA, EDWA, and SOA amplets for metro and access applications,” J. Lightwave Technol. 22, 63–70 (2004).
    [CrossRef]
  2. J. D. B. Bradley and M. Pollnau, “Erbium‐doped integrated waveguide amplifiers and lasers,” Laser Photon. Rev. 5, 368–403 (2011).
    [CrossRef]
  3. A. R. Peaker, “Erbium in semiconductors: where are we coming from; where are we going?,” MRS Proc. 866, 3–12 (2005).
    [CrossRef]
  4. R. Dahal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Near infrared photonic devices based on Er-doped GaN and InGaN,” Opt. Mater. 33, 1066–1070 (2011).
    [CrossRef]
  5. R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “1.54 μm emitters based on erbium doped InGaN p-i-n junctions,” Appl. Phys. Lett. 97, 141109 (2010).
    [CrossRef]
  6. A. Koizumi, Y. Fujiwara, A. Urakami, K. Inoue, T. Yoshikane, and Y. Takeda, “Effects of active layer thickness on Er excitation cross section in GaInP/GaAs: Er, O/GaInP double heterostructure light-emitting diodes,” Phys. B 340, 309–314 (2003).
    [CrossRef]
  7. R. Q. Hui, Y. T. Wan, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “III-nitride-based planar lightwave circuits for long wavelength optical communications,” IEEE J. Quantum Electron. 41, 100–110 (2005).
    [CrossRef]
  8. A. J. Neuhalfen and B. W. Wessels, “Thermal quenching of Er3+ related luminescence in In1-XGaXP,” Appl. Phys. Lett. 60, 2657–2659 (1992).
    [CrossRef]
  9. X. Z. Wang and B. W. Wessels, “Thermal quenching properties of Er doped GaP,” Appl. Phys. Lett. 64, 1537–1539 (1994).
    [CrossRef]
  10. C. Ugolini, N. Nepal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN epilayers synthesized by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 89, 151903 (2006).
    [CrossRef]
  11. J. Zavada and D. Zhang, “Luminescence properties of erbium in III–V compound semiconductors,” Solid-State Electron. 38, 1285–1293 (1995).
    [CrossRef]
  12. K. Gerd, Optical Fiber Communications (McGraw-Hill, 1998).
  13. C. R. Pollock, Fundamentals of Optoelectronics (Irwin, 1995).
  14. I. W. Feng, J. Li, A. Sedhain, J. Y. Lin, H. X. Jiang, and J. Zavada, “Enhancing erbium emission by strain engineering in GaN heteroepitaxial layers,” Appl. Phys. Lett. 96, 031908 (2010).
    [CrossRef]
  15. W. G. Perry, T. Zheleva, M. D. Bremser, R. F. Davis, W. Shan, and J. J. Song, “Correlation of biaxial strains, bound exciton energies, and defect microstructures in GaN films grown on AlN/6H-SiC(0001) substrates,” J. Electron. Mater. 26, 224–231 (1997).
    [CrossRef]
  16. A T. Wojtowicz, P. Ruterana, N. Rousseau, O. Briot, S. Dalmasso, R. W. Martin, and K. P. O’Donnell, “The microstructure of Er MBE doped GaN,” Mater. Sci. Eng. B 105, 114–117 (2003).
    [CrossRef]
  17. F. P. Payne and J. P. R. Lacey, “A theoretical-analysis of scattering loss from planar optical wave-guides,” Opt. Quantum Electron. 26, 977–986 (1994).
    [CrossRef]
  18. A. Kovalenko, V. Kurashov, and O. Matievosova, “Radiation losses in planar dielectric waveguide with random rough surface,” in 2011 11th International Conference on Laser and Fiber-Optical Networks Modeling (LFNM), Kharkov, 2011, pp. 1–3.
  19. R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN optical amplifiers operating at 1.54 μm,” Appl. Phys Lett. 95, 111109 (2009).
    [CrossRef]
  20. M. Moram and M. Vickers, “X-ray diffraction of III-nitrides,” Rep. Prog. Phys. 72, 036502 (2009).
    [CrossRef]
  21. Y. Yan, A. J. Faber, H. De Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1  dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71, 2922–2924 (1997).
    [CrossRef]
  22. Q. Wang, R. Dahal, I. W. Feng, J. Y. Lin, H. X. Jiang, and R. Hui, “Emission and absorption cross-sections of an Er:GaN waveguide prepared with metal organic chemical vapor deposition,” Appl. Phys. Lett. 99, 121106 (2011).
    [CrossRef]

2011 (3)

J. D. B. Bradley and M. Pollnau, “Erbium‐doped integrated waveguide amplifiers and lasers,” Laser Photon. Rev. 5, 368–403 (2011).
[CrossRef]

R. Dahal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Near infrared photonic devices based on Er-doped GaN and InGaN,” Opt. Mater. 33, 1066–1070 (2011).
[CrossRef]

Q. Wang, R. Dahal, I. W. Feng, J. Y. Lin, H. X. Jiang, and R. Hui, “Emission and absorption cross-sections of an Er:GaN waveguide prepared with metal organic chemical vapor deposition,” Appl. Phys. Lett. 99, 121106 (2011).
[CrossRef]

2010 (2)

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “1.54 μm emitters based on erbium doped InGaN p-i-n junctions,” Appl. Phys. Lett. 97, 141109 (2010).
[CrossRef]

I. W. Feng, J. Li, A. Sedhain, J. Y. Lin, H. X. Jiang, and J. Zavada, “Enhancing erbium emission by strain engineering in GaN heteroepitaxial layers,” Appl. Phys. Lett. 96, 031908 (2010).
[CrossRef]

2009 (2)

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN optical amplifiers operating at 1.54 μm,” Appl. Phys Lett. 95, 111109 (2009).
[CrossRef]

M. Moram and M. Vickers, “X-ray diffraction of III-nitrides,” Rep. Prog. Phys. 72, 036502 (2009).
[CrossRef]

2006 (1)

C. Ugolini, N. Nepal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN epilayers synthesized by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 89, 151903 (2006).
[CrossRef]

2005 (2)

A. R. Peaker, “Erbium in semiconductors: where are we coming from; where are we going?,” MRS Proc. 866, 3–12 (2005).
[CrossRef]

R. Q. Hui, Y. T. Wan, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “III-nitride-based planar lightwave circuits for long wavelength optical communications,” IEEE J. Quantum Electron. 41, 100–110 (2005).
[CrossRef]

2004 (1)

2003 (2)

A. Koizumi, Y. Fujiwara, A. Urakami, K. Inoue, T. Yoshikane, and Y. Takeda, “Effects of active layer thickness on Er excitation cross section in GaInP/GaAs: Er, O/GaInP double heterostructure light-emitting diodes,” Phys. B 340, 309–314 (2003).
[CrossRef]

A T. Wojtowicz, P. Ruterana, N. Rousseau, O. Briot, S. Dalmasso, R. W. Martin, and K. P. O’Donnell, “The microstructure of Er MBE doped GaN,” Mater. Sci. Eng. B 105, 114–117 (2003).
[CrossRef]

1997 (2)

Y. Yan, A. J. Faber, H. De Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1  dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71, 2922–2924 (1997).
[CrossRef]

W. G. Perry, T. Zheleva, M. D. Bremser, R. F. Davis, W. Shan, and J. J. Song, “Correlation of biaxial strains, bound exciton energies, and defect microstructures in GaN films grown on AlN/6H-SiC(0001) substrates,” J. Electron. Mater. 26, 224–231 (1997).
[CrossRef]

1995 (1)

J. Zavada and D. Zhang, “Luminescence properties of erbium in III–V compound semiconductors,” Solid-State Electron. 38, 1285–1293 (1995).
[CrossRef]

1994 (2)

F. P. Payne and J. P. R. Lacey, “A theoretical-analysis of scattering loss from planar optical wave-guides,” Opt. Quantum Electron. 26, 977–986 (1994).
[CrossRef]

X. Z. Wang and B. W. Wessels, “Thermal quenching properties of Er doped GaP,” Appl. Phys. Lett. 64, 1537–1539 (1994).
[CrossRef]

1992 (1)

A. J. Neuhalfen and B. W. Wessels, “Thermal quenching of Er3+ related luminescence in In1-XGaXP,” Appl. Phys. Lett. 60, 2657–2659 (1992).
[CrossRef]

Bradley, J. D. B.

J. D. B. Bradley and M. Pollnau, “Erbium‐doped integrated waveguide amplifiers and lasers,” Laser Photon. Rev. 5, 368–403 (2011).
[CrossRef]

Bremser, M. D.

W. G. Perry, T. Zheleva, M. D. Bremser, R. F. Davis, W. Shan, and J. J. Song, “Correlation of biaxial strains, bound exciton energies, and defect microstructures in GaN films grown on AlN/6H-SiC(0001) substrates,” J. Electron. Mater. 26, 224–231 (1997).
[CrossRef]

Briot, O.

A T. Wojtowicz, P. Ruterana, N. Rousseau, O. Briot, S. Dalmasso, R. W. Martin, and K. P. O’Donnell, “The microstructure of Er MBE doped GaN,” Mater. Sci. Eng. B 105, 114–117 (2003).
[CrossRef]

Dahal, R.

R. Dahal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Near infrared photonic devices based on Er-doped GaN and InGaN,” Opt. Mater. 33, 1066–1070 (2011).
[CrossRef]

Q. Wang, R. Dahal, I. W. Feng, J. Y. Lin, H. X. Jiang, and R. Hui, “Emission and absorption cross-sections of an Er:GaN waveguide prepared with metal organic chemical vapor deposition,” Appl. Phys. Lett. 99, 121106 (2011).
[CrossRef]

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “1.54 μm emitters based on erbium doped InGaN p-i-n junctions,” Appl. Phys. Lett. 97, 141109 (2010).
[CrossRef]

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN optical amplifiers operating at 1.54 μm,” Appl. Phys Lett. 95, 111109 (2009).
[CrossRef]

Dalmasso, S.

A T. Wojtowicz, P. Ruterana, N. Rousseau, O. Briot, S. Dalmasso, R. W. Martin, and K. P. O’Donnell, “The microstructure of Er MBE doped GaN,” Mater. Sci. Eng. B 105, 114–117 (2003).
[CrossRef]

Davis, R. F.

W. G. Perry, T. Zheleva, M. D. Bremser, R. F. Davis, W. Shan, and J. J. Song, “Correlation of biaxial strains, bound exciton energies, and defect microstructures in GaN films grown on AlN/6H-SiC(0001) substrates,” J. Electron. Mater. 26, 224–231 (1997).
[CrossRef]

De Waal, H.

Y. Yan, A. J. Faber, H. De Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1  dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71, 2922–2924 (1997).
[CrossRef]

Faber, A. J.

Y. Yan, A. J. Faber, H. De Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1  dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71, 2922–2924 (1997).
[CrossRef]

Feng, I. W.

Q. Wang, R. Dahal, I. W. Feng, J. Y. Lin, H. X. Jiang, and R. Hui, “Emission and absorption cross-sections of an Er:GaN waveguide prepared with metal organic chemical vapor deposition,” Appl. Phys. Lett. 99, 121106 (2011).
[CrossRef]

I. W. Feng, J. Li, A. Sedhain, J. Y. Lin, H. X. Jiang, and J. Zavada, “Enhancing erbium emission by strain engineering in GaN heteroepitaxial layers,” Appl. Phys. Lett. 96, 031908 (2010).
[CrossRef]

Fujiwara, Y.

A. Koizumi, Y. Fujiwara, A. Urakami, K. Inoue, T. Yoshikane, and Y. Takeda, “Effects of active layer thickness on Er excitation cross section in GaInP/GaAs: Er, O/GaInP double heterostructure light-emitting diodes,” Phys. B 340, 309–314 (2003).
[CrossRef]

Gerd, K.

K. Gerd, Optical Fiber Communications (McGraw-Hill, 1998).

Hui, R.

Q. Wang, R. Dahal, I. W. Feng, J. Y. Lin, H. X. Jiang, and R. Hui, “Emission and absorption cross-sections of an Er:GaN waveguide prepared with metal organic chemical vapor deposition,” Appl. Phys. Lett. 99, 121106 (2011).
[CrossRef]

Hui, R. Q.

R. Q. Hui, Y. T. Wan, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “III-nitride-based planar lightwave circuits for long wavelength optical communications,” IEEE J. Quantum Electron. 41, 100–110 (2005).
[CrossRef]

Inoue, K.

A. Koizumi, Y. Fujiwara, A. Urakami, K. Inoue, T. Yoshikane, and Y. Takeda, “Effects of active layer thickness on Er excitation cross section in GaInP/GaAs: Er, O/GaInP double heterostructure light-emitting diodes,” Phys. B 340, 309–314 (2003).
[CrossRef]

Jiang, H. X.

R. Dahal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Near infrared photonic devices based on Er-doped GaN and InGaN,” Opt. Mater. 33, 1066–1070 (2011).
[CrossRef]

Q. Wang, R. Dahal, I. W. Feng, J. Y. Lin, H. X. Jiang, and R. Hui, “Emission and absorption cross-sections of an Er:GaN waveguide prepared with metal organic chemical vapor deposition,” Appl. Phys. Lett. 99, 121106 (2011).
[CrossRef]

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “1.54 μm emitters based on erbium doped InGaN p-i-n junctions,” Appl. Phys. Lett. 97, 141109 (2010).
[CrossRef]

I. W. Feng, J. Li, A. Sedhain, J. Y. Lin, H. X. Jiang, and J. Zavada, “Enhancing erbium emission by strain engineering in GaN heteroepitaxial layers,” Appl. Phys. Lett. 96, 031908 (2010).
[CrossRef]

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN optical amplifiers operating at 1.54 μm,” Appl. Phys Lett. 95, 111109 (2009).
[CrossRef]

C. Ugolini, N. Nepal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN epilayers synthesized by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 89, 151903 (2006).
[CrossRef]

R. Q. Hui, Y. T. Wan, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “III-nitride-based planar lightwave circuits for long wavelength optical communications,” IEEE J. Quantum Electron. 41, 100–110 (2005).
[CrossRef]

Jin, S. X.

R. Q. Hui, Y. T. Wan, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “III-nitride-based planar lightwave circuits for long wavelength optical communications,” IEEE J. Quantum Electron. 41, 100–110 (2005).
[CrossRef]

Kik, P. G.

Y. Yan, A. J. Faber, H. De Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1  dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71, 2922–2924 (1997).
[CrossRef]

Koizumi, A.

A. Koizumi, Y. Fujiwara, A. Urakami, K. Inoue, T. Yoshikane, and Y. Takeda, “Effects of active layer thickness on Er excitation cross section in GaInP/GaAs: Er, O/GaInP double heterostructure light-emitting diodes,” Phys. B 340, 309–314 (2003).
[CrossRef]

Kovalenko, A.

A. Kovalenko, V. Kurashov, and O. Matievosova, “Radiation losses in planar dielectric waveguide with random rough surface,” in 2011 11th International Conference on Laser and Fiber-Optical Networks Modeling (LFNM), Kharkov, 2011, pp. 1–3.

Kurashov, V.

A. Kovalenko, V. Kurashov, and O. Matievosova, “Radiation losses in planar dielectric waveguide with random rough surface,” in 2011 11th International Conference on Laser and Fiber-Optical Networks Modeling (LFNM), Kharkov, 2011, pp. 1–3.

Lacey, J. P. R.

F. P. Payne and J. P. R. Lacey, “A theoretical-analysis of scattering loss from planar optical wave-guides,” Opt. Quantum Electron. 26, 977–986 (1994).
[CrossRef]

Li, J.

I. W. Feng, J. Li, A. Sedhain, J. Y. Lin, H. X. Jiang, and J. Zavada, “Enhancing erbium emission by strain engineering in GaN heteroepitaxial layers,” Appl. Phys. Lett. 96, 031908 (2010).
[CrossRef]

R. Q. Hui, Y. T. Wan, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “III-nitride-based planar lightwave circuits for long wavelength optical communications,” IEEE J. Quantum Electron. 41, 100–110 (2005).
[CrossRef]

Lin, J. Y.

R. Dahal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Near infrared photonic devices based on Er-doped GaN and InGaN,” Opt. Mater. 33, 1066–1070 (2011).
[CrossRef]

Q. Wang, R. Dahal, I. W. Feng, J. Y. Lin, H. X. Jiang, and R. Hui, “Emission and absorption cross-sections of an Er:GaN waveguide prepared with metal organic chemical vapor deposition,” Appl. Phys. Lett. 99, 121106 (2011).
[CrossRef]

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “1.54 μm emitters based on erbium doped InGaN p-i-n junctions,” Appl. Phys. Lett. 97, 141109 (2010).
[CrossRef]

I. W. Feng, J. Li, A. Sedhain, J. Y. Lin, H. X. Jiang, and J. Zavada, “Enhancing erbium emission by strain engineering in GaN heteroepitaxial layers,” Appl. Phys. Lett. 96, 031908 (2010).
[CrossRef]

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN optical amplifiers operating at 1.54 μm,” Appl. Phys Lett. 95, 111109 (2009).
[CrossRef]

C. Ugolini, N. Nepal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN epilayers synthesized by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 89, 151903 (2006).
[CrossRef]

R. Q. Hui, Y. T. Wan, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “III-nitride-based planar lightwave circuits for long wavelength optical communications,” IEEE J. Quantum Electron. 41, 100–110 (2005).
[CrossRef]

Martin, R. W.

A T. Wojtowicz, P. Ruterana, N. Rousseau, O. Briot, S. Dalmasso, R. W. Martin, and K. P. O’Donnell, “The microstructure of Er MBE doped GaN,” Mater. Sci. Eng. B 105, 114–117 (2003).
[CrossRef]

Matievosova, O.

A. Kovalenko, V. Kurashov, and O. Matievosova, “Radiation losses in planar dielectric waveguide with random rough surface,” in 2011 11th International Conference on Laser and Fiber-Optical Networks Modeling (LFNM), Kharkov, 2011, pp. 1–3.

Moram, M.

M. Moram and M. Vickers, “X-ray diffraction of III-nitrides,” Rep. Prog. Phys. 72, 036502 (2009).
[CrossRef]

Nepal, N.

C. Ugolini, N. Nepal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN epilayers synthesized by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 89, 151903 (2006).
[CrossRef]

Neuhalfen, A. J.

A. J. Neuhalfen and B. W. Wessels, “Thermal quenching of Er3+ related luminescence in In1-XGaXP,” Appl. Phys. Lett. 60, 2657–2659 (1992).
[CrossRef]

O’Donnell, K. P.

A T. Wojtowicz, P. Ruterana, N. Rousseau, O. Briot, S. Dalmasso, R. W. Martin, and K. P. O’Donnell, “The microstructure of Er MBE doped GaN,” Mater. Sci. Eng. B 105, 114–117 (2003).
[CrossRef]

Payne, F. P.

F. P. Payne and J. P. R. Lacey, “A theoretical-analysis of scattering loss from planar optical wave-guides,” Opt. Quantum Electron. 26, 977–986 (1994).
[CrossRef]

Peaker, A. R.

A. R. Peaker, “Erbium in semiconductors: where are we coming from; where are we going?,” MRS Proc. 866, 3–12 (2005).
[CrossRef]

Perry, W. G.

W. G. Perry, T. Zheleva, M. D. Bremser, R. F. Davis, W. Shan, and J. J. Song, “Correlation of biaxial strains, bound exciton energies, and defect microstructures in GaN films grown on AlN/6H-SiC(0001) substrates,” J. Electron. Mater. 26, 224–231 (1997).
[CrossRef]

Pollnau, M.

J. D. B. Bradley and M. Pollnau, “Erbium‐doped integrated waveguide amplifiers and lasers,” Laser Photon. Rev. 5, 368–403 (2011).
[CrossRef]

Pollock, C. R.

C. R. Pollock, Fundamentals of Optoelectronics (Irwin, 1995).

Polman, A.

Y. Yan, A. J. Faber, H. De Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1  dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71, 2922–2924 (1997).
[CrossRef]

Rousseau, N.

A T. Wojtowicz, P. Ruterana, N. Rousseau, O. Briot, S. Dalmasso, R. W. Martin, and K. P. O’Donnell, “The microstructure of Er MBE doped GaN,” Mater. Sci. Eng. B 105, 114–117 (2003).
[CrossRef]

Ruterana, P.

A T. Wojtowicz, P. Ruterana, N. Rousseau, O. Briot, S. Dalmasso, R. W. Martin, and K. P. O’Donnell, “The microstructure of Er MBE doped GaN,” Mater. Sci. Eng. B 105, 114–117 (2003).
[CrossRef]

Sedhain, A.

I. W. Feng, J. Li, A. Sedhain, J. Y. Lin, H. X. Jiang, and J. Zavada, “Enhancing erbium emission by strain engineering in GaN heteroepitaxial layers,” Appl. Phys. Lett. 96, 031908 (2010).
[CrossRef]

Shan, W.

W. G. Perry, T. Zheleva, M. D. Bremser, R. F. Davis, W. Shan, and J. J. Song, “Correlation of biaxial strains, bound exciton energies, and defect microstructures in GaN films grown on AlN/6H-SiC(0001) substrates,” J. Electron. Mater. 26, 224–231 (1997).
[CrossRef]

Song, J. J.

W. G. Perry, T. Zheleva, M. D. Bremser, R. F. Davis, W. Shan, and J. J. Song, “Correlation of biaxial strains, bound exciton energies, and defect microstructures in GaN films grown on AlN/6H-SiC(0001) substrates,” J. Electron. Mater. 26, 224–231 (1997).
[CrossRef]

Spiekman, L. H.

Takeda, Y.

A. Koizumi, Y. Fujiwara, A. Urakami, K. Inoue, T. Yoshikane, and Y. Takeda, “Effects of active layer thickness on Er excitation cross section in GaInP/GaAs: Er, O/GaInP double heterostructure light-emitting diodes,” Phys. B 340, 309–314 (2003).
[CrossRef]

Ugolini, C.

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “1.54 μm emitters based on erbium doped InGaN p-i-n junctions,” Appl. Phys. Lett. 97, 141109 (2010).
[CrossRef]

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN optical amplifiers operating at 1.54 μm,” Appl. Phys Lett. 95, 111109 (2009).
[CrossRef]

C. Ugolini, N. Nepal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN epilayers synthesized by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 89, 151903 (2006).
[CrossRef]

Urakami, A.

A. Koizumi, Y. Fujiwara, A. Urakami, K. Inoue, T. Yoshikane, and Y. Takeda, “Effects of active layer thickness on Er excitation cross section in GaInP/GaAs: Er, O/GaInP double heterostructure light-emitting diodes,” Phys. B 340, 309–314 (2003).
[CrossRef]

Vickers, M.

M. Moram and M. Vickers, “X-ray diffraction of III-nitrides,” Rep. Prog. Phys. 72, 036502 (2009).
[CrossRef]

Wan, Y. T.

R. Q. Hui, Y. T. Wan, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “III-nitride-based planar lightwave circuits for long wavelength optical communications,” IEEE J. Quantum Electron. 41, 100–110 (2005).
[CrossRef]

Wang, Q.

Q. Wang, R. Dahal, I. W. Feng, J. Y. Lin, H. X. Jiang, and R. Hui, “Emission and absorption cross-sections of an Er:GaN waveguide prepared with metal organic chemical vapor deposition,” Appl. Phys. Lett. 99, 121106 (2011).
[CrossRef]

Wang, X. Z.

X. Z. Wang and B. W. Wessels, “Thermal quenching properties of Er doped GaP,” Appl. Phys. Lett. 64, 1537–1539 (1994).
[CrossRef]

Wessels, B. W.

X. Z. Wang and B. W. Wessels, “Thermal quenching properties of Er doped GaP,” Appl. Phys. Lett. 64, 1537–1539 (1994).
[CrossRef]

A. J. Neuhalfen and B. W. Wessels, “Thermal quenching of Er3+ related luminescence in In1-XGaXP,” Appl. Phys. Lett. 60, 2657–2659 (1992).
[CrossRef]

Wojtowicz, A T.

A T. Wojtowicz, P. Ruterana, N. Rousseau, O. Briot, S. Dalmasso, R. W. Martin, and K. P. O’Donnell, “The microstructure of Er MBE doped GaN,” Mater. Sci. Eng. B 105, 114–117 (2003).
[CrossRef]

Yan, Y.

Y. Yan, A. J. Faber, H. De Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1  dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71, 2922–2924 (1997).
[CrossRef]

Yoshikane, T.

A. Koizumi, Y. Fujiwara, A. Urakami, K. Inoue, T. Yoshikane, and Y. Takeda, “Effects of active layer thickness on Er excitation cross section in GaInP/GaAs: Er, O/GaInP double heterostructure light-emitting diodes,” Phys. B 340, 309–314 (2003).
[CrossRef]

Zavada, J.

I. W. Feng, J. Li, A. Sedhain, J. Y. Lin, H. X. Jiang, and J. Zavada, “Enhancing erbium emission by strain engineering in GaN heteroepitaxial layers,” Appl. Phys. Lett. 96, 031908 (2010).
[CrossRef]

J. Zavada and D. Zhang, “Luminescence properties of erbium in III–V compound semiconductors,” Solid-State Electron. 38, 1285–1293 (1995).
[CrossRef]

Zavada, J. M.

R. Dahal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Near infrared photonic devices based on Er-doped GaN and InGaN,” Opt. Mater. 33, 1066–1070 (2011).
[CrossRef]

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “1.54 μm emitters based on erbium doped InGaN p-i-n junctions,” Appl. Phys. Lett. 97, 141109 (2010).
[CrossRef]

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN optical amplifiers operating at 1.54 μm,” Appl. Phys Lett. 95, 111109 (2009).
[CrossRef]

C. Ugolini, N. Nepal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN epilayers synthesized by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 89, 151903 (2006).
[CrossRef]

Zhang, D.

J. Zavada and D. Zhang, “Luminescence properties of erbium in III–V compound semiconductors,” Solid-State Electron. 38, 1285–1293 (1995).
[CrossRef]

Zheleva, T.

W. G. Perry, T. Zheleva, M. D. Bremser, R. F. Davis, W. Shan, and J. J. Song, “Correlation of biaxial strains, bound exciton energies, and defect microstructures in GaN films grown on AlN/6H-SiC(0001) substrates,” J. Electron. Mater. 26, 224–231 (1997).
[CrossRef]

Zimmerman, D. R.

Appl. Phys Lett. (1)

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN optical amplifiers operating at 1.54 μm,” Appl. Phys Lett. 95, 111109 (2009).
[CrossRef]

Appl. Phys. Lett. (7)

R. Dahal, C. Ugolini, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “1.54 μm emitters based on erbium doped InGaN p-i-n junctions,” Appl. Phys. Lett. 97, 141109 (2010).
[CrossRef]

I. W. Feng, J. Li, A. Sedhain, J. Y. Lin, H. X. Jiang, and J. Zavada, “Enhancing erbium emission by strain engineering in GaN heteroepitaxial layers,” Appl. Phys. Lett. 96, 031908 (2010).
[CrossRef]

A. J. Neuhalfen and B. W. Wessels, “Thermal quenching of Er3+ related luminescence in In1-XGaXP,” Appl. Phys. Lett. 60, 2657–2659 (1992).
[CrossRef]

X. Z. Wang and B. W. Wessels, “Thermal quenching properties of Er doped GaP,” Appl. Phys. Lett. 64, 1537–1539 (1994).
[CrossRef]

C. Ugolini, N. Nepal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Erbium-doped GaN epilayers synthesized by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 89, 151903 (2006).
[CrossRef]

Y. Yan, A. J. Faber, H. De Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1  dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71, 2922–2924 (1997).
[CrossRef]

Q. Wang, R. Dahal, I. W. Feng, J. Y. Lin, H. X. Jiang, and R. Hui, “Emission and absorption cross-sections of an Er:GaN waveguide prepared with metal organic chemical vapor deposition,” Appl. Phys. Lett. 99, 121106 (2011).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Q. Hui, Y. T. Wan, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “III-nitride-based planar lightwave circuits for long wavelength optical communications,” IEEE J. Quantum Electron. 41, 100–110 (2005).
[CrossRef]

J. Electron. Mater. (1)

W. G. Perry, T. Zheleva, M. D. Bremser, R. F. Davis, W. Shan, and J. J. Song, “Correlation of biaxial strains, bound exciton energies, and defect microstructures in GaN films grown on AlN/6H-SiC(0001) substrates,” J. Electron. Mater. 26, 224–231 (1997).
[CrossRef]

J. Lightwave Technol. (1)

Laser Photon. Rev. (1)

J. D. B. Bradley and M. Pollnau, “Erbium‐doped integrated waveguide amplifiers and lasers,” Laser Photon. Rev. 5, 368–403 (2011).
[CrossRef]

Mater. Sci. Eng. B (1)

A T. Wojtowicz, P. Ruterana, N. Rousseau, O. Briot, S. Dalmasso, R. W. Martin, and K. P. O’Donnell, “The microstructure of Er MBE doped GaN,” Mater. Sci. Eng. B 105, 114–117 (2003).
[CrossRef]

MRS Proc. (1)

A. R. Peaker, “Erbium in semiconductors: where are we coming from; where are we going?,” MRS Proc. 866, 3–12 (2005).
[CrossRef]

Opt. Mater. (1)

R. Dahal, J. Y. Lin, H. X. Jiang, and J. M. Zavada, “Near infrared photonic devices based on Er-doped GaN and InGaN,” Opt. Mater. 33, 1066–1070 (2011).
[CrossRef]

Opt. Quantum Electron. (1)

F. P. Payne and J. P. R. Lacey, “A theoretical-analysis of scattering loss from planar optical wave-guides,” Opt. Quantum Electron. 26, 977–986 (1994).
[CrossRef]

Phys. B (1)

A. Koizumi, Y. Fujiwara, A. Urakami, K. Inoue, T. Yoshikane, and Y. Takeda, “Effects of active layer thickness on Er excitation cross section in GaInP/GaAs: Er, O/GaInP double heterostructure light-emitting diodes,” Phys. B 340, 309–314 (2003).
[CrossRef]

Rep. Prog. Phys. (1)

M. Moram and M. Vickers, “X-ray diffraction of III-nitrides,” Rep. Prog. Phys. 72, 036502 (2009).
[CrossRef]

Solid-State Electron. (1)

J. Zavada and D. Zhang, “Luminescence properties of erbium in III–V compound semiconductors,” Solid-State Electron. 38, 1285–1293 (1995).
[CrossRef]

Other (3)

K. Gerd, Optical Fiber Communications (McGraw-Hill, 1998).

C. R. Pollock, Fundamentals of Optoelectronics (Irwin, 1995).

A. Kovalenko, V. Kurashov, and O. Matievosova, “Radiation losses in planar dielectric waveguide with random rough surface,” in 2011 11th International Conference on Laser and Fiber-Optical Networks Modeling (LFNM), Kharkov, 2011, pp. 1–3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic structure diagrams of four different GaN:Er samples: A1 (GaN:Er/GaN/AlN/Al2O3), A2 (GaN:Er/GaN/Al0.75Ga0.25N/AlN/Al2O3), A3 (GaN/GaN:Er/GaN/Al2O3), and A4 (GaN:Er/GaN/Al2O3).

Fig. 2.
Fig. 2.

GaN (002) XRD rocking curves measured from four different GaN:Er samples: A1 (GaN:Er/GaN/AlN/Al2O3), A2 (GaN:Er/GaN/Al0.75Ga0.25N/AlN/Al2O3), A3 (GaN/GaN:Er/GaN/Al2O3), and A4 (GaN:Er/GaN/Al2O3).

Fig. 3.
Fig. 3.

Schematic diagram of the optical attenuation measurement setup and an AFM image of the GaN:Er waveguide fabricated based on sample A4 (GaN:Er/GaN/Al2O3) with waveguide width w12μm and height h1μm.

Fig. 4.
Fig. 4.

Optical attenuation measurement results obtained from GaN:Er waveguides fabricated based on four different structures: A1 (GaN:Er/GaN/AlN/Al2O3), A2 (GaN:Er/GaN/Al0.75Ga0.25N/AlN/Al2O3), A3 (GaN/GaN:Er/GaN/Al2O3), and A4 (GaN:Er/GaN/Al2O3). The solid lines are the least-squares fit of data using Eq. (2).

Fig. 5.
Fig. 5.

Optical attenuation coefficient of GaN:Er waveguides as a function of the GaN (002) XRD rocking curve linewidth measured from four different structures: A1 (GaN:Er/GaN/AlN/Al2O3), A2 (GaN:Er/GaN/Al0.75Ga0.25N/AlN/Al2O3), A3 (GaN/GaN:Er/GaN/Al2O3), and A4 (GaN:Er/GaN/Al2O3).

Tables (1)

Tables Icon

Table 1. Parameters of Four Different GaN:Er Samplesa

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

G=Γ(gα)L,
I(d)=I(0)exp(αd),

Metrics